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Chapter 1

RELATIONS AND FUNCTIONS

There is no permanent place in the world for ugly mathematics ... . It may

be very hard to define mathematical beauty but that is just as true of

beauty of any kind, we may not know quite what we mean by a

beautiful poem, but that does not prevent us from recognising

one when we read it. — G. H. HARDY

1.1 Introduction

Recall that the notion of relations and functions, domain,

co-domain and range have been introduced in Class XI

along with different types of specific real valued functions

and their graphs. The concept of the term ‘relation’ in

mathematics has been drawn from the meaning of relation

in English language, according to which two objects or

quantities are related if there is a recognisable connection

or link between the two objects or quantities. Let A be

the set of students of Class XII of a school and B be the

set of students of Class XI of the same school. Then some

of the examples of relations from A to B are



(i) {( a, b)

A × B: a is brother of b},

Lejeune Dirichlet

✂

(ii) {( a, b)

A × B: a is sister of b},

(1805-1859)

✂

(iii) {( a, b)

A × B: age of a is greater than age of b},

✂

(iv) {( a, b)

A × B: total marks obtained by a in the final examination is less than

✂

the total marks obtained by b in the final examination},

(v) {( a, b) A × B: a lives in the same locality as b}. However, abstracting
from

✂

this, we define mathematically a relation R from A to B as an arbitrary
subset

of A × B.



If ( a, b) R, we say that a is related to b under the relation R and we write as

✂

a R b. In general, ( a, b) R, we do not bother whether there is a recognisable

✂

connection or link between a and b. As seen in Class XI, functions are
special kind of relations.

In this chapter, we will study different types of relations and functions,
composition

of functions, invertible functions and binary operations.
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1.2 Types of Relations

In this section, we would like to study different types of relations. We know
that a

relation in a set A is a subset of A × A. Thus, the empty set and A × A are
two

✄

extreme relations. For illustration, consider a relation R in the set A = {1, 2,
3, 4} given by



R = {( a, b): a – b = 10}. This is the empty set, as no pair ( a, b) satisfies the
condition a – b = 10. Similarly, R = {( a, b) : | a – b | 0} is the whole set A ×
A, as all pairs

☎

✆

( a, b) in A × A satisfy | a – b | 0. These two extreme examples lead us to the

✆

following definitions.

Definition 1 A relation R in a set A is called empty relation, if no element of
A is

related to any element of A, i.e., R =

A × A.

✄

Definition 2 A relation R in a set A is called universal relation, if each
element of A is related to every element of A, i.e., R = A × A.

Both the empty relation and the universal relation are some times called
trivial

relations.

Example 1 Let A be the set of all students of a boys school. Show that the
relation R

in A given by R = {( a, b) : a is sister of b} is the empty relation and R = {(
a, b) : the

☎



difference between heights of a and b is less than 3 meters} is the universal
relation.

Solution Since the school is boys school, no student of the school can be
sister of any

student of the school. Hence, R = , showing that R is the empty relation. It
is also

✄

obvious that the difference between heights of any two students of the
school has to be

less than 3 meters. This shows that R = A × A is the universal relation.

☎

Remark In Class XI, we have seen two ways of representing a relation,
namely

roaster method and set builder method. However, a relation R in the set {1,
2, 3, 4}

defined by R = {( a, b) : b = a + 1} is also expressed as a R b if and only if
b = a + 1 by many authors. We may also use this notation, as and when
convenient.

If ( a, b) R, we say that a is related to b and we denote it as a R b.

✂

One of the most important relation, which plays a significant role in
Mathematics,

is an equivalence relation. To study equivalence relation, we first consider
three

types of relations, namely reflexive, symmetric and transitive.



Definition 3 A relation R in a set A is called

(i) reflexive, if ( a, a) R, for every a A,

✂

✂

(ii) symmetric, if ( a , a ) R implies that ( a , a ) R, for all a , a A.

1

2

✂

2

1 ✂

1

2 ✂

(iii) transitive, if ( a , a ) R and ( a , a ) R implies that ( a , a ) R, for all a , a
1

2

✂

2

3 ✂

1

3 ✂



1

2✱

a

A.

3 ✂
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Definition 4 A relation R in a set A is said to be an equivalence relation if R
is

reflexive, symmetric and transitive.

Example 2 Let T be the set of all triangles in a plane with R a relation in T
given by

R = {(T , T ) : T is congruent to T }. Show that R is an equivalence relation.

1

2

1

2

Solution R is reflexive, since every triangle is congruent to itself. Further,

(T , T ) R

T is congruent to T

T is congruent to T



(T , T ) R. Hence,

1

2

✂

✞

1

2 ✞

2

1 ✞

2

1

✂

R is symmetric. Moreover, (T , T ), (T , T ) R

T is congruent to T and T is

1

2

2



3

✂

✞

1

2

2

congruent to T

T is congruent to T

(T , T ) R. Therefore, R is an equivalence

3 ✞

1

3 ✞

1

3 ✂

relation.

Example 3 Let L be the set of all lines in a plane and R be the relation in L
defined as

R = {(L , L ) : L is perpendicular to L }. Show that R is symmetric but
neither

1



2

1

2

reflexive nor transitive.

Solution R is not reflexive, as a line L can not be perpendicular to itself,
i.e., (L , L )

1

1

1

R. R is symmetric as (L , L ) R

✟

1

2

✂

L is perpendicular to L

✞

1

2



L is perpendicular to L

✞

2

1

(L , L ) R.

✞

2

1

✂

R is not transitive. Indeed, if L is perpendicular to L and

1

2

Fig 1.1

L is perpendicular to L , then L can never be perpendicular to

2

3

1

L . In fact, L is parallel to L , i.e., (L , L ) R, (L , L ) R but (L , L ) R.

3



1

3

1

2

✂

2

3

✂

1

3

✟

Example 4 Show that the relation R in the set {1, 2, 3} given by R = {(1,
1), (2, 2),

(3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor transitive.

Solution R is reflexive, since (1, 1), (2, 2) and (3, 3) lie in R. Also, R is not
symmetric,



as (1, 2) R but (2, 1) R. Similarly, R is not transitive, as (1, 2) R and (2, 3) R

✂

✟

✂

✂

but (1, 3) R.

✟

Example 5 Show that the relation R in the set Z of integers given by

R = {( a, b) : 2 divides a – b}

is an equivalence relation.

Solution R is reflexive, as 2 divides ( a – a) for all a

Z. Further, if ( a, b) R, then

✂

✂

2 divides a – b. Therefore, 2 divides b – a. Hence, ( b, a) R, which shows
that R is

✂



symmetric. Similarly, if ( a, b) R and ( b, c) R, then a – b and b – c are
divisible by

✂

✂

2. Now, a – c = ( a – b) + ( b – c) is even (Why?). So, ( a – c) is divisible by
2. This shows that R is transitive. Thus, R is an equivalence relation in Z.

4
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In Example 5, note that all even integers are related to zero, as (0, ± 2), (0, ±
4)

etc., lie in R and no odd integer is related to 0, as (0, ± 1), (0, ± 3) etc., do
not lie in R.

Similarly, all odd integers are related to one and no even integer is related to
one.

Therefore, the set E of all even integers and the set O of all odd integers are
subsets of

Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of O are
related to

each other.

(ii) No element of E is related to any element of O and vice-versa.

(iii) E and O are disjoint and Z = E



O.

✠

The subset E is called the equivalence class containing zero and is denoted
by

[0]. Similarly, O is the equivalence class containing 1 and is denoted by [1].
Note that

[0] [1], [0] = [2 r] and [1] = [2 r + 1], r Z. Infact, what we have seen above
is true

✡

✂

for an arbitrary equivalence relation R in a set X. Given an arbitrary
equivalence

relation R in an arbitrary set X, R divides X into mutually disjoint subsets A
called

i

partitions or subdivisions of X satisfying:

(i) all elements of A are related to each other, for all i.

i

(ii) no element of A is related to any element of A , i j.

i



j

✡

(iii)

A = X and A A = , i j.

✠

j

i ☛

j

✄

✡

The subsets A are called equivalence classes. The interesting part of the
situation

i

is that we can go reverse also. For example, consider a subdivision of the
set Z given

by three mutually disjoint subsets A , A and A whose union is Z with

1

2

3

A = { x Z : x is a multiple of 3} = {..., – 6, – 3, 0, 3, 6, ...}



1

✂

A = { x Z : x – 1 is a multiple of 3} = {..., – 5, – 2, 1, 4, 7, ...}

2

✂

A = { x Z : x – 2 is a multiple of 3} = {..., – 4, – 1, 2, 5, 8, ...}

3

✂

Define a relation R in Z given by R = {( a, b) : 3 divides a – b}. Following
the arguments similar to those used in Example 5, we can show that R is an
equivalence

relation. Also, A coincides with the set of all integers in Z which are related
to zero, A

1

2

coincides with the set of all integers which are related to 1 and A coincides
with the

3

set of all integers in Z which are related to 2. Thus, A = [0], A = [1] and A =
[2].

1

2



3

In fact, A = [3 r], A = [3 r + 1] and A = [3 r + 2], for all r Z.

1

2

3

✂

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7}
by

R = {( a, b) : both a and b are either odd or even}. Show that R is an
equivalence relation. Further, show that all the elements of the subset {1, 3,
5, 7} are related to each

other and all the elements of the subset {2, 4, 6} are related to each other,
but no

element of the subset {1, 3, 5, 7} is related to any element of the subset {2,
4, 6}.

RELATIONS AND FUNCTIONS
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Solution Given any element a in A, both a and a must be either odd or
even, so that ( a, a) R. Further, ( a, b) R



both a and b must be either odd or even

✂

✂

✞

( b, a) R. Similarly, ( a, b) R and ( b, c) R

all elements a, b, c, must be

✞

✂

✂

✂

✞

either even or odd simultaneously

( a, c) R. Hence, R is an equivalence relation.

✞

✂

Further, all the elements of {1, 3, 5, 7} are related to each other, as all the
elements

of this subset are odd. Similarly, all the elements of the subset {2, 4, 6} are
related to



each other, as all of them are even. Also, no element of the subset {1, 3, 5,
7} can be

related to any element of {2, 4, 6}, as elements of {1, 3, 5, 7} are odd, while
elements

of {2, 4, 6} are even.

EXERCISE 1.1

1. Determine whether each of the following relations are reflexive,
symmetric and

transitive:

(i) Relation R in the set A = {1, 2, 3, ..., 13, 14} defined as

R = {( x, y) : 3 x – y = 0}

(ii) Relation R in the set N of natural numbers defined as

R = {( x, y) : y = x + 5 and x < 4}

(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as

R = {( x, y) : y is divisible by x}

(iv) Relation R in the set Z of all integers defined as

R = {( x, y) : x – y is an integer}

(v) Relation R in the set A of human beings in a town at a particular time
given by

(a) R = {( x, y) : x and y work at the same place}

(b) R = {( x, y) : x and y live in the same locality}

(c) R = {( x, y) : x is exactly 7 cm taller than y}



(d) R = {( x, y) : x is wife of y}

(e) R = {( x, y) : x is father of y}

2. Show that the relation R in the set R of real numbers, defined as

R = {( a, b) : a b 2} is neither reflexive nor symmetric nor transitive.

☞

3. Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

R = {( a, b) : b = a + 1} is reflexive, symmetric or transitive.

4. Show that the relation R in R defined as R = {( a, b) : a b}, is reflexive
and

☞

transitive but not symmetric.

5. Check whether the relation R in R defined by R = {( a, b) : a b 3} is
reflexive,

☞

symmetric or transitive.
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6. Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)}
is

symmetric but neither reflexive nor transitive.

7. Show that the relation R in the set A of all the books in a library of a
college,



given by R = {( x, y) : x and y have same number of pages} is an
equivalence relation.

8. Show that the relation R in the set A = {1, 2, 3, 4, 5} given by

R = {( a, b) : | a – b| is even}, is an equivalence relation. Show that all the
elements of {1, 3, 5} are related to each other and all the elements of {2, 4}
are

related to each other. But no element of {1, 3, 5} is related to any element
of {2, 4}.

9. Show that each of the relation R in the set A = { x Z : 0 x 12}, given by

✂

☞

☞

(i) R = {( a, b) : | a – b| is a multiple of 4}

(ii) R = {( a, b) : a = b}

is an equivalence relation. Find the set of all elements related to 1 in each
case.

10. Give an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.



11. Show that the relation R in the set A of points in a plane given by

R = {(P, Q) : distance of the point P from the origin is same as the distance
of the

point Q from the origin}, is an equivalence relation. Further, show that the
set of

all points related to a point P (0, 0) is the circle passing through P with
origin as

✡

centre.

12. Show that the relation R defined in the set A of all triangles as R = {(T ,
T ) : T

1

2

1

is similar to T }, is equivalence relation. Consider three right angle triangles
T

2

1

with sides 3, 4, 5, T with sides 5, 12, 13 and T with sides 6, 8, 10. Which

2

3

triangles among T , T and T are related?



1

2

3

13. Show that the relation R defined in the set A of all polygons as R = {(P ,
P ) :

1

2

P and P have same number of sides}, is an equivalence relation. What is the

1

2

set of all elements in A related to the right angle triangle T with sides 3, 4
and 5?

14. Let L be the set of all lines in XY plane and R be the relation in L
defined as

R = {(L , L ) : L is parallel to L }. Show that R is an equivalence relation.
Find

1

2

1

2

the set of all lines related to the line y = 2 x + 4.

RELATIONS AND FUNCTIONS
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15. Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2),
(1, 1), (4,4),

(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

16. Let R be the relation in the set N given by R = {( a, b) : a = b – 2, b >
6}. Choose the correct answer.

(A) (2, 4) R

(B) (3, 8) R

(C) (6, 8) R

(D) (8, 7) R

✂

✂

✂

✂

1.3 Types of Functions

The notion of a function along with some special functions like identity
function, constant



function, polynomial function, rational function, modulus function, signum
function etc.

along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have
also been

studied. As the concept of function is of paramount importance in
mathematics and

among other disciplines as well, we would like to extend our study about
function from

where we finished earlier. In this section, we would like to study different
types of

functions.

Consider the functions f , f , f and f given by the following diagrams.

1

2

3

4

In Fig 1.2, we observe that the images of distinct elements of X under the
function

1

f are distinct, but the image of two distinct elements 1 and 2 of X under f is
same, 1

1



2

namely b. Further, there are some elements like e and f in X which are not
images of 2

any element of X under f , while all elements of X are images of some
elements of X

1

1

3

1

under f . The above observations lead to the following definitions:

3

Definition 5 A function f : X

Y is defined to be one-one (or injective), if the images

✌

of distinct elements of X under f are distinct, i.e., for every x , x X, f ( x ) = f
( x ) 1

2 ✂

1

2

implies x = x . Otherwise, f is called many-one.

1



2

The function f and f in Fig 1.2 (i) and (iv) are one-one and the function f and
f 1

4

2

3

in Fig 1.2 (ii) and (iii) are many-one.

Definition 6 A function f : X

Y is said to be onto (or surjective), if every element

✌

of Y is the image of some element of X under f, i.e., for every y Y, there
exists an

✂

element x in X such that f ( x) = y.

The function f and f in Fig 1.2 (iii), (iv) are onto and the function f in Fig
1.2 (i) is 3

4

1

not onto as elements e, f in X are not the image of any element in X under f
.

2

1



1
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Fig 1.2 (i) to (iv)

Remark f : X

Y is onto if and only if Range of f = Y.

✌

Definition 7 A function f : X

Y is said to be one-one and onto (or bijective), if f is

✌

both one-one and onto.

The function f in Fig 1.2 (iv) is one-one and onto.

4

Example 7 Let A be the set of all 50 students of Class X in a school. Let f :
A

N be

✌

function defined by f ( x) = roll number of the student x. Show that f is one-
one but not onto.

Solution No two different students of the class can have same roll number.
Therefore,



f must be one-one. We can assume without any loss of generality that roll
numbers of

students are from 1 to 50. This implies that 51 in N is not roll number of
any student of

the class, so that 51 can not be image of any element of X under f. Hence, f
is not onto.

Example 8 Show that the function f : N

N, given by f ( x) = 2 x, is one-one but not

✌

onto.

Solution The function f is one-one, for f ( x ) = f ( x ) 2 x = 2 x

x = x . Further,

1

2

✞

1

2 ✞

1

2



f is not onto, as for 1 N, there does not exist any x in N such that f ( x) = 2 x
= 1.

✂

RELATIONS AND FUNCTIONS
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Example 9 Prove that the function f : R

R, given by f ( x) = 2 x, is one-one and onto.

✌

Solution f is one-one, as f ( x ) = f ( x )

2 x = 2 x

x = x . Also, given any real

1

2

✞

1

2 ✞

1

2

y

y



y

number y in R, there exists

in R such that f (

) = 2 . (

) = y. Hence, f is onto.

2

2

2

Fig 1.3

Example 10 Show that the function f : N

N, given by f (1) = f (2) = 1 and f ( x) = x – 1,

✌

for every x > 2, is onto but not one-one.

Solution f is not one-one, as f (1) = f (2) = 1. But f is onto, as given any y N,
y 1,

✂

✡

we can choose x as y + 1 such that f ( y + 1) = y + 1 – 1 = y. Also for 1 N,
we

✂

have f (1) = 1.



Example 11 Show that the function f : R

R,

✌

defined as f ( x) = x 2, is neither one-one nor onto.

Solution Since f (– 1) = 1 = f (1), f is not one-one. Also, the element – 2 in
the co-domain R is

not image of any element x in the domain R

(Why?). Therefore f is not onto.

Example 12 Show that f : N

N, given by

✌

✁

x 1,if x is odd,

f ( x) ✄ ☎ x ✆1,if x is even

✝

is both one-one and onto.

Fig 1.4

10
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Solution Suppose f ( x ) = f ( x ). Note that if x is odd and x is even, then we
will have 1

2

1

2

x + 1 = x – 1, i.e., x – x = 2 which is impossible. Similarly, the possibility of
x being 1

2

2

1

1

even and x being odd can also be ruled out, using the similar argument.
Therefore,

2

both x and x must be either odd or even. Suppose both x and x are odd. Then
1

2

1

2

f ( x ) = f ( x )

x + 1 = x + 1

x = x . Similarly, if both x and x are even, then also



1

2 ✞

1

2

✞

1

2

1

2

f ( x ) = f ( x )

x – 1 = x – 1

x = x . Thus, f is one-one. Also, any odd number

1

2

✞

1

2

✞



1

2

2 r + 1 in the co-domain N is the image of 2 r + 2 in the domain N and any
even number 2 r in the co-domain N is the image of 2 r – 1 in the domain
N. Thus, f is onto.

Example 13 Show that an onto function f : {1, 2, 3}

{1, 2, 3} is always one-one.

✌

Solution Suppose f is not one-one. Then there exists two elements, say 1
and 2 in the

domain whose image in the co-domain is same. Also, the image of 3 under f
can be

only one element. Therefore, the range set can have at the most two
elements of the

co-domain {1, 2, 3}, showing that f is not onto, a contradiction. Hence, f
must be one-one.

Example 14 Show that a one-one function f : {1, 2, 3}

{1, 2, 3} must be onto.

✌

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3
different

elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an
arbitrary



finite set X, i.e., a one-one function f : X

X is necessarily onto and an onto map

✌

f : X

X is necessarily one-one, for every finite set X. In contrast to this,
Examples 8

✌

and 10 show that for an infinite set, this may not be true. In fact, this is a
characteristic

difference between a finite and an infinite set.

EXERCISE 1.2

1

1. Show that the function f : R

R defined by f ( x) =



is one-one and onto,

✌

✍

✍

✍

✍

✍

✍

✍

✍

x

where R is the set of all nonzero real numbers. Is the result true, if the
domain

✍

✍



R is replaced by N with co-domain being same as R ?

✍

✍

✍

✍

✍

✍

✍

✍

2. Check the injectivity and surjectivity of the following functions:

(i) f : N

N given by f ( x) = x 2

✌

(ii) f : Z

Z given by f ( x) = x 2

✌

(iii) f : R

R given by f ( x) = x 2

✌

(iv) f : N



N given by f ( x) = x 3

✌

(v) f : Z

Z given by f ( x) = x 3

✌

3. Prove that the Greatest Integer Function f : R

R, given by f ( x) = [ x], is neither

✌

one-one nor onto, where [ x] denotes the greatest integer less than or equal
to x.

RELATIONS AND FUNCTIONS
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4. Show that the Modulus Function f : R

R, given by f ( x) = | x |, is neither one-

✌

one nor onto, where | x | is x, if x is positive or 0 and | x | is – x, if x is
negative.

5. Show that the Signum Function f : R

R, given by

✌



1

✁

, if x

0

f ( x)

✂

✄

0, if x ✄

☎

0

✂

–1, if x ✆ 0

✝

is neither one-one nor onto.

6. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a
function from A to B. Show that f is one-one.

7. In each of the following cases, state whether the function is one-one, onto
or

bijective. Justify your answer.

(i) f : R



R defined by f ( x) = 3 – 4 x

✌

(ii) f : R

R defined by f ( x) = 1 + x 2

✌

8. Let A and B be sets. Show that f : A × B

B × A such that f ( a, b) = ( b, a) is

✌

bijective function.

n ✞

✟

1, if n is odd

✠

✠

2

9. Let f : N

N be defined by f ( n) =



for all n N.

✌

☞

✡

n

✠

, if n is even

✠

☛

2

State whether the function f is bijective. Justify your answer.

10. Let A = R – {3} and B = R – {1}. Consider the function f : A

B defined by

✌

x ✍

✎

2 ✏

f ( x) =



. Is f one-one and onto? Justify your answer.

✑

✓

x

3 ✒

✍

✔

11. Let f : R

R be defined as f( x) = x 4. Choose the correct answer.

✌

(A) f is one-one onto

(B) f is many-one onto

(C) f is one-one but not onto

(D) f is neither one-one nor onto.

12. Let f : R

R be defined as f ( x) = 3 x. Choose the correct answer.

✌

(A) f is one-one onto

(B) f is many-one onto

(C) f is one-one but not onto



(D) f is neither one-one nor onto.

12
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1.4 Composition of Functions and Invertible Function

In this section, we will study composition of functions and the inverse of a
bijective

function. Consider the set A of all students, who appeared in Class X of a
Board

Examination in 2006. Each student appearing in the Board Examination is
assigned a

roll number by the Board which is written by the students in the answer
script at the

time of examination. In order to have confidentiality, the Board arranges to
deface the

roll numbers of students in the answer scripts and assigns a fake code
number to each

roll number. Let B N be the set of all roll numbers and C

N be the set of all code

✝

✝

numbers. This gives rise to two functions f : A

B and g : B



C given by f ( a) = the

✌

✌

roll number assigned to the student a and g ( b) = the code number assigned
to the roll number b. In this process each student is assigned a roll number
through the function f

and each roll number is assigned a code number through the function g.
Thus, by the

combination of these two functions, each student is eventually attached a
code number.

This leads to the following definition:

Definition 8 Let f : A

B and g : B

C be two functions. Then the composition of

✌

✌

f and g, denoted by gof, is defined as the function gof : A

C given by

✌

gof ( x) = g( f ( x)),

x A.

✂



Fig 1.5

Example 15 Let f : {2, 3, 4, 5}

{3, 4, 5, 9} and g : {3, 4, 5, 9}

{7, 11, 15} be

✌

✌

functions defined as f (2) = 3, f (3) = 4, f (4) = f (5) = 5 and g (3) = g (4) = 7
and g (5) = g (9) = 11. Find gof.

Solution We have gof (2) = g ( f (2)) = g (3) = 7, gof (3) = g ( f (3)) = g (4)
= 7, gof (4) = g ( f (4)) = g (5) = 11 and gof (5) = g (5) = 11.

Example 16 Find gof and fog, if f : R

R and g : R

R are given by f ( x) = cos x

✌

✌

and g ( x) = 3 x 2. Show that gof fog.

✡

Solution We have gof ( x) = g ( f ( x)) = g (cos x) = 3 (cos x)2 = 3 cos2 x.
Similarly, fog ( x) = f ( g ( x)) = f (3 x 2) = cos (3 x 2). Note that 3cos2 x cos
3 x 2, for x = 0. Hence,

✡



gof fog.

✡

RELATIONS AND FUNCTIONS
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7

3 x ✟ 4

✁

3

Example 17 Show that if f :

✁

R

R

is defined by f ( x)

and

✠

✂

✄

✂

☎



5 ✆

☎

5✆

5 x ✡ 7

✝

✞

✝

✞

7 x ✟ 4

☛

3☞

☛

7

g :

☞

R

R

is defined by g( x)



, then fog = I and gof = I , where,

✠

✌

✍

✌

✎

5✏

✎

5✏

5 x

A

B

✡

3

✑

✒

✑

✒

3



7

✁

A = R –

, B = R –

✁

; I ( x) = x,

x A, I ( x) = x,

x B are called identity

☎

5✆

✔

✔

☎

A

✓

✓

B

✝



5 ✆

✝

✞

✞

functions on sets A and B, respectively.

Solution We have

(3 x ✕

✖

4)

7

✗

✕

4

3 x

21 x ✣ 28 ✣ 20 x ✤ 28

41 x

✕

✖



4

✘

✗

(5 x

7) ✙

✚

gof ( x)

g

✛

✜

=

✥

✥

x

✢

✢

✘

5 x

7 ✙

(3 x



15 x ✣ 20 ✤ 15 x ✣ 21

41

✕

✚

✛

✜

✖

4)

5

✗

✚

3

✘

(5 x

7) ✙

✚

✛

✜

(7 x ✕

✖



4)

3

✗

✕

4

7 x

21 x ✟ 12 ✟ 20 x ✡12

41 x

✕

✖

4

✘

✗

(5 x

3) ✙

✚

Similarly, fog( x)



f

✛

✜

=

✠

✠

x

✢

✢

✘

5 x

3 ✙

(7 x

35 x ✟ 20 ✡ 35 x ✟ 21



41

✕

✚

✛

✜

✖

4)

5

✗

✚

7

✘

(5 x

3) ✙

✚

✛

✜

Thus, gof ( x) = x,

x B and fog ( x) = x,



x A, which implies that gof = I

✔

✔

B

✓

✓

and fog = I .

A

Example 18 Show that if f : A

B and g : B

C are one-one, then gof : A

C is

✦

✦

✦

also one-one.

Solution Suppose gof ( x ) = gof ( x )

1

2



g ( f ( x )) = g( f ( x ))

✧

1

2

f ( x ) = f ( x ), as g is one-one

✧

1

2

x = x , as f is one-one

✧

1

2

Hence, gof is one-one.

Example 19 Show that if f : A

B and g : B

C are onto, then gof : A

C is

✦

✦

✦



also onto.

Solution Given an arbitrary element z C, there exists a pre-image y of z
under g

✔

such that g ( y) = z, since g is onto. Further, for y B, there exists an element
x in A

✔

14
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with f ( x) = y, since f is onto. Therefore, gof ( x) = g ( f ( x)) = g ( y) = z,
showing that gof is onto.

Example 20 Consider functions f and g such that composite gof is defined
and is one-one. Are f and g both necessarily one-one.

Solution Consider f : {1, 2, 3, 4}

{1, 2, 3, 4, 5, 6} defined as f ( x) = x,

x and

✌

g : {1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6} as g ( x) = x, for x = 1, 2, 3, 4 and g (5) = g (6) = 5.

✌

Then, gof ( x) = x

x, which shows that gof is one-one. But g is clearly not one-one.



Example 21 Are f and g both necessarily onto, if gof is onto?

Solution Consider f : {1, 2, 3, 4}

{1, 2, 3, 4} and g : {1, 2, 3, 4}

{1, 2, 3} defined

✌

✌

as f (1) = 1, f (2) = 2, f (3) = f (4) = 3, g (1) = 1, g (2) = 2 and g (3) = g (4) =
3. It can be seen that gof is onto but f is not onto.

Remark It can be verified in general that gof is one-one implies that f is
one-one.

Similarly, gof is onto implies that g is onto.

Now, we would like to have close look at the functions f and g described in
the

beginning of this section in reference to a Board Examination. Each student
appearing

in Class X Examination of the Board is assigned a roll number under the
function f and

each roll number is assigned a code number under g. After the answer
scripts are

examined, examiner enters the mark against each code number in a mark
book and

submits to the office of the Board. The Board officials decode by assigning
roll number



back to each code number through a process reverse to g and thus mark gets
attached

to roll number rather than code number. Further, the process reverse to f
assigns a roll

number to the student having that roll number. This helps in assigning mark
to the

student scoring that mark. We observe that while composing f and g, to get
gof, first f and then g was applied, while in the reverse process of the
composite gof, first the

reverse process of g is applied and then the reverse process of f.

Example 22 Let f : {1, 2, 3}

{ a, b, c} be one-one and onto function given by

✌

f (1) = a, f (2) = b and f (3) = c. Show that there exists a function g : { a, b,
c}

{1, 2, 3}

✌

such that gof = I and fog = I , where, X = {1, 2, 3} and Y = { a, b, c}.

X

Y

Solution Consider g : { a, b, c}

{1, 2, 3} as g ( a) = 1, g ( b) = 2 and g ( c) = 3. It is

✌



easy to verify that the composite gof = I is the identity function on X and
the composite

X

fog = I is the identity function on Y.

Y

Remark The interesting fact is that the result mentioned in the above
example is true for an arbitrary one-one and onto function f : X

Y. Not only this, even the converse

✌

is also true , i.e., if f : X

Y is a function such that there exists a function g : Y

X

✌

✌

such that gof = I and fog = I , then f must be one-one and onto.

X

Y

The above discussion, Example 22 and Remark lead to the following
definition:

RELATIONS AND FUNCTIONS
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Definition 9 A function f : X

Y is defined to be invertible, if there exists a function

✌

g : Y

X such that gof = I and fog = I . The function g is called the inverse of f and

✌

X

Y

is denoted by f –1.

Thus, if f is invertible, then f must be one-one and onto and conversely, if f
is one-one and onto, then f must be invertible. This fact significantly helps
for proving a

function f to be invertible by showing that f is one-one and onto, specially
when the

actual inverse of f is not to be determined.

Example 23 Let f : N

Y be a function defined as f ( x) = 4 x + 3, where,

✌

Y = { y N : y = 4 x + 3 for some x N }. Show that f is invertible. Find the
inverse.

✂

✂



Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4
x + 3, ( y 3)

for some x in the domain N . This shows that x

. Define g : Y

N by

✁

✌

4

( y

3)

(4 x ✄ 3 3)

g ( y)

. Now, gof ( x) = g ( f ( x)) = g (4 x + 3) =

and

✁

x

✁

4

4

( y ☎ 3)



4 ( y ☎

✆

✝

3)

fog ( y) = f ( g ( y)) = f

= y – 3 + 3 = y. This shows that gof = I

✞

✟

✠

✡

3

N

☛

4

☞

4

and fog = I , which implies that f is invertible and g is the inverse of f.

Y



Example 24 Let Y = { n 2 : n N } N . Consider f : N

Y as f ( n) = n 2. Show that

✍

✌

✂

f is invertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form n 2, for some n N . This

✂

implies that n =

y . This gives a function g : Y

N , defined by g ( y) =

y . Now,

✌

2

gof ( n) = g ( n 2) =

2

n = n and fog ( y) = f

y

, which shows that

✑



y

✑

y

✎

✏

✎

✏

gof = I and fog = I . Hence, f is invertible with f –1 = g.

N

Y

Example 25 Let f : N

R be a function defined as f ( x) = 4 x 2 + 12 x + 15. Show that

✌

f : N

S, where, S is the range of f, is invertible. Find the inverse of f.

✌

Solution Let y be an arbitrary element of range f. Then y = 4 x 2 + 12 x +
15, for some y ✖ 6 ✖ 3

✒

✓



x in N, which implies that y = (2 x + 3)2 + 6. This gives

✔

✕

x

, as y 6.

✗

✑

2

16
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y ☎ 6 ☎ 3

✁

✂

✄

Let us define g : S

N by g ( y) =

.

✌

2

Now



gof ( x) = g ( f ( x)) = g (4 x 2 + 12 x + 15) = g ((2 x + 3)2 + 6) 2

(2 x ☛ 3) ☛ 6 ☞ 6 ☞ 3

✆

✝

✞

2 x ☛ 3 ☞ 3

✟

=

✠

✡

✍

✍

x

2

2

2

✓

y



6

3 ✔

✓

2

y

6

3

✔

✕

✕

✕

✕

✎

✏

✎

✏

✑

✒

✑

✒



and

fog ( y) = f ✖

✗

✖

3✗

✘

✙

✙

✖

✗

✖

✗

6

✚

2

✛

✚

2

✛

2



2

=

y

= y – 6 + 6 = y.

✦

6 ✦ 3 ✧ 3

✧

6 ★

y ✦ 6

✧

6

✜

✢

✜

✢

✣

✤

✥

Hence,

gof = I and fog =I . This implies that f is invertible with f –1 = g.



N

S

Example 26 Consider f : N

N, g : N

N and h : N

R defined as f ( x) = 2 x,

✌

✌

✌

g ( y) = 3 y + 4 and h ( z) = sin z,

x, y and z in N. Show that ho( g o f ) = ( h o g) o f.

✩

Solution We have

h o( g o f) ( x) = h( g o f ( x)) = h( g ( f ( x))) = h ( g (2 x))

= h(3(2 x) + 4) = h(6 x + 4) = sin (6 x + 4)

N

✪

x ✫ .

Also, (( h o g) o f ) ( x) = ( h o g) ( f ( x)) = ( h o g) (2 x) = h ( g (2 x))

= h(3(2 x) + 4) = h(6 x + 4) = sin (6 x + 4),



x N.

✬

✩

This shows that h o( g o f) = ( h o g) o f.

This result is true in general situation as well.

Theorem 1 If f : X

Y, g : Y

Z and h : Z

S are functions, then

✌

✌

✌

h o( g o f ) = ( h o g) o f.

Proof We have

h o( g o f ) ( x) = h( g o f ( x)) = h( g ( f ( x))), x in X

✩

and

( h o g) o f ( x) = h o g ( f ( x)) = h( g ( f ( x))), x in X.

✩

Hence,



h o( g o f) = ( h o g) o f.

Example 27 Consider f : {1, 2, 3}

{ a, b, c} and g : { a, b, c}

{apple, ball, cat}

✌

✌

defined as f (1) = a, f (2) = b, f (3) = c, g( a) = apple, g( b) = ball and g( c) =
cat.

Show that f, g and gof are invertible. Find out f –1, g–1 and ( g o f)–1 and
show that ( g o f) –1 = f –1o g–1.

RELATIONS AND FUNCTIONS
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Solution Note that by definition, f and g are bijective functions. Let

f –1: { a, b, c}

(1, 2, 3} and g–1 : {apple, ball, cat}

{ a, b, c} be defined as

✌

✌

f –1{ a} = 1, f –1{ b} = 2, f –1{ c} = 3, g –1{apple} = a, g –1{ball} = b and
g –1{cat} = c.

It is easy to verify that f –1o f = I



, f o f –1 = I

, g –1o g = I

and g o g–1 = I ,

{1, 2, 3}

{ a, b, c}

{ a, b, c}

D

where, D = {apple, ball, cat}. Now, gof : {1, 2, 3}

{apple, ball, cat} is given by

✌

gof (1) = apple, gof (2) = ball, gof (3) = cat. We can define

( g o f)–1 : {apple, ball, cat}

{1, 2, 3} by ( g o f)–1 (apple) = 1, ( g o f)–1 (ball) = 2 and

✌

( g o f)–1 (cat) = 3. It is easy to see that ( g o f)–1 o ( g o f) = I and

{1, 2, 3}

( g o f) o ( g o f)–1 = I . Thus, we have seen that f, g and g o f are invertible.

D

Now, f –1o g–1 (apple)= f –1( g–1(apple)) = f –1( a) = 1 = ( g o f)–1 (apple)
f –1o g–1 (ball) = f –1( g–1(ball)) = f –1( b) = 2 = ( g o f)–1 (ball) and f –1o
g–1 (cat) = f –1( g–1(cat)) = f –1( c) = 3 = ( g o f)–1 (cat).



Hence ( g o f)–1 = f –1o g–1.

The above result is true in general situation also.

Theorem 2 Let f : X

Y and g : Y

Z be two invertible functions. Then g o f is also

✌

✌

invertible with ( g o f)–1 = f –1o g–1.

Proof To show that g o f is invertible with ( g o f)–1 = f –1o g–1, it is
enough to show that ( f –1o g–1)o( g o f) = I and ( g o f)o( f –1o g–1) = I .

X

Z

Now,

( f –1o g–1) o ( g o f) = (( f –1o g–1) o g) o f, by Theorem 1

= ( f –1o( g–1o g)) o f, by Theorem 1

= ( f –1 o I ) o f, by definition of g–1

Y

= I .

X

Similarly, it can be shown that ( gof ) o ( f –1 o g –1) = I .



Z

Example 28 Let S = {1, 2, 3}. Determine whether the functions f : S

S defined as

✌

below have inverses. Find f –1, if it exists.

(a) f = {(1, 1), (2, 2), (3, 3)}

(b) f = {(1, 2), (2, 1), (3, 1)}

(c) f = {(1, 3), (3, 2), (2, 1)}

Solution

(a) It is easy to see that f is one-one and onto, so that f is invertible with the
inverse f –1 of f given by f –1 = {(1, 1), (2, 2), (3, 3)} = f.

(b) Since f (2) = f (3) = 1, f is not one-one, so that f is not invertible.

(c) It is easy to see that f is one-one and onto, so that f is invertible with

f –1 = {(3, 1), (2, 3), (1, 2)}.
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EXERCISE 1.3

1. Let f : {1, 3, 4}

{1, 2, 5} and g : {1, 2, 5}



{1, 3} be given by

✌

✌

f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.

2. Let f, g and h be functions from R to R. Show that

( f + g) o h = f o h + g o h

( f . g) o h = ( f o h) . ( g o h)

3. Find g o f and f o g, if

(i) f ( x) = | x | and g( x) = | 5 x – 2 |

1

(ii) f ( x) = 8 x 3 and g( x) = 3

x .

(4 x

3)

2

2

4. If f ( x) =

, x

, show that f o f ( x) = x, for all x



. What is the

✂

(6 x

3

✄

✁

4)

3

inverse of f ?

5. State with reason whether following functions have inverse

(i) f : {1, 2, 3, 4}

{10} with

✌

f = {(1, 10), (2, 10), (3, 10), (4, 10)}

(ii) g : {5, 6, 7, 8}

{1, 2, 3, 4} with

✌

g = {(5, 4), (6, 3), (7, 4), (8, 2)}

(iii) h : {2, 3, 4, 5}



{7, 9, 11, 13} with

✌

h = {(2, 7), (3, 9), (4, 11), (5, 13)}

x

6. Show that f : [–1, 1]

R, given by f ( x) =

is one-one. Find the inverse

✌

( x ☎ 2)

of the function f : [–1, 1]

Range f.

✌

x

2 y

(Hint: For y Range f, y = f ( x) =

, for some x in [–1, 1], i.e., x =

)

✆

x



(1 ✞ y)

✝

2

7. Consider f : R

R given by f ( x) = 4 x + 3. Show that f is invertible. Find the

✌

inverse of f.

8. Consider f : R

[4, ) given by f ( x) = x 2 + 4. Show that f is invertible with the

+ ✌

✎

inverse f –1 of f given by f –1( y) =

y

, where R is the set of all non-negative

✟

4

+

real numbers.
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9. Consider f : R

[– 5, ) given by f ( x) = 9 x 2 + 6 x – 5. Show that f is invertible

+ ✌

✎

✂

y

6

1 ✄

☎

✆

✁

with f –1( y) =

.

✝

✞

✟



3

✠

10. Let f : X

Y be an invertible function. Show that f has unique inverse.

✌

(Hint: suppose g and g are two inverses of f. Then for all y Y,

1

2

✡

f o g ( y) = 1 ( y) = f o g ( y). Use one-one ness of f).

1

Y

2

11. Consider f : {1, 2, 3}

{ a, b, c} given by f (1) = a, f (2) = b and f (3) = c. Find

✌

f –1 and show that ( f –1)–1 = f.

12. Let f : X



Y be an invertible function. Show that the inverse of f –1 is f, i.e.,

✌

( f –1)–1 = f.

1

13. If f : R

R be given by f ( x) =

3 3

(3

, then f o f ( x) is

☛

x )

✌

1

(A)

3

(B) x 3

(C) x

(D) (3 – x 3).

x



4 x

☞

4

14. Let f : R –

✍

R be a function defined as f ( x) =

. The inverse of

✏

✌

✑

3 ✒

3 x ✕ 4

✓

✔

✖

4

f is the map g : Range f

R –

✗



given by

✘

✌

✙

3 ✚

✛

✜

3 y

4 y

(A)

g ( y)

(B)

g ( y)

✢

✢

3

4 ✘ 3 y

✘

4 y

4 y



3 y

(C)

g ( y)

(D)

g ( y)

✣

✣

3

4 ✏ 3 y

✏

4 y

1.5 Binary Operations

Right from the school days, you must have come across four fundamental
operations

namely addition, subtraction, multiplication and division. The main feature
of these

operations is that given any two numbers a and b, we associate another
number a + b a

or a – b or ab or

, b 0. It is to be noted that only two numbers can be added or



b

✤

multiplied at a time. When we need to add three numbers, we first add two
numbers

and the result is then added to the third number. Thus, addition,
multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we
want to

have a general definition which can cover all these four operations, then the
set of

numbers is to be replaced by an arbitrary set X and then general binary
operation is

nothing but association of any pair of elements a, b from X to another
element of X.

This gives rise to a general definition as follows:

Definition 10 A binary operation on a set A is a function : A × A

A. We denote

✍

✍

✌



( a, b) by a b.

✍

✍

Example 29 Show that addition, subtraction and multiplication are binary
operations

on R, but division is not a binary operation on R. Further, show that
division is a binary operation on the set R of nonzero real numbers.

Solution

+ : R × R

R is given by

✌

( a, b)

a + b

✌

– : R × R

R is given by

✌

( a, b)

a – b

✌

× : R × R



R is given by

✌

( a, b)

ab

✌

Since ‘+’, ‘–’ and ‘×’ are functions, they are binary operations on R.

a

But : R × R

R, given by ( a, b)

 

, is not a function and hence not a binary

÷

✌

✌

b

a

operation, as for b = 0,

is not defined.

b

a



However, : R × R

R , given by ( a, b)

 

is a function and hence a

÷

✌

✌

b

binary operation on R .

Example 30 Show that subtraction and division are not binary operations
on N.

Solution – : N × N

N, given by ( a, b)

a – b, is not binary operation, as the image

✌

✌

of (3, 5) under ‘–’ is 3 – 5 = – 2 N. Similarly, : N × N

N, given by ( a, b)



a b

✟

÷

✌

✌

÷

3

is not a binary operation, as the image of (3, 5) under is 3 5 =

N.

÷

÷

✟

5

Example 31 Show that

: R × R

R given by ( a, b)



a + 4 b 2 is a binary

✍

✌

✌

operation.

Solution Since carries each pair ( a, b) to a unique element a + 4 b 2 in R,
is a binary

✍

✍

operation on R.
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Example 32 Let P be the set of all subsets of a given set X. Show that : P ×
P

P

✠

✌

given by (A, B)

A B and : P × P

P given by (A, B)



A B are binary

✌

✠

✌

✌

☛

☛

operations on the set P.

Solution Since union operation carries each pair (A, B) in P × P to a unique
element

✠

A

B in P,

is binary operation on P. Similarly, the intersection operation carries

✠

✠

☛



each pair (A, B) in P × P to a unique element A B in P, is a binary operation
on P.

☛

☛

Example 33 Show that the

: R × R

R given by ( a, b)

max { a, b} and the

✌

✌

: R × R

R given by ( a, b)

min { a, b} are binary operations.

✁

✌

✌

Solution Since

carries each pair ( a, b) in R × R to a unique element namely

✂

maximum of a and b lying in R,



is a binary operation. Using the similar argument,

✂

one can say that

is also a binary operation.

✄

Remark

(4, 7) = 7,

(4, – 7) = 4,

(4, 7) = 4 and

(4, – 7) = – 7.

✂

✂

✁

✁

When number of elements in a set A is small, we can express a binary
operation on

✍

the set A through a table called the operation table for the operation . For
example

✍

consider A = {1, 2, 3}. Then, the operation



on A defined in Example 33 can be expressed

by the following operation table (Table 1.1) . Here,

(1, 3) = 3,

(2, 3) = 3,

(1, 2) = 2.

Table 1.1

Here, we are having 3 rows and 3 columns in the operation table with ( i, j)
the

entry of the table being maximum of i th and j th elements of the set A. This
can be

generalised for general operation : A × A

A. If A = { a , a , ..., a }. Then the

✍

✌

1

2

n

operation table will be having n rows and n columns with ( i, j)th entry
being a a .

i ✍

j



Conversely, given any operation table having n rows and n columns with
each entry

being an element of A = { a , a , ..., a }, we can define a binary operation :
A × A A

1

2

n

✍

✌

given by a a = the entry in the i th row and j th column of the operation
table.

i ✍

j

One may note that 3 and 4 can be added in any order and the result is same,
i.e.,

3 + 4 = 4 + 3, but subtraction of 3 and 4 in different order give different
results, i.e.,

3 – 4 4 – 3. Similarly, in case of multiplication of 3 and 4, order is
immaterial, but

✡

division of 3 and 4 in different order give different results. Thus, addition
and



multiplication of 3 and 4 are meaningful, but subtraction and division of 3
and 4 are

meaningless. For subtraction and division we have to write ‘subtract 3 from
4’, ‘subtract

4 from 3’, ‘divide 3 by 4’ or ‘divide 4 by 3’.

22

MATHEMATICS

This leads to the following definition:

Definition 11 A binary operation on the set X is called commutative, if a b
= b a,

✍

✍

✍

for every a, b X.

✂

Example 34 Show that + : R × R

R and × : R × R

R are commutative binary

✌

✌

operations, but – : R × R



R and : R × R

R are not commutative.

✌

÷

✌

Solution Since a + b = b + a and a × b = b × a, a, b R, ‘+’ and ‘×’ are

✂

✁

commutative binary operation. However, ‘–’ is not commutative, since 3 – 4
4 – 3.

✡

Similarly, 3 4 4 3 shows that ‘ ’ is not commutative.

÷

✡

÷

÷

Example 35 Show that : R × R



R defined by a b = a + 2 b is not commutative.

✍

✌

✍

Solution Since 3 4 = 3 + 8 = 11 and 4 3 = 4 + 6 = 10, showing that the
operation

✍

✍

✍

is not commutative.

If we want to associate three elements of a set X through a binary operation
on X,

we encounter a natural problem. The expression a b c may be interpreted as

✍

✍

( a b) c or a ( b c) and these two expressions need not be same. For
example,

✍

✍

✍

✍



(8 – 5) – 2 8 – (5 – 2). Therefore, association of three numbers 8, 5 and 3
through

✡

the binary operation ‘subtraction’ is meaningless, unless bracket is used.
But in case

of addition, 8 + 5 + 2 has the same value whether we look at it as ( 8 + 5) +
2 or as

8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through
addition is

meaningful without using bracket. This leads to the following:

Definition 12 A binary operation : A × A

A is said to be associative if

✍

✌

( a b) c = a

( b c),



a, b, c, A.

✍

✍

✍

✍

✂

✁

Example 36 Show that addition and multiplication are associative binary
operation on

R. But subtraction is not associative on R. Division is not associative on R .

Solution Addition and multiplication are associative, since ( a + b) + c = a
+ ( b + c) and ( a × b) × c = a × ( b × c)

a, b, c R. However, subtraction and division are not

✂

✁



associative, as (8 – 5) – 3 8 – (5 – 3) and (8 5) 3 8 (5 3).

✡

÷

÷

✡

÷

÷

Example 37 Show that : R × R

R given by a b

a + 2 b is not associative.

✍

✌

✍

✌

Solution The operation is not associative, since

✍



(8 5) 3 = (8 + 10) 3 = (8 + 10) + 6 = 24,

✍

✍

✍

while

8 (5 3) = 8 (5 + 6) = 8 11 = 8 + 22 = 30.

✍

✍

✍

✍

Remark Associative property of a binary operation is very important in the
sense that

with this property of a binary operation, we can write a a

... a which is not

1 ✍

2 ✍

✍

n

ambiguous. But in absence of this property, the expression a a ... a is
ambiguous 1 ✍



2 ✍

✍

n

unless brackets are used. Recall that in the earlier classes brackets were
used whenever

subtraction or division operations or more than one operation occurred.
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For the binary operation ‘+’ on R, the interesting feature of the number zero
is that

a + 0 = a = 0 + a, i.e., any number remains unaltered by adding zero. But in
case of multiplication, the number 1 plays this role, as a × 1 = a = 1 × a,

a in R. This leads

to the following definition:

Definition 13 Given a binary operation : A × A

A, an element e A, if it exists,

✍

✌

✂



is called identity for the operation , if a e = a = e a, a A.

✂

✍

✍

✍

Example 38 Show that zero is the identity for addition on R and 1 is the
identity for

multiplication on R. But there is no identity element for the operations

– : R × R

R and : R × R

R .

✌

÷

✌

✁

✁

✁

Solution a + 0 = 0 + a = a and a × 1 = a = 1 × a, a R implies that 0 and 1
are

✂



identity elements for the operations ‘+’ and ‘×’ respectively. Further, there is
no element

e in R with a – e = e – a,

a. Similarly, we can not find any element e in R such that

✁

a e = e a,

a in R . Hence, ‘–’ and ‘ ’ do not have identity element.

÷

÷

÷

✁

Remark Zero is identity for the addition operation on R but it is not identity
for the addition operation on N, as 0 N. In fact the addition operation on N
does not have

✟

any identity.

One further notices that for the addition operation + : R × R

R, given any

✌



a R, there exists – a in R such that a + (– a) = 0 (identity for ‘+’) = (– a) +
a.

✂

1

Similarly, for the multiplication operation on R, given any a 0 in R, we can
choose

✡

a

1

1

in R such that a ×

= 1(identity for ‘×’) =

× a. This leads to the following definition:

a

a

Definition 14 Given a binary operation : A × A

A with the identity element e in A,

✍

✌



an element a A is said to be invertible with respect to the operation , if there
exists

✂

✍

an element b in A such that a b = e = b a and b is called the inverse of a and
is

✍

✍

denoted by a–1.

Example 39 Show that – a is the inverse of a for the addition operation ‘+’
on R and 1 is the inverse of a 0 for the multiplication operation ‘×’ on R.

a

✡

Solution As a + (– a) = a – a = 0 and (– a) + a = 0, – a is the inverse of a
for addition.

1

1

1

Similarly, for a 0, a ×

= 1 =

× a implies that



is the inverse of a for multiplication.

✡

a

a

a
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Example 40 Show that – a is not the inverse of a N for the addition
operation + on

✂

1

N and

is not the inverse of a N for multiplication operation × on N, for a 1.

a

✂

✡

Solution Since – a N, – a can not be inverse of a for addition operation on
N,

✟

although – a satisfies a + (– a) = 0 = (– a) + a.



1

Similarly, for a 1 in N,

N, which implies that other than 1 no element of N

✡

a ✟

has inverse for multiplication operation on N.

Examples 34, 36, 38 and 39 show that addition on R is a commutative and
associative

binary operation with 0 as the identity element and – a as the inverse of a in
R

a.

EXERCISE 1.4

1. Determine whether or not each of the definition of given below gives a
binary

✍

operation. In the event that is not a binary operation, give justification for
this.

✍

(i) On Z+, define by a b = a – b

✍

✍



(ii) On Z+, define by a b = ab

✍

✍

(iii) On R, define by a b = ab 2

✍

✍

(iv) On Z+, define by a b = | a – b |

✍

✍

(v) On Z+, define by a b = a

✍

✍

2. For each binary operation defined below, determine whether is
commutative

✍

✍

or associative.

(i) On Z, define a b = a – b

✍



(ii) On Q, define a b = ab + 1

✍

ab

(iii) On Q, define a b =

✍

2

(iv) On Z+, define a b = 2 ab

✍

(v) On Z+, define a b = ab

✍

a

(vi) On R – {– 1}, define a b =

✍

b ✁1

3. Consider the binary operation

on the set {1, 2, 3, 4, 5} defined by

✄

a

b = min { a, b}. Write the operation table of the operation



.

☎

☎
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4. Consider a binary operation on the set {1, 2, 3, 4, 5} given by the
following

✍

multiplication table (Table 1.2).

(i) Compute (2 3) 4 and 2 (3 4)

✍

✍

✍

✍

(ii) Is commutative?

✍

(iii) Compute (2 3) (4 5).

✍

✍

✍



(Hint: use the following table)

Table 1.2

5. Let

be the binary operation on the set {1, 2, 3, 4, 5} defined by

✍

a b = H.C.F. of a and b. Is the operation same as the operation defined

✍

✍

✍

in Exercise 4 above? Justify your answer.

6. Let be the binary operation on N given by a b = L.C.M. of a and b. Find

✍

✍

(i) 5 7, 20 16

(ii) Is commutative?

✍

✍

✍

(iii) Is associative?



(iv) Find the identity of in N

✍

✍

(v) Which elements of N are invertible for the operation ?

✍

7. Is defined on the set {1, 2, 3, 4, 5} by a b = L.C.M. of a and b a binary

✍

✍

operation? Justify your answer.

8. Let be the binary operation on N defined by a b = H.C.F. of a and b.

✍

✍

Is commutative? Is associative? Does there exist identity for this binary

✍

✍

operation on N?

9. Let be a binary operation on the set Q of rational numbers as follows:

✍

(i) a b = a – b



(ii) a b = a 2 + b 2

✍

✍

(iii) a b = a + ab

(iv) a b = ( a – b)2

✍

✍

ab

(v) a b =

(vi) a b = ab 2

✍

4

✍

Find which of the binary operations are commutative and which are
associative.

10. Show that none of the operations given above has identity.

11. Let A = N × N and be the binary operation on A defined by

✍

( a, b) ( c, d) = ( a + c, b + d)

✍
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Show that is commutative and associative. Find the identity element for on

✍

✍

A, if any.

12. State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation on a set N, a a = a

a N.

✍

✍

✂

(ii) If is a commutative binary operation on N, then a ( b c) = ( c b) a

✍

✍

✍

✍

✍



13. Consider a binary operation on N defined as a b = a 3 + b 3. Choose the

✍

✍

correct answer.

(A) Is both associative and commutative?

✍

(B) Is commutative but not associative?

✍

(C) Is associative but not commutative?

✍

(D) Is neither commutative nor associative?

✍

Miscellaneous Examples

Example 41 If R and R are equivalence relations in a set A, show that R R
is

1

2

1 ☛

2

also an equivalence relation.



Solution Since R and R are equivalence relations, ( a, a) R , and ( a, a) R

a A.

1

2

✂

1

✂

2

✂

This implies that ( a, a) R

R ,

a, showing R

R is reflexive. Further,

✂

1 ☛

2

1 ☛

2

( a, b) R

R



( a, b) R and ( a, b) R

( b, a) R and ( b, a) R

✞

✞

✞

✂

1 ☛

2

✂

1

✂

2

✂

1

✂

2

( b, a) R

R , hence, R

R is symmetric. Similarly, ( a, b) R



R and

✂

1 ☛

2

1 ☛

2

✂

1 ☛

2

( b, c) R

R

( a, c)

R and ( a, c)

R

( a, c) R

R . This shows that

✞

✞

✂



1 ☛

2

✂

1

✂

2

✂

1 ☛

2

R

R is transitive. Thus, R

R is an equivalence relation.

1 ☛

2

1 ☛

2

Example 42 Let R be a relation on the set A of ordered pairs of positive
integers

defined by ( x, y) R ( u, v) if and only if xv = yu. Show that R is an
equivalence relation.

Solution Clearly, ( x, y) R ( x, y),



( x, y) A, since xy = yx. This shows that R is

✂

reflexive. Further, ( x, y) R ( u, v)

xv = yu

uy = vx and hence ( u, v) R ( x, y). This

✞

✞

shows that R is symmetric. Similarly, ( x, y) R ( u, v) and ( u, v) R ( a, b) xv
= yu and

✞

a

a

b

a

ub = va

xv

xv

 



xb = ya and hence ( x, y) R ( a, b). Thus, R

✁

yu

✁

yu

✞

✞

✞

u

u

v

u

is transitive. Thus, R is an equivalence relation.

Example 43 Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let R be a relation in X given

1

by R = {( x, y) : x – y is divisible by 3} and R be another relation on X
given by 1

2

R = {( x, y): { x, y} {1, 4, 7}} or { x, y}



{2, 5, 8} or { x, y}

{3, 6, 9}}. Show that

2

✝

✝

✝

R = R .

1

2
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Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9}
is

that difference between any two elements of these sets is a multiple of 3.
Therefore,

( x, y) R

x – y is a multiple of 3

{ x, y} {1, 4, 7} or { x, y} {2, 5, 8}

✂



1 ✞

✞

✝

✝

or { x, y} {3, 6, 9}

( x, y) R . Hence, R R . Similarly, { x, y} R

{ x, y}

✝

✞

✂

2

1 ✝

2

✂

2 ✞

{1, 4, 7} or { x, y} {2, 5, 8} or { x, y} {3, 6, 9}



x – y is divisible by

✝

✝

✝

✞

3

{ x, y} R . This shows that R R . Hence, R = R .

✞

✂

1

2 ✝

1

1

2

Example 44 Let f : X

Y be a function. Define a relation R in X given by

✌

R = {( a, b): f( a) = f( b)}. Examine if R is an equivalence relation.



Solution For every a X, ( a, a) R, since f ( a) = f ( a), showing that R is
reflexive.

✂

✂

Similarly, ( a, b) R

f ( a) = f ( b)

f ( b) = f ( a)

( b, a) R. Therefore, R is

✂

✞

✞

✞

✂

symmetric. Further, ( a, b) R and ( b, c) R

f ( a) = f ( b) and f ( b) = f ( c)



f ( a)

✂

✂

✞

✞

= f ( c)

( a, c) R, which implies that R is transitive. Hence, R is an equivalence

✞

✂

relation.

Example 45 Determine which of the following binary operations on the set
N are

associative and which are commutative.

( a ✁ b)

(a) a b = 1

a, b N

(b) a b =

 



a, b N

✍

✍

✂

2

✂

Solution

(a) Clearly, by definition a

b = b

a = 1,

a, b

N. Also

✍

✍

✂



( a b) c = (1 c) =1 and a ( b c) = a (1) = 1, a, b, c N. Hence

✍

✍

✍

✍

✍

✍

✂

R is both associative and commutative.

a ✄ b

b ✄ a

(b) a b =

= b a, shows that is commutative. Further,

☎

✍

2

2

✍

✍



a ✆

✟

b

(

✠

a b) c =

c.

✍

✍

✍

✡

2

☛

☞

✎

a ✏

✑



b ✒

✏

✓

✔

c

2

a ✏ b ✏

✕

✖

2 c

=

.

✗

2

4

b

c

But



a ( b c) = a

✆

✟

✠

✘

✍

✍

✡

2 ☛

☞

✎

b ✙ c

a ✙

2 a ✙ b ✙ c

a ✙ b ✙ 2 c

=

2



in general.

✚

✛

2

4

4

Hence, is not associative.

✍
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Example 46 Find the number of all one-one functions from set A = {1, 2,
3} to itself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation
on three

symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to
itself is

same as total number of permutations on three symbols 1, 2, 3 which is 3! =
6.

Example 47 Let A = {1, 2, 3}. Then show that the number of relations
containing (1, 2)

and (2, 3) which are reflexive and transitive but not symmetric is four.

Solution The smallest relation R containing (1, 2) and (2, 3) which is
reflexive and



1

transitive but not symmetric is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}.
Now, if we add

the pair (2, 1) to R to get R , then the relation R will be reflexive, transitive
but not

1

2

2

symmetric. Similarly, we can obtain R and R by adding (3, 2) and (3, 1)
respectively,

3

4

to R to get the desired relations. However, we can not add any two pairs out
of (2, 1),

1

(3, 2) and (3, 1) to R at a time, as by doing so, we will be forced to add the
remaining

1

third pair in order to maintain transitivity and in the process, the relation
will become

symmetric also which is not required. Thus, the total number of desired
relations is four.

Example 48 Show that the number of equivalence relation in the set {1, 2,
3} containing



(1, 2) and (2, 1) is two.

Solution The smallest equivalence relation R containing (1, 2) and (2, 1) is
{(1, 1),

1

(2, 2), (3, 3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3),
(3, 2),

(1, 3) and (3, 1). If we add any one, say (2, 3) to R , then for symmetry we
must add

1

(3, 2) also and now for transitivity we are forced to add (1, 3) and (3, 1).
Thus, the only

equivalence relation bigger than R is the universal relation. This shows that
the total

1

number of equivalence relations containing (1, 2) and (2, 1) is two.

Example 49 Show that the number of binary operations on {1, 2} having 1
as identity

and having 2 as the inverse of 2 is exactly one.

Solution A binary operation on {1, 2} is a function from {1, 2} × {1, 2} to
{1, 2}, i.e.,

✍

a function from {(1, 1), (1, 2), (2, 1), (2, 2)}



{1, 2}. Since 1 is the identity for the

✌

desired binary operation ,

(1, 2) = 2, (2, 1) = 2 and the only choice

✍

✍

✍

✍

✁ ✂

✁ ✄

☎

✁

✂

left is for the pair (2, 2). Since 2 is the inverse of 2, i.e., (2, 2) must be equal
to 1. Thus,

✍

the number of desired binary operation is only one.

Example 50 Consider the identity function I : N

N defined as I ( x) = x

x N.



N

✌

N

✝

✆

Show that although I is onto but I + I : N

N defined as

N

N

N

✌

(I + I ) ( x) = I ( x) + I ( x) = x + x = 2 x is not onto.

N

N

N

N

Solution Clearly I is onto. But I + I is not onto, as we can find an element 3

N

N

N



in the co-domain N such that there does not exist any x in the domain N
with

(I + I ) ( x) = 2 x = 3.

N

N
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Example 51 Consider a function f : ✁0, ✂

R given by f ( x) = sin x and

✄

☎

2 ✆

✝

✞

g : ✁0, ✂

R given by g( x) = cos x. Show that f and g are one-one, but f + g is not

✄

☎



2 ✆

✝

✞

one-one.

Solution Since for any two distinct elements x and x in ✁0, ✂ , sin x sin x
and 1

2

1 ✡

2

☎

2 ✆

✝

✞

cos x cos x , both f and g must be one-one. But ( f + g) (0) = sin 0 + cos 0 =

1 and 1 ✡

2

✎

✎



( f + g) ✟

✠

= sin

. Therefore, f + g is not one-one.

✏

cos

✑

1

☛

2 ☞

2

2

✌

✍

Miscellaneous Exercise on Chapter 1

1. Let f : R

R be defined as f ( x) = 10 x + 7. Find the function g : R



R such

✒

✒

that g o f = f o g = 1 .

R

2. Let f : W

W be defined as f ( n) = n – 1, if n is odd and f ( n) = n + 1, if n is

✒

even. Show that f is invertible. Find the inverse of f. Here, W is the set of all

whole numbers.

3. If f : R

R is defined by f( x) = x 2 – 3 x + 2, find f ( f ( x)).

✒

x

4. Show that the function f : R

{ x R : – 1 < x < 1} defined by f ( x)

,

✔

✒

✓



1✕ | x |

x R is one one and onto function.

✓

5. Show that the function f : R

R given by f ( x) = x 3 is injective.

✒

6. Give examples of two functions f : N

Z and g : Z

Z such that g o f is

✒

✒

injective but g is not injective.

(Hint : Consider f ( x) = x and g ( x) = | x |).

7. Give examples of two functions f : N

N and g : N

N such that g o f is onto

✒

✒

but f is not onto.



x ✖ 1 if x ✗

✘

1

(Hint : Consider f ( x) = x + 1 and g( x) ✙ ✚ 1 if x ✙1

✛

8. Given a non empty set X, consider P(X) which is the set of all subsets of
X.
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Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A B. Is R an equivalence
relation

✝

on P(X)? Justify your answer.

9. Given a non-empty set X, consider the binary operation : P(X) × P(X)

P(X)

✍

✌

given by A B = A B



A, B in P(X), where P(X) is the power set of X.

✍

☛

Show that X is the identity element for this operation and X is the only
invertible

element in P(X) with respect to the operation .

✍

10. Find the number of all onto functions from the set {1, 2, 3, ... , n} to
itself.

11. Let S = { a, b, c} and T = {1, 2, 3}. Find F–1 of the following functions
F from S

to T, if it exists.

(i) F = {( a, 3), ( b, 2), ( c, 1)}

(ii) F = {( a, 2), ( b, 1), ( c, 1)}

12. Consider the binary operations : R × R

R and o : R × R

R defined as

✍

✌

✌

a b = | a – b| and a o b = a,



a, b R. Show that is commutative but not

✍

✂

✍

associative, o is associative but not commutative. Further, show that

a, b, c R,

✂

a ( b o c) = ( a b) o ( a b). [If it is so, we say that the operation distributes

✍

✍

✍

✍

over the operation o]. Does o distribute over ? Justify your answer.

✍

13. Given a non-empty set X, let : P(X) × P(X)

P(X) be defined as

✍

✌

A * B = (A – B) (B – A),



A, B P(X). Show that the empty set is the

✠

✂

✄

identity for the operation and all the elements A of P(X) are invertible with

✍

A–1 = A. (Hint : (A – ) ( – A) = A and (A – A) (A – A) = A A = ).

✄

✠

✄

✠

✍

✄

14. Define a binary operation on the set {0, 1, 2, 3, 4, 5} as

✍

a ✁ b, if a ✁ b ☎

✆

6



a ✞ b ✟ ✡ a ✁ b ☞ 6 if a ✁ b ✎ 6

✏

Show that zero is the identity for this operation and each element a of the
set is

invertible with 6 – a being the inverse of a.

15. Let A = {– 1, 0, 1, 2}, B = {– 4, – 2, 0, 2} and f, g : A

B be functions defined

✌

1

by f ( x) = x 2 – x, x A and g( x)

x A. Are f and g equal?

✑

2 x ✒

✒

1,

✂

2

✂

Justify your answer. (Hint: One may note that two functions f : A



B and

✌

g : A

B such that f ( a) = g ( a)

a A, are called equal functions).

✌

✂

16. Let A = {1, 2, 3}. Then number of relations containing (1, 2) and (1, 3)
which are

reflexive and symmetric but not transitive is

(A) 1

(B) 2

(C) 3

(D) 4

17. Let A = {1, 2, 3}. Then number of equivalence relations containing (1,
2) is

(A) 1

(B) 2

(C) 3

(D) 4
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18. Let f : R

R be the Signum Function defined as

✌

✁

1, x

0

f ( x)

✂

✄

0, x ✄

☎

0

✂

✆ 1,

x ✝ 0

✞

and g : R



R be the Greatest Integer Function given by g ( x) = [ x], where [ x] is

✌

greatest integer less than or equal to x. Then, does fog and gof coincide in
(0, 1]?

19. Number of binary operations on the set { a, b} are

(A) 10

(B) 16

(C) 20

(D ) 8

Summary

In this chapter, we studied different types of relations and equivalence
relation,

composition of functions, invertible functions and binary operations. The
main features

of this chapter are as follows:

Empty relation is the relation R in X given by R = X × X.

✠

✡

✟



Universal relation is the relation R in X given by R = X × X.

✟

Reflexive relation R in X is a relation with ( a, a) R

a X.

☛

☛

✟

☞

Symmetric relation R in X is a relation satisfying ( a, b) R implies ( b, a) R.

☛

☛

✟

Transitive relation R in X is a relation satisfying ( a, b) R and ( b, c) R

☛

☛

✟

implies that ( a, c) R.

☛



Equivalence relation R in X is a relation which is reflexive, symmetric and

✟

transitive.

Equivalence class [ a] containing a X for an equivalence relation R in X is

☛

✟

the subset of X containing all elements b related to a.

A function f : X

Y is one-one (or injective) if

✌

✟

f ( x ) = f ( x )

x = x

x , x X.

1

2

✍

1



2

☛

☞

1

2

A function f : X

Y is onto (or surjective) if given any y Y, x X such

✌

☛

✏

☛

✟

that f ( x) = y.

A function f : X

Y is one-one and onto (or bijective), if f is both one-one

✌

✟

and onto.

The composition of functions f : A



B and g : B

C is the function

✌

✌

✟

gof : A

C given by gof ( x) = g( f ( x))

x A.

✌

☛

☞

A function f : X

Y is invertible if g : Y

X such that gof = I and

✌

✏

✌

✟

X



fog = I .

Y

A function f : X

Y is invertible if and only if f is one-one and onto.

✌

✟
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Given a finite set X, a function f : X

X is one-one (respectively onto) if and

✌

only if f is onto (respectively one-one). This is the characteristic property of
a

finite set. This is not true for infinite set

A binary operation on a set A is a function from A × A to A.

✍

✍

An element e X is the identity element for binary operation : X × X



X,

✂

✍

✌

if a e = a = e a

a X.

✍

✍

✂

✁

An element a X is invertible for binary operation : X × X

X, if

✂

✍

✌

there exists b X such that a b = e = b a where, e is the identity for the

✂

✍

✍



binary operation . The element b is called inverse of a and is denoted by a–
1.

✍

An operation on X is commutative if a b = b a

a, b in X.

✍

✍

✍

✁

An operation on X is associative if ( a b) c = a ( b c) a, b, c in X.

✍

✍

✍

✍

✍

✁

Historical Note

The concept of function has evolved over a long period of time starting
from

R. Descartes (1596-1650), who used the word ‘function’ in his manuscript



“Geometrie” in 1637 to mean some positive integral power xn of a variable
x

while studying geometrical curves like hyperbola, parabola and ellipse.
James

Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae
Quadratura”

(1667) considered function as a quantity obtained from other quantities by

successive use of algebraic operations or by any other operations. Later G.
W.

Leibnitz (1646-1716) in his manuscript “Methodus tangentium inversa, seu
de

functionibus” written in 1673 used the word ‘function’ to mean a quantity
varying

from point to point on a curve such as the coordinates of a point on the
curve, the

slope of the curve, the tangent and the normal to the curve at a point.
However,

in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to
mean

quantities that depend on a variable. He was the first to use the phrase
‘function

of x’. John Bernoulli (1667-1748) used the notation x for the first time in
1718 to

✄



indicate a function of x. But the general adoption of symbols like f, F, , ... to

✄

✑

represent functions was made by Leonhard Euler (1707-1783) in 1734 in
the first

part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis
Lagrange

(1736-1813) published his manuscripts “Theorie des functions analytiques”
in

1793, where he discussed about analytic function and used the notion f ( x),
F( x), ( x) etc. for different function of x. Subsequently, Lejeunne Dirichlet

✄

(1805-1859) gave the definition of function which was being used till the
set

theoretic definition of function presently used, was given after set theory
was

developed by Georg Cantor (1845-1918). The set theoretic definition of
function

known to us presently is simply an abstraction of the definition given by
Dirichlet

in a rigorous manner.

—

—

☎





Chapter 2

INVERSE TRIGONOMETRIC

FUNCTIONS

Mathematics, in general, is fundamentally the science of

self-evident things. — FELIX KLEIN

2.1 Introduction

In Chapter 1, we have studied that the inverse of a function

f, denoted by f –1, exists if f is one-one and onto. There are

many functions which are not one-one, onto or both and

hence we can not talk of their inverses. In Class XI, we

studied that trigonometric functions are not one-one and

onto over their natural domains and ranges and hence their

inverses do not exist. In this chapter, we shall study about

the restrictions on domains and ranges of trigonometric

functions which ensure the existence of their inverses and

observe their behaviour through graphical representations.

Besides, some elementary properties will also be discussed.

The inverse trigonometric functions play an important

Arya Bhatta



(476-550 A. D.)

role in calculus for they serve to define many integrals.

The concepts of inverse trigonometric functions is also used in science and
engineering.

2.2 Basic Concepts

In Class XI, we have studied trigonometric functions, which are defined as
follows:

sine function, i.e., sine : R

[– 1, 1]

✂

cosine function, i.e., cos : R

[– 1, 1]

✂

✁

tangent function, i.e., tan : R – { x : x = (2 n + 1)

, n

Z}

R

2

✥

✂



cotangent function, i.e., cot : R – { x : x = n , n Z}

R

✥

☎

✂

✁

secant function, i.e., sec : R – { x : x = (2 n + 1)

, n

Z}

R – (– 1, 1)

2

✥

✂

cosecant function, i.e., cosec : R – { x : x = n , n

Z}

R – (– 1, 1)

✥

☎

✂

34



MATHEMATICS

We have also learnt in Chapter 1 that if f : X

Y such that f ( x) = y is one-one and

✂

onto, then we can define a unique function g : Y

X such that g ( y) = x, where x X

✂

✄

and y = f ( x), y Y. Here, the domain of g = range of f and the range of g =
domain

✄

of f. The function g is called the inverse of f and is denoted by f –1. Further,
g is also one-one and onto and inverse of g is f. Thus, g–1 = ( f –1)–1 = f.
We also have ( f –1 o f ) ( x) = f –1 ( f ( x)) = f –1( y) = x and

( f o f –1) ( y) = f ( f –1( y)) = f ( x) = y Since the domain of sine function is
the set of all real numbers and range is the

closed interval [–1, 1]. If we restrict its domain to

✁

, ✁

☎

✆



, then it becomes one-one

✝

2

2 ✞

✟

✠

and onto with range [– 1, 1]. Actually, sine function restricted to any of the
intervals

3

✒

✓

3✒

✡

☛

–



,

☛

✡☛

☛

✔

☞

✌

, ☞

,

✌

,

,

etc., is one-one and its range is [–1, 1]. We can,

✕

✖

✍

2

2 ✎ ✍

✗

2



2 ✘

✏

2

2 ✎

✏

✑

✑

therefore, define the inverse of sine function in each of these intervals. We
denote the

inverse of sine function by sin–1 (arc sine function). Thus, sin–1 is a
function whose

✙3

domain is [– 1, 1] and range could be any of the intervals

✒

, ✙✒

✙ ✒

✒

✓

✔

, ✓



,

✔

or

✕

2

2 ✖

✕

✗

2

2 ✖

✗

✘

✘

☛

3

, ☛

☞

✌

, and so on. Corresponding to each such interval, we get a branch of the

✍



2 2 ✎

✏

✑

✙

✒

✒

✓

✔

function sin–1. The branch with range

,

is called the principal value branch,

✕

2

2 ✖

✗

✘

whereas other intervals as range give different branches of sin–1. When we
refer



to the function sin–1, we take it as the function whose domain is [–1, 1] and
range is

✙ ✒

, ✒

✙ ✒

✒

✓

✔

. We write sin–1 : [–1, 1]

✓

, ✔

✂

✕

2

2 ✖

✕

✗

2



2 ✖

✗

✘

✘

From the definition of the inverse functions, it follows that sin (sin–1 x) = x

✛

✛

if – 1 x 1 and sin–1 (sin x) = x if

. In other words, if y = sin–1 x, then

✜

✢

x ✢

✚

✚

2

2

sin y = x.

Remarks

(i) We know from Chapter 1, that if y = f ( x) is an invertible function, then x
= f –1 ( y).



Thus, the graph of sin–1 function can be obtained from the graph of original

function by interchanging x and y axes, i.e., if ( a, b) is a point on the graph
of sine function, then ( b, a) becomes the corresponding point on the graph
of inverse
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of sine function. Thus, the graph of the function y = sin–1 x can be obtained
from

the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x
and y = sin–1 x are as given in Fig 2.1 (i), (ii), (iii). The dark portion of the
graph of y = sin–1 x represent the principal value branch.

(ii) It can be shown that the graph of an inverse function can be obtained
from the

corresponding graph of original function as a mirror image (i.e., reflection)
along

the line y = x. This can be visualised by looking the graphs of y = sin x and
y = sin–1 x as given in the same axes (Fig 2.1 (iii)).

Fig 2.1 (i)

Fig 2.1 (ii)

Fig 2.1 (iii)

Like sine function, the cosine function is a function whose domain is the set
of all

real numbers and range is the set [–1, 1]. If we restrict the domain of cosine
function



to [0, ], then it becomes one-one and onto with range [–1, 1]. Actually,
cosine function

☎
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restricted to any of the intervals [– , 0], [0, ], [ , 2 ] etc., is bijective with
range as

☎

☎

☎

☎

[–1, 1]. We can, therefore, define the inverse of cosine function in each of
these

intervals. We denote the inverse of the cosine function by cos–1 (arc cosine
function).

Thus, cos–1 is a function whose domain is [–1, 1] and range

could be any of the intervals [– , 0], [0, ], [ , 2 ] etc.

☎

☎

☎

☎

Corresponding to each such interval, we get a branch of the



function cos–1. The branch with range [0, ] is called the principal

☎

value branch of the function cos–1. We write

cos–1 : [–1, 1]

[0, ].

✂

☎

The graph of the function given by y = cos–1 x can be drawn

in the same way as discussed about the graph of y = sin–1 x. The

graphs of y = cos x and y = cos–1 x are given in Fig 2.2 (i) and (ii).

Fig 2.2 (i)

Fig 2.2 (ii)

Let us now discuss cosec–1 x and sec–1 x as follows:

1

Since, cosec x =

, the domain of the cosec function is the set { x : x R and

sin x

✄



x n , n Z} and the range is the set { y : y R, y 1 or y –1} i.e., the set

✄

✄

✝

☎

✞

✆

R – (–1, 1). It means that y = cosec x assumes all real values except –1 < y
< 1 and is not defined for integral multiple of . If we restrict the domain of
cosec function to

☎

✁

, ✟ – {0}, then it is one to one and onto with its range as the set R – (– 1, 1).
Actually,

✠

✡

2 2 ☛

☞

✌



3

✍

✎

✍

✎

✍ ✎

✎

✏

✑

✏

✑

cosec function restricted to any of the intervals

,

✍

{✍ }

✎

,

,

– {0},

✒



2

2 ✓

✒

✔

2 2 ✓

✔

✕

✕

✁

3

,

✟

etc., is bijective and its range is the set of all real numbers R – (–1, 1).

✠

{ }

✡

2 2 ☛

☞

✌
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Thus cosec–1 can be defined as a function whose domain is R – (–1, 1) and
range could

✟

3

✂

3

✁

✁

✁

✁

✂

✄

✄

be any of the intervals

,

{0} ,

,

{



} ,

, ✟

✠

✡

etc. The

☛

{ }

✁

✟

☎

2

2 ✆

☎

☞

✍

2 2 ✌

✝

2



2 ✆

✝

✞

✞

✎

function corresponding to the range

✁

, ✁

✂

✄

{0} is called the principal value branch

☎

2

2 ✆

✝

✞



of cosec–1. We thus have principal branch as

✁

✁

✂

✄

cosec–1 : R – (–1, 1)

,

{0}

✏

☎

2

2 ✆

✝

✞

The graphs of y = cosec x and y = cosec–1 x are given in Fig 2.3 (i), (ii).

Fig 2.3 (i)

Fig 2.3 (ii)

1

✑



Also, since sec x =

, the domain of y = sec x is the set R – { x : x = (2 n + 1)

,

cos x

2

n Z} and range is the set R – (–1, 1). It means that sec (secant function)
assumes

✒

✑

all real values except –1 < y < 1 and is not defined for odd multiples of

. If we

2

✑

restrict the domain of secant function to [0, ] – {

}, then it is one-one and onto with

✓

2
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its range as the set R – (–1, 1). Actually, secant function restricted to any of
the



3

✁

intervals [– , 0] – {

}, [0, ] – ✂

✁

✄

✆

, [ , 2 ] – {

} etc., is bijective and its range

✂

☎

2

☎

☎

✝

2 ✞



2

✟

✠

is R – {–1, 1}. Thus sec–1 can be defined as a function whose domain is R–
(–1, 1) and

3

✁

✁

✁

range could be any of the intervals [– , 0] – {

}, [0, ] – {

}, [ , 2 ] – {

} etc.

☎

2

☎

2

☎

☎

2



Corresponding to each of these intervals, we get different branches of the
function sec–1.

✁

The branch with range [0, ] – {

} is called the principal value branch of the

☎

2

function sec–1. We thus have

✁

sec–1 : R – (–1,1)

[0, ] – {

}

✡

☎

2

The graphs of the functions y = sec x and y = sec-1 x are given in Fig 2.4 (i),
(ii).

Fig 2.4 (i)

Fig 2.4 (ii)

Finally, we now discuss tan–1 and cot–1



We know that the domain of the tan function (tangent function) is the set

✁

{ x : x R and x (2 n +1)

, n Z} and the range is R. It means that tan function

☛

☞

2

☛

✁

is not defined for odd multiples of

. If we restrict the domain of tangent function to

2
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✁

, ✁

✂

✄

, then it is one-one and onto with its range as R. Actually, tangent function

☎

2



2 ✆

✝

✞

✠

✡

3

✟

✟

✠

✠

✠

✡

3✠ ✟✠

restricted to any of the intervals



,

☛

, ✡

,

☛

,

,

☛

etc., is bijective

☞

2

2 ✌ ☞

☞

✍

2

2 ✌

✍



2 2 ✌

✍

✎

✎

✎

and its range is R. Thus tan–1 can be defined as a function whose domain is
R and

3

✁

✂



3

✁

✁

✁

✁

✁

✂

✄

✂

✄

✄

range could be any of the intervals

,

,

,

,

,

and so on. These

☎

2



2 ✆ ☎

☎

2 2 ✆

✝

✞

✝

2

2 ✆

✝

✞

✞

✁

✁

✂

✄

intervals give different branches of the function tan–1. The branch with
range



,

☎

2

2 ✆

✝

✞

is called the principal value branch of the function tan–1.

We thus have

✁

✁

✂

✄

tan–1 : R

 

,

✏

☎

2



2 ✆

✝

✞

The graphs of the function y = tan x and y = tan–1 x are given in Fig 2.5 (i),
(ii).

Fig 2.5 (i)

Fig 2.5 (ii)

We know that domain of the cot function (cotangent function) is the set

{ x : x R and x n , n Z} and range is R. It means that cotangent function is
not

✑

✒

✓

✑

defined for integral multiples of . If we restrict the domain of cotangent
function to

✓

(0, ), then it is bijective with and its range as R. In fact, cotangent function
restricted

✓



to any of the intervals (– , 0), (0, ), ( , 2 ) etc., is bijective and its range is R.
Thus

✓

✓

✓

✓

cot –1 can be defined as a function whose domain is the R and range as any
of the

40

MATHEMATICS

intervals (– , 0), (0, ), ( , 2 ) etc. These intervals give different branches of
the

☎

☎

☎

☎

function cot –1. The function with range (0, ) is called the principal value
branch of

☎

the function cot –1. We thus have

cot–1 : R



(0, )

✂

☎

The graphs of y = cot x and y = cot–1 x are given in Fig 2.6 (i), (ii).

Fig 2.6 (i)

Fig 2.6 (ii)

The following table gives the inverse trigonometric function (principal
value

branches) along with their domains and ranges.

✁

✄

sin–1

:

[–1, 1]

✆

,

✂

✝



2 2 ✞

✟

✠

cos–1

:

[–1, 1]

[0, ]

✂

☎

✡

✡

☛

☞

cosec–1

:

R – (–1,1)

– {0}

✌



,

✂

✍

2 2 ✎

✏

✑

✒

sec–1

:

R – (–1, 1)

[0, ] – { }

✂

☎

2

✌ ✡

✡

✓

✔



tan–1

:

R

,

✂

✕

2

2 ✖

✗

✘

cot–1

:

R

(0, )

✂

☎
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Note

1

1. sin–1 x should not be confused with (sin x)–1. In fact (sin x)–1 =



and

sin x

similarly for other trigonometric functions.

2. Whenever no branch of an inverse trigonometric functions is mentioned,
we

mean the principal value branch of that function.

3. The value of an inverse trigonometric functions which lies in the range of

principal branch is called the principal value of that inverse trigonometric

functions.

We now consider some examples:

✁

1 ✂

Example 1 Find the principal value of sin–1

.

✄

2 ☎

✆

✝

1

✁



1 ✂

Solution Let sin–1

= y. Then, sin y =

.

✄

2 ☎

2

✆

✝

✞

✞

✟

✠

We know that the range of the principal value branch of sin–1 is

and

✡



,

☛

2 2 ☞

✌

✍

1

✁

1

sin

✂

✖

✎

✏

✑

=

. Therefore, principal value of sin–1

is

✄

☎

✒



4 ✓

2

4

✆

2 ✝

✔

✕

✗

✁

1

Example 2 Find the principal value of cot–1

✂

✄

3 ☎

✆

✝

✗

✁

1 ✂



Solution Let cot–1

= y. Then,

✄

3 ☎

✆

✝

1

✛

2

✚

✚

cot y

✛

✜

✜

✘

= cot



= cot

✢

✚

✘

cot ✎

✏

✑

✙

✙

✣

✤

✣

✤

✒

✓

3

✥

3

✥



3 ✦

✦

✔

3 ✕

We know that the range of principal value branch of cot–1 is (0, ) and

✧

2

✗

✁

1 ✂

★ 1

✖

✏

2✎

cot

✑

=

. Hence, principal value of cot–1



is

✄

☎

✒

3 ✓

3

3

✆

3 ✝

✔

✕

EXERCISE 2.1

Find the principal values of the following:

✩

3 ✪

✟

1 ✠

1. sin–1

2. cos–1



3. cosec–1 (2)

✫

✬

✡

☛

2 ☞

✫

2 ✬

✌

✍

✭

✮

✟

1 ✠

4. tan–1 (

5. cos–1



6. tan–1 (–1)

✡

☛

☞

✯

3)

✌

2 ✍
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2

1

✁

✁

7. sec–1

8. cot–1 ( 3)

9. cos–1 ✝

✂



3 ✄

✂

2 ✄

☎

✆

☎

✆

10. cosec–1 (

)

✞

2

Find the values of the following:

✎

1

✟

1✠

✎



1

✟

1✠

11. tan–1(1) + cos–1

+ sin–1

✏

12. cos–1

+ 2 sin–1

✏

✡

✑

☛

2☞

☛

☞

✒

✒

✔



2✓

✌

2✍

✔

2✓

✌

✍

✕

✕

13. If sin–1 x = y, then

✘

✘

(A) 0 y

(B) ✙

✚

y ✚

✖

✖

✗

2



2

✛

✛

(C) 0 < y <

(D) ✜

✢

y ✢

✗

2

2

14. tan–1

1

3

sec✥

is equal to

✦

✦

2

✣

✤



2

✘

(A)

(B)

✘

(C)

(D)

✘

✙

✗

3

3

3

2.3 Properties of Inverse Trigonometric Functions

In this section, we shall prove some important properties of inverse
trigonometric

functions. It may be mentioned here that these results are valid within the
principal

value branches of the corresponding inverse trigonometric functions and
wherever

they are defined. Some results may not be valid for all values of the
domains of inverse



trigonometric functions. In fact, they will be valid only for some values of x
for which

inverse trigonometric functions are defined. We will not go into the details
of these

values of x in the domain as this discussion goes beyond the scope of this
text book.

Let us recall that if y = sin–1 x, then x = sin y and if x = sin y, then y = sin–1
x. This is equivalent to

★

★

sin (sin–1

✩

✪

x) = x, x [– 1, 1] and sin–1 (sin x) = x, x

✫

,

✧

✧

✬

2



2 ✭

✮

✯

Same is true for other five inverse trigonometric functions as well. We now
prove

some properties of inverse trigonometric functions.

1

1. (i) sin–1

= cosec–1 x, x 1 or x – 1

x

✰

✰

✖

✖

✖

1

(ii) cos–1

= sec–1 x, x 1 or x – 1



x

✰

✰

✖
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1

(iii) tan–1

= cot–1 x, x > 0

x

To prove the first result, we put cosec–1 x = y, i.e., x = cosec y

1

Therefore

= sin y

x

1

Hence

sin–1

= y

x

1



or

sin–1

= cosec–1 x

x

Similarly, we can prove the other parts.

2. (i) sin–1 (– x) = – sin–1 x, x [– 1, 1]

✄

(ii) tan–1 (– x) = – tan–1 x, x R

✄

(iii) cosec–1 (– x) = – cosec–1 x, | x | 1

✞

Let sin–1 (– x) = y, i.e., – x = sin y so that x = – sin y, i.e., x = sin (– y).

Hence

sin–1 x = – y = – sin–1 (– x)

Therefore

sin–1 (– x) = – sin–1 x

Similarly, we can prove the other parts.



3. (i) cos–1 (– x) = – cos–1 x, x [– 1, 1]

☎

✄

☎

✄

(ii) sec–1 (– x) = – sec–1 x, | x | 1

✞

☎

(iii) cot–1 (– x) = – cot–1 x, x R

☎

✄

Let cos–1 (– x) = y i.e., – x = cos y so that x = – cos y = cos ( – y)

☎

Therefore

cos–1 x = – y = – cos–1 (– x)

☎

☎

Hence

cos–1 (– x) = – cos–1 x

☎



Similarly, we can prove the other parts.

4. (i) sin–1 x + cos–1 x =

, x [– 1, 1]

2

✄

✄

✄

(ii) tan–1 x + cot–1 x =

, x R

2

✄

✄

(iii) cosec–1 x + sec–1 x =

, | x | 1



2

✞

✞

✞

✞

✁

✂

Let sin–1 x = y. Then x = sin y = cos

✆

y

✝

2

✟

✠

✡

☛

☛



–1

Therefore

cos–1 x =

=

☞

sin

x

☞

y

2

2
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Hence

sin–1 x + cos–1 x = 2

Similarly, we can prove the other parts.

x + y

5. (i) tan–1 x + tan–1 y = tan–1

, xy < 1

1 – xy



x – y

(ii) tan–1 x – tan–1 y = tan–1

, xy > – 1

1 + xy

2 x

(iii) 2tan–1 x = tan–1

, | x | < 1

2

1 – x

Let tan–1 x = and tan–1 y = . Then x = tan , y = tan

✟

✠

✟

✠

tan ✁ ✂ tan ✄

x ✂ y

Now



tan(

☎

☎

✁

✂

✄ )

1✆ tan

✆

✁

tan ✄

1 xy

x✂ y

This gives

+ = tan–1

✟

✠

1✆ xy

x ✝ y

Hence



tan–1 x + tan–1 y = tan–1 1✞ xy

In the above result, if we replace y by – y, we get the second result and by
replacing y by x, we get the third result.

2 x

6. (i) 2tan–1 x = sin–1

, | x | 1

2

✡

1 + x

2

1 – x

(ii) 2tan–1 x = cos–1

, x 0

2

☛

1 + x

2 x

(iii) 2 tan–1 x = tan–1

, – 1 < x < 1

2



1 – x

Let tan–1 x = y, then x = tan y. Now

2 x

2 tan y

sin–1

2

= sin–1

2

1

1✂ tan y

☞

x

= sin–1 (sin 2 y) = 2 y = 2tan–1 x
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2

2

1 x

1✂ tan y

Also cos–1

= cos–1



= cos–1 (cos 2 y) = 2 y = 2tan–1 x

2

2

1

1 ✄ tan y

✁

x

(iii) Can be worked out similarly.

We now consider some examples.

Example 3 Show that

1

1

(i) sin–1

2

✞

✟

x

2 x 1



= 2 sin–1 x,

✟

✝

x

☎

✆

2

2

1

(ii) sin–1

2

✟

x ✟ 1

2 x 1

= 2 cos–1 x,

✝



x

☎

✆

2

Solution

(i) Let x = sin . Then sin–1 x = . We have

✠

✠

sin–1

2

2

2 x 1

= sin–1 2sin ✎ 1✏ sin

✌

✍

✎

☞



x

✡

☛

= sin–1 (2sin cos ) = sin–1 (sin2 ) = 2

✠

✠

✠

✠

= 2 sin–1 x

(ii) Take x = cos , then proceeding as above, we get, sin–1

2

= 2 cos–1 x

✠

2 x 1☞ x

✡

☛

1



–1 2

–1 3

Example 4 Show that tan–1

✑

tan

✒

tan

2

11

4

Solution By property 5 (i), we have

1

2

1

2

✕

2 11

✙ 1

3

✔



15

L.H.S. =

–1

–1

tan

–1

1

= tan

= R.H.S.

✖

tan

✖

tan

✓

tan

2

11

1

2

20



4

1✗ ✘

2 11

✛

cos x

Example 5 Express

✜

✧

✧

✚ 1

tan

,

in the simplest form.

★

✩

x ✩

✢

1 sin x✣

2



2

✤

✥

✦

Solution We write

✫

2 x

2 x

cos

sin

✬

✭

✮

✯

✰

✱

✪ 1

cos x

–1

2



2

tan

✲

tan

1 sin x

✮

✯

✳

✴

✭

✵

✶

2 x

2 x

x

x

✮

cos

sin

2sin



cos

✯

✷

✭

✸

2

2

2

2 ✹
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x

x

x

x

cos

sin

cos



sin

✁

✂

✄

✂

✄

☎

✆

✝

✞

✝

✞

✟

✠

–1

✡

2



2 ☛✡

2

2

= tan

☛

✟

✠

✂

x

x ✄

✟

2

cos

sin

✠

✆

✝



2

2 ✞

✟

✠

✡

☛

☞

✌

✍

x

✍

x

x

cos

sin

✎



1✏ tan

✎

✏

–1 ✑

2

2 ✒

–1 ✑

2 ✒

= tan

✖ tan

✑

x

x ✒

✑

x ✒

✑ 1 ✓ tan

✑

cos



sin

✒

✒

✓

✔

2

✔

2

2 ✕

✕

–1 ✗

✙

x ✘

✙

✚

✛

x

= tan



tan

✜

✢

✜

✣

4

2 ✤

✥

✦

✧

★

✩

✪

4

2

Alternatively,

✫

✬

✫

2 x



sin

x

sin

✬

✭

✭

✮

✯

✰

✯

✰

✮

✱

✲

✱

✲

✳

✴

✳

✴



–1 ✯

cos x ✰

–1

✵

2

✶

–1

✵

2

tan

tan



tan

✶

✳

✴

✳

✴

✷

✷

✱

✵

1 sin x ✲

✭

✭

✮

✮

✯

✰

✯

✶

2 x



1✮ cos

✮

x

1 ✮ cos

✰

✳

✴

✳

✴

✱

2

✲

✱



2

✲

✳

✴

✳

✴

✵

✶

✵

✶

✸

✹

✸

✹

✫

2 x

2 x

2sin



cos

✬

✭

✮

✭

✮

✯

✰

✯

✰

✱

✲

✱

✲

✳

✴

–1

✵



4

✶

✵

4

✶

= tan

✳

✴

2

✭

✮

✯

2 x

2sin

✰

✳

✴

✱



4

✲

✳

✴

✵

✶

✸

✹

✺

✼

✼

✽

✾

x

–1

–1



2

✻

✿

✺

✼

✽

✾

2 x ✻

= tan

cot

✿

✽

❈

tan

tan

❀

❁

❂

❃

❀



4

❁

❂

❃

❄

2

4

❅

❆

❇

❄

❅

❆

❇

–1

❉

x

✗

✙

✚



x ✘

= tan

tan

✛

✜

❊

❋

✣

4

2 ✤

✥

✦

4

2

✧

★

✩

✪

–1 ●

1



Example 6 Write cot

❍

, | x | > 1 in the simplest form.

■

2

❏

x ❑

▲

1 ▼

Solution Let x = sec , then

2

x

=

2

sec P ❑1 ◗ tan

❖

1

◆

P
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1

Therefore,

–1

cot

= cot–1 (cot ) = = sec–1 x, which is the simplest form.

✟

✟

2

x

1

3

✂

3 x x

–1

2 x

✄

✁

1

Example 7 Prove that tan–1 x + tan



2 = tan–1

, | x |

☎

2 ✆

1

1

✠

✁

3 x

3

✁

x

✝

✞

Solution Let x = tan . Then = tan–1 x. We have

✟

✟

3



3

✂

3 x x ✄

✂

3tan ✡

✡

✁

tan

✄

✁

R.H.S. =

–1

–1

tan

☛

☎

✆

tan



2

☎

2

✆

1

✡

✁

3 x

1✁ 3tan

✝

✞

✝

✞

= tan–1 (tan3 ) = 3 = 3tan–1 x = tan–1 x + 2 tan–1 x

✟

✟

2 x



= tan–1 x + tan–1

2 = L.H.S. (Why?)

1 ✁ x

Example 8 Find the value of cos (sec–1 x + cosec–1 x), | x | 1

☞

✌

Solution We have cos (sec–1 x + cosec–1 x) = cos ✍

✎

= 0

✏

2 ✑

✒

✓

EXERCISE 2.2

Prove the following:

1 1

1. 3sin–1 x = sin–1 (3 x – 4 x 3), x

✔

–



,

✕

✖

✗

2 2 ✘

✙

✚

1

2. 3cos–1 x = cos–1 (4 x 3 – 3 x), x

✔

, 1✕

✖

✗

2

✘

✙

✚

2

✛



7

✛

1

3. tan–1

1

1

✜

tan

✢

tan

11

24

2

1

1

31

✣ 1

1

✣

✣1



4.

2 tan

✤

tan

✥

tan

2

7

17

Write the following functions in the simplest form:

2

✪ 1

1

tan

✧

★

✦

x

5.

1



1

1

tan

, x 0

6.

, | x | > 1

✩

2

x

x

1

✶

✷

✸

✵

x

x

✬

✭

✮



✫ 1

1 cos x

7.

tan

, x <

8.

1

cos

sin

tan

, x <

✯

1 cos x ✰

✴

✴

✹

✺

✯

✰



cos x ✻ sin x

✱

✲

✳

✼

✽
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1

x

9.

tan

, | x | < a

2

2

a ✁ x

2

3

✡

a



a

✄

☎

✆

✂1

3 a x x

10.

tan

, a > 0;

☛

x ☛

✝

3

2

a

3 ax ✞

3



3

✆

✟

✠

Find the values of each of the following:

☞

✍

1 ✌

11.

–1

–1

tan

2 cos 2 sin

✎

12. cot (tan–1 a + cot–1 a)

✏



2 ✑

✒

✓

✔

✕

✖

✗

2

1 ✘

–1

2 x

–1 1

y ✙

✆

13.

tan

sin

✚

cos



, | x | < 1, y > 0 and xy < 1

✛

2

2

2

1 x

1

y ✜

✚

✚

✢

✣

✤

–1 1

–1

✥

14. If sin sin

✦

cos x



1

✧

, then find the value of x

★

5

✩

✪

✫

–1 x ✬ 1

–1 x ✭ 1

✮

15. If tan

, then find the value of x

✭

tan

✯

x ✬ 2

x ✭ 2

4

Find the values of each of the expressions in Exercises 16 to 18.



–1 ✱

2✰

16.

sin

sin

✲

17.

–1

3

tan

tan ✷

✤

✥

✳

3 ✴

★

✪



4 ✩

✵

✶

✫

✤

–1 3

–1 3 ✥

18.

tan sin

✦

cot

★

5

2 ✩

✪

✫

✹

✺

✻

✸1



7

19.

cos ✼ cos

✽

is equal to

✾

6 ✿

7

5

✮

✮

✮

✮

(A)

(B)

(C)

(D)

6

6

3



6

20.

✹

✺

✻

✸ 1

1

sin

is equal to

❀

sin (❀

✼

)

3

2 ✽

✾

✿

1

1

1



(A)

(B)

(C)

(D) 1

2

3

4

21.

✂1

1

tan

3

cot✂

is equal to

✆

(✆ 3)

✮

(A)

(B)

(C) 0



(D)

✬

2 3

❁

2
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Miscellaneous Examples

1

3✁

Example 9 Find the value of sin (sin

)

5

1

3✁

3✁

Solution We know that

✂ 1

sin (sin x)



. Therefore, sin (sin

) ☎

✄

x

5

5

3✆

✆

✆

✝

✞

But

, which is the principal branch of sin–1 x

✟

✠

,

5

✡



2 2 ☛

☞

✌

3

2

✁

3✁

2✁

✎

✎

✎

However

sin (

)

and

✏

, ✑

✒

✓

☎



sin(✁ ✍

) ☎ sin

5

5

5

5

✔

2 2 ✕

✖

✗

✙

✙

✙

✘ 1

3

1

✘

2

2

Therefore



sin (sin

) ✚ sin (sin

) ✚

5

5

5

1 3

1 8

1 84

Example 10 Show that sin

✍

sin

☎

cos

5

17

85

Solution Let

1 3

sin



and

1 8

sin

☎

y

☎

x

5

17

3

8

Therefore

sin x

and sin y

☎

☎

5

17

9

4



Now

2

cos x

(Why?)

✛

1 ✜ sin x ✛ 1 ✜

✛

25

5

2

64

15

and

cos y ✢ 1 ✣ sin y ✢ 1 ✣

✢

289

17

We have

cos ( x– y) = cos x cos y + sin x sin y

4



15

3

8

84

=

☎

✤

✥

✤

5

17

5

17

85

Therefore

✧

★

✦ 1

84



x ✣ y ✢ cos

✩

85✪

✫

✬

3

8

84

Hence

1

1

1

sin

✍

sin

☎

cos

5

17

85
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12

4

63

Example 11 Show that

1

1

1

sin

✁

cos

✁

tan

✂

✄

13

5

16

12



4

63

Solution Let

1

1

1

sin

✂

,

x

cos

✂

y, tan

✂

z

13

5

16

12

4



63

Then

sin x ✂

, cos y ✂

,

tan z ✂

13

5

16

5

3

12

3

Therefore

cos x ✂

, sin y ✂

, tan x ✂

and tan y ✂

13

5



5

4

12

3

tan x

✞

63

5

4

☎

tan y

We have

tan( x

✟

✟

✠

✆

☎



y)

1

12 3

16

✝

tan x tan y

1✠

✡

5

4

Hence

tan( x ☛ y) ☞ ✌ tan z

i.e.,

tan ( x + y) = tan (– z) or tan ( x + y) = tan ( – z)

✍

Therefore

x + y = – z or x + y = – z

✍

Since



x, y and z are positive, x + y – z (Why?)

✎

–1 12

–1 4

–1 63

Hence

x + y + z = or sin

✁

cos

✁

tan

✂

✄

✍

13

5

16

–1

a

✏



a cos x b sin x ✑

✌

Example 12 Simplify tan

, if

tan x > –1

✒

b cos x a sin x ✓

b

☛

✔

✕

Solution We have,

a cos x

✤

a

✣

✤

b sin x ✥

tan x ✥

✣



–1

✦

✧

✖

a cos x b sin x

tan

✗

✘

–1

b cos x

✦

b

✧

= tan

=

–1

tan

✦

✧

✙



b cos x a sin x ✚

b cos x

✦

a

✧

★

a sin x

✛

✜

✢

✦ 1

tan x

✦

✧

✧

★

✩

b

✩



b cos x

✪

✪

a

a

=

–1

–1

tan

=

–1

tan

✬

x

✫

tan (tan x)

b

b
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Example 13 Solve tan–1 2 x + tan–1 3 x = 4



Solution We have tan–1 2 x + tan–1 3 x = 4

–1 ✁

2 x 3 x ✂

✄

or

tan

=

☎

1 2 x 3 x ✆

4

✝

✞

✟

✠

–1 ✡

5 x

☛

✑



i.e.

tan

=

☞

2

1 6 x ✌

4

✍

✎

✏

5 x

Therefore

2 = tan

✓

1

1

4

✒

6 x

or



6 x 2 + 5 x – 1 = 0 i.e., (6 x – 1) ( x + 1) = 0

1

which gives

x =

or x = – 1.

6

Since x = – 1 does not satisfy the equation, as the L.H.S. of the equation
becomes

1

negative, x

is the only solution of the given equation.

✓

6

Miscellaneous Exercise on Chapter 2

Find the value of the following:

–1

13✔

–1 ✕



7✔

✕

✖

✖

1.

cos

cos

2.

tan

tan

✗

6 ✘

✗

✙

6 ✘

✙

✚

✚

Prove that

–1 3



–1 24

–1 8

–1 3

–1 77

3.

2sin

4.

sin

✛

sin

✓

tan

✓

tan

5

7

17

5

36

–1 4



–1 12

–1 33

–1 12

–1 3

–1 56

5.

cos

6.

cos

✛

sin

✓

sin

✛

cos

✓

cos

5

13

65



13

5

65

–1 63

–1 5

–1 3

7.

tan

✓

sin

✛

cos

16

13

5

–1 1

1

✜

1



1

✜

1

1

✜

1

8.

tan

✛

tan

✛

tan

✛

tan

✓

5

7

3

8

4
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Prove that

–1

1

–1 ✁ 1

x

9.

tan

x

cos

✂

, x [0, 1]

✄

2

✠

☎

1



x ✆

✝

✞

✟

✡

x

x ☛

✓

✔

✕

☞

☞

✌

x

10.

–1

1 sin

1 sin



cot

, x ✖ ✗ 0,

✍

✘

✎

✏

✙

4

✎

1 sin x

1 sin x ✏

✚

☞

✌

✌

2

✑

✒



1

✡

1

x

1 x ☛

☞

✌

✌

✛

1

11.

–1

–1

tan

,

[Hint: Put x = cos 2 ]

✜

✢



x ✢ 1

✍

✌

✣

✎

✏

cos

x

✎

1

x

1 x ✏

2

☞

☞

✌

4

2

✑

✒



9✓

9

✤

1

9

✤

2 2

12.

1

1

✜

sin

✥

sin

8

4

3

4

3

Solve the following equations:



–1 1 ✦ x

1

–1

13. 2tan–1 (cos x) = tan–1 (2 cosec x)

14.

tan

✧

tan

x,( x ★ 0)

1✩ x

2

15. sin (tan–1 x), | x | < 1 is equal to

x

1

1

x

(A)

(B)

(C)

(D)



2

1

2

1

2

1

2

1✫ x

✫

x

✪

x

✪

x

✬

16. sin–1 (1 – x) – 2 sin–1 x =

, then x is equal to

2

1

1



1

(A) 0,

(B) 1,

(C) 0

(D)

2

2

2

1

✪

✮

✯

✭

x

✭ 1

x

y

17.

tan

✪



tan

is equal to

✰

y ✱

x ✫ y

✲

✳

✦

3✬

(A) ✬

(B) ✬

(C) ✬

(D)

2

3

4

4
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Summary

The domains and ranges (principal value branches) of inverse trigonometric



functions are given in the following table:

Functions

Domain

Range

(Principal Value Branches)

✁ ✂

✂

✄

☎

y = sin–1 x

[–1, 1]

,

✆

2

2 ✝

✞

✟

y = cos–1 x

[–1, 1]



[0, ]

✠

y = cosec–1 x

R – (–1,1)

✡☛

, ☛

☞

✌

– {0}

✍

2

2 ✎

✏

✑

✒

y = sec–1 x

R – (–1, 1)

[0, ] – { }

✠



2

✂

✂

✓

✔

y = tan–1 x

R

✁

,

✕

2 2 ✖

✗

✘

y = cot–1 x

R

(0, )

✠

1

sin–1 x should not be confused with (sin x)–1. In fact (sin x)–1 =

and



sin x

similarly for other trigonometric functions.

The value of an inverse trigonometric functions which lies in its principal

value branch is called the principal value of that inverse trigonometric

functions.

For suitable values of domain, we have

y = sin–1 x

x = sin y

x = sin y

y = sin–1 x

✙

✙

sin (sin–1 x) = x

sin–1 (sin x) = x

1

sin–1

= cosec–1 x

cos–1 (– x) = – cos–1 x

x

✠



1

cos–1

= sec–1 x

cot–1 (– x) = – cot–1 x

x

✠

1

tan–1

= cot–1 x

sec–1 (– x) = – sec–1 x

x

✠
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sin–1 (– x) = – sin–1 x

tan–1 (– x) = – tan–1 x

✁

tan–1 x + cot–1 x =

cosec–1 (– x) = – cosec–1 x



2

✁

✁

sin–1 x + cos–1 x =

cosec–1 x + sec–1 x =

2

2

x

2 x

✂

y

tan–1 x + tan–1 y = tan–1

2tan–1 x = tan–1

1

2

1 ☎ x

✄

xy

x ✆ y

tan–1 x – tan–1 y = tan–1 1✝ xy



2 x

2

1✟ x

2tan–1 x = sin–1

= cos–1

2

1

2

1✠ x

✞

x

Historical Note

The study of trigonometry was first started in India. The ancient Indian

Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara
I

(600 A.D.) and Bhaskara II (1114 A.D.) got important results of
trigonometry. All

this knowledge went from India to Arabia and then from there to Europe.
The

Greeks had also started the study of trigonometry but their approach was so



clumsy that when the Indian approach became known, it was immediately
adopted

throughout the world.

In India, the predecessor of the modern trigonometric functions, known as

the sine of an angle, and the introduction of the sine function represents one
of

the main contribution of the siddhantas (Sanskrit astronomical works) to

mathematics.

Bhaskara I (about 600 A.D.) gave formulae to find the values of sine
functions

for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa

contains a proof for the expansion of sin (A + B). Exact expression for sines
or

cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara II.

The symbols sin–1 x, cos–1 x, etc., for arc sin x, arc cos x, etc., were
suggested by the astronomer Sir John F.W. Hersehel (1813) The name of
Thales

(about 600 B.C.) is invariably associated with height and distance problems.
He

is credited with the determination of the height of a great pyramid in Egypt
by

measuring shadows of the pyramid and an auxiliary staff (or gnomon) of
known
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height, and comparing the ratios:

H

h = tan (sun’s altitude)

S

s

Thales is also said to have calculated the distance of a ship at sea through

the proportionality of sides of similar triangles. Problems on height and
distance

using the similarity property are also found in ancient Indian works.

—

—

✁

✁



Chapter 3

MATRICES

The essence of Mathematics lies in its freedom. — CANTOR

3.1 Introduction

The knowledge of matrices is necessary in various branches of
mathematics. Matrices

are one of the most powerful tools in mathematics. This mathematical tool
simplifies

our work to a great extent when compared with other straight forward
methods. The

evolution of concept of matrices is the result of an attempt to obtain
compact and

simple methods of solving system of linear equations. Matrices are not only
used as a

representation of the coefficients in system of linear equations, but utility of
matrices

far exceeds that use. Matrix notation and operations are used in electronic
spreadsheet

programs for personal computer, which in turn is used in different areas of
business

and science like budgeting, sales projection, cost estimation, analysing the
results of an

experiment etc. Also, many physical operations such as magnification,
rotation and



reflection through a plane can be represented mathematically by matrices.
Matrices

are also used in cryptography. This mathematical tool is not only used in
certain branches

of sciences, but also in genetics, economics, sociology, modern psychology
and industrial

management.

In this chapter, we shall find it interesting to become acquainted with the

fundamentals of matrix and matrix algebra.

3.2 Matrix

Suppose we wish to express the information that Radha has 15 notebooks.
We may

express it as [15] with the understanding that the number inside [ ] is the
number of

notebooks that Radha has. Now, if we have to express that Radha has 15
notebooks

and 6 pens. We may express it as [15 6] with the understanding that first
number

inside [ ] is the number of notebooks while the other one is the number of
pens possessed

by Radha. Let us now suppose that we wish to express the information of
possession

MATRICES 57

of notebooks and pens by Radha and her two friends Fauzia and Simran
which



is as follows:

Radha

has

15

notebooks

and

6 pens,

Fauzia

has

10

notebooks

and

2 pens,

Simran

has

13

notebooks

and

5 pens.

Now this could be arranged in the tabular form as follows:



Notebooks

Pens

Radha

15

6

Fauzia

10

2

Simran

13

5

and this can be expressed as

or

Radha

Fauzia

Simran

Notebooks

15

10

13



Pens

6

2

5

which can be expressed as:

In the first arrangement the entries in the first column represent the number
of

note books possessed by Radha, Fauzia and Simran, respectively and the
entries in the

second column represent the number of pens possessed by Radha, Fauzia
and Simran,
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respectively. Similarly, in the second arrangement, the entries in the first
row represent

the number of notebooks possessed by Radha, Fauzia and Simran,
respectively. The

entries in the second row represent the number of pens possessed by Radha,
Fauzia

and Simran, respectively. An arrangement or display of the above kind is
called a

matrix. Formally, we define matrix as:

Definition 1 A matrix is an ordered rectangular array of numbers or
functions. The



numbers or functions are called the elements or the entries of the matrix.

We denote matrices by capital letters. The following are some examples of
matrices:

✞

1 ✟

5

2 ✠ i

3

– 2

✡

☛

☞

✁

2

3

1

✏

x

x



3

☛

☞

✑

✒

✂

✄

A

, B

, C

✌

3.5

–1

2

✓

☎

0



5

☛

☞

✔

✕

✂

✄

cos x

sin x ✒ 2

tan x

✖

✗

☛

5 ☞

✂

3

6 ✄

✆

✝

☛



3

5

☞

✍

7 ✎

In the above examples, the horizontal lines of elements are said to
constitute, rows

of the matrix and the vertical lines of elements are said to constitute,
columns of the matrix. Thus A has 3 rows and 2 columns, B has 3 rows and
3 columns while C has 2

rows and 3 columns.

3.2.1 Order of a matrix

A matrix having m rows and n columns is called a matrix of order m × n or
simply m × n matrix (read as an m by n matrix). So referring to the above
examples of matrices, we

have A as 3 × 2 matrix, B as 3 × 3 matrix and C as 2 × 3 matrix. We observe
that A has 3 × 2 = 6 elements, B and C have 9 and 6 elements, respectively.

In general, an m × n matrix has the following rectangular array:

or A = [ a ]

, 1 i m, 1 j n i, j N



ij m × n

✘

✘

✘

✘

✙

Thus the i th row consists of the elements a , a , a ,..., a , while the j th
column i 1

i 2

i 3

in

consists of the elements a , a , a ,..., a ,

1 j

2 j

3 j

mj

In general a , is an element lying in the i th row and j th column. We can
also call ij

it as the ( i, j)th element of A. The number of elements in an m × n matrix
will be equal to mn.
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Note In this chapter

1. We shall follow the notation, namely A = [ a ]

to indicate that A is a matrix

ij m × n

of order m × n.

2. We shall consider only those matrices whose elements are real numbers
or

functions taking real values.

We can also represent any point ( x, y) in a plane by a matrix (column or
row) as

✁

x ✂

(or [ x, y]). For example point P(0, 1) as a matrix representation may be
given as

✄

y ☎

✆

✝

✞

0



P

✟

or [0 1].

✠

✡ 1☛

☞

✌

Observe that in this way we can also express the vertices of a closed
rectilinear

figure in the form of a matrix. For example, consider a quadrilateral ABCD
with vertices

A (1, 0), B (3, 2), C (1, 3), D (–1, 2).

Now, quadrilateral ABCD in the matrix form, can be represented as

A

B

C D

A ✘ 1

0✙

1 3

1



B ✚ 3

2✛

✎

✏

1

X

✑

or

Y

✚

✛

✒

✜

✓

0 2

3

2✔

C ✚ 1



3✛

✕

✖

2 ✍ 4

D ✚ 1

2✛

✢

✣

✤

4✗2

Thus, matrices can be used as representation of vertices of geometrical
figures in

a plane.

Now, let us consider some examples.

Example 1 Consider the following information regarding the number of
men and women

workers in three factories I, II and III

Men workers

Women workers

I

30



25

II

25

31

III

27

26

Represent the above information in the form of a 3 × 2 matrix. What does
the entry

in the third row and second column represent?
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Solution The information is represented in the form of a 3 × 2 matrix as
follows:

30

25✁

A

✂

25



31✄

☎

✂

✄

✂

27

26✄

✆

✝

The entry in the third row and second column represents the number of
women

workers in factory III.

Example 2 If a matrix has 8 elements, what are the possible orders it can
have?

Solution We know that if a matrix is of order m × n, it has mn elements.
Thus, to find all possible orders of a matrix with 8 elements, we will find all
ordered pairs of natural

numbers, whose product is 8.

Thus, all possible ordered pairs are (1, 8), (8, 1), (4, 2), (2, 4)

Hence, possible orders are 1 × 8, 8 ×1, 4 × 2, 2 × 4

1



Example 3 Construct a 3 × 2 matrix whose elements are given by a

.

✞

| i ✟ 3 j |

ij

2

✠

a

a

11

12 ✡

Solution In general a 3 × 2 matrix is given by A

☛

a

a ☞ .

✌

21



22

☛

☞

☛

a

a

31

32 ☞

✍

✎

1

Now

a

, i = 1, 2, 3 and j = 1, 2.

✏

| i ✑ 3 j |

ij

2

1

1



5

Therefore

a

a ✞

|1✟ 3✒ 2 |

✞

|1 ✟ 3✒1| ✞ 1

11

✞

2

12

2

2

1

1

1

a



a

✞

| 2 ✟ 3✒ 2 | ✞ 2

✞

| 2 ✟ 3✒1|

21

✞

2

2

22

2

1

1

3

a

a

✏



| 3 ✑ 3✓ 2 |

✏

| 3 ✑ 3✓1| ✏ 0

31

✏

2

32

2

2

✔

5

1

✕

✖

2 ✗

✖

1

✗

Hence the required matrix is given by A



.

✘

2

✖

2

✗

✖

3 ✗

✖

0

✗

✙

2 ✚
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3.3 Types of Matrices

In this section, we shall discuss different types of matrices.

(i) Column matrix

A matrix is said to be a column matrix if it has only one column.

0 ✁

✂



3 ✄

✂

✄

For example, A

✂

1 ✄ is a column matrix of order 4 × 1.

☎

✆

✂

✄

1/

✂

2✄

✝

✞

In general, A = [ a ]

is a column matrix of order m × 1.

ij m × 1

(ii) Row matrix



A matrix is said to be a row matrix if it has only one row.

✠

1

For example, B

5 2 3✡

is a row matrix.

☛

☞

✌

2

✍

✎

1

✏

✟

4

In general, B = [ b ]

is a row matrix of order 1 × n.

ij



1 × n

(iii) Square matrix

A matrix in which the number of rows are equal to the number of columns,
is

said to be a square matrix. Thus an m × n matrix is said to be a square
matrix if m = n and is known as a square matrix of order ‘ n’.

3

✑

✒

1

0 ✓

✔

3

✕

For example A

✔

3 2

1 ✕ is a square matrix of order 3.

✖

✔



2

✕

✔

4

3

1✕

✑

✗

✘

In general, A = [ a ]

is a square matrix of order m.

ij m × m

Note If A = [ a ] is a square matrix of order n, then elements (entries) a , a ,
... , a ij

11

22

nn

✙

1



3

✚

✛

1 ✜

are said to constitute the diagonal, of the matrix A. Thus, if A

✢

2

4

1✣ .

✤

✚

✢

✣

✢

3

5

6 ✣

✥

✦

Then the elements of the diagonal of A are 1, 4, 6.
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(iv) Diagonal matrix

A square matrix B = [ b ]

is said to be a diagonal matrix if all its non

ij m × m

diagonal elements are zero, that is a matrix B = [ b ]

is said to be a diagonal

ij

m × m

matrix if b = 0, when i j.

ij

☎

✠

✡

1.1 0

0☛

✁

1 0✂



For example, A = [4], B

, C

☞

, are diagonal matrices

✍

0

2

0✌

✄

✆

0

2✝

☞

✌

✞

✟

☞

0

0



3✌

✎

✏

of order 1, 2, 3, respectively.

(v) Scalar matrix

A diagonal matrix is said to be a scalar matrix if its diagonal elements are
equal,

that is, a square matrix B = [ b ]

is said to be a scalar matrix if

ij n × n

b = 0, when i j

ij

☎

b = k, when i = j, for some constant k.

ij

For example

✑

3

0



0 ✒

✓

✔

✁

1

0

A = [3], B

✂

, C ✕ ✓ 0

3

0

✄

✔

✆

0



1✝

✓

✔

✞

✟

0

0

3

✖

✗

are scalar matrices of order 1, 2 and 3, respectively.

(vi) Identity matrix

A square matrix in which elements in the diagonal are all 1 and rest are all
zero

is called an identity matrix. In other words, the square matrix A = [ a ]

is an

ij

n × n

1 if



i ✄

✘

j

identity matrix, if aij

.

✄

✙ 0

if

i ✚ j

✛

We denote the identity matrix of order n by I . When order is clear from the

n

context, we simply write it as I.

✜

1

0

0✢

✣

✤

✁



1

0✂

0

1

0

For example [1],

,

are identity matrices of order 1, 2 and 3,

✣

✤

✆

0

1✝

✞

✟

✣

0

0



1✤

✥

✦

respectively.

Observe that a scalar matrix is an identity matrix when k = 1. But every
identity

matrix is clearly a scalar matrix.
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(vii) Zero matrix

A matrix is said to be zero matrix or null matrix if all its elements are zero.

0

0

0

0

0

✁

✁

For example, [0],

,



, [0, 0] are all zero matrices. We denote

✂

0

0✄

✂

0

0

0✄

☎

✆

☎

✆

zero matrix by O. Its order will be clear from the context.

3.3.1 Equality of matrices

Definition 2 Two matrices A = [ a ] and B = [ b ] are said to be equal if

ij

ij

(i) they are of the same order

(ii) each element of A is equal to the corresponding element of B, that is a =
b for ij



ij

all i and j.

2

3

3

2✁

2 3

✁

2

3✁

✁

For example,

and

are equal matrices but

and

are

✂

0 1✄

✂



0 1✄

✂

0

1✄

✂

0 1✄

☎

✆

☎

✆

☎

✆

☎

✆

not equal matrices. Symbolically, if two matrices A and B are equal, we
write A = B.

x



y

✝

✞

1.5

0 ✟

✞

✟

If z

a

✠

2

6✡

✠

✡



, then x = – 1.5, y = 0, z = 2, a = 6 , b = 3, c = 2

☛

✠

✡

✠

✡

b

c

✠

3

2 ✡

✠

✡

☞

✌

☞

✌



x ✍ 3

z ✍ 4

2 y ✎ 7

0

6

3 y ✎

✏

✑

✏

2 ✑

Example 4 If ✒

6

a 1

0 ✓

✒

✎

6

✎ 3



2 c ✍ 2✓

✎

✎

✔

✒

✓

✒

✓

✒

b

3

21

0

✓

✒

2 b

4

21



0 ✓

✎

✎

✍

✎

✕

✖

✕

✖

Find the values of a, b, c, x, y and z.

Solution As the given matrices are equal, therefore, their corresponding
elements

must be equal. Comparing the corresponding elements, we get

x + 3 = 0,

z + 4 = 6,

2 y – 7 = 3 y – 2

a – 1 = – 3,

0 = 2 c + 2

b – 3 = 2 b + 4,

Simplifying, we get



a = – 2, b = – 7, c = – 1, x = – 3, y = –5, z = 2

Example 5 Find the values of a, b, c, and d from the following equation: 2
a ✗ b

a ✘ 2 b

4

3

✘

✁

✁

✙

✂

5 c

d

4 c

3 d ✄

1

✂



1 24✄

✘

✗

☎

✆

☎

✆
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Solution By equality of two matrices, equating the corresponding elements,
we get

2 a + b = 4

5 c – d = 11

a – 2 b = – 3

4 c + 3 d = 24

Solving these equations, we get

a = 1, b = 2, c = 3 and d = 4

EXERCISE 3.1

2

5



19

7✁

✂

✄

5

☎

1. In the matrix A

, write:

✄

35

✂ 2

12 ☎

✆

✄

2

☎

✄

3

1

5



17 ☎

✂

✝

✞

(i) The order of the matrix,

(ii) The number of elements,

(iii) Write the elements a , a , a , a , a .

13

21

33

24

23

2. If a matrix has 24 elements, what are the possible orders it can have?
What, if it

has 13 elements?

3. If a matrix has 18 elements, what are the possible orders it can have?
What, if it

has 5 elements?

4. Construct a 2 × 2 matrix, A = [ a ], whose elements are given by:

ij



2

( i

j)

i

2

( i

2 j)

(i) a

✟

a

a

✟

ij

(ii)

(iii)

✡

✠

✠



2

ij

ij

j

2

5. Construct a 3 × 4 matrix, whose elements are given by:

1

(i) a

(ii) a

✂

✆

2 i

j

☛

| ☞3 i ✌ j |

ij

2

ij

6. Find the values of x, y and z from the following equations:



x ✖ y ✖

✗

z✘

✗ 9 ✘

x ✕

✍

y

2 ✎

✍ 6

2

✍

4

3✎

✍

y

z✎

✎

(i)

(ii)



(iii)

✙

x ✖ z ✚

✙

✛

5✚

✏

✏

✑

x

5✒

✑

1

5✒

✑

5

z

xy✒

✑ 5



8✒

✙

✚

✙

✚

✕

✓

✔

✓

✔

✓

✔

✓

✔

✙

y

z ✚



✙ 7 ✚

✖

✜

✢

✜

✢

7. Find the value of a, b, c and d from the equation:

a ✣ b

2 a ✤ c

✣

✥

✦

✥

1

5 ✦

✧

★

2 a

b

3 c



d ✩

★

0

13✩

✣

✤

✪

✫

✪

✫
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8. A = [ a ]

is a square matrix, if

ij m × n\

(A) m < n

(B) m > n

(C) m = n

(D) None of these

9. Which of the given values of x and y make the following pair of matrices
equal 0



y ✆

✁

2

✁

3 x

7

5

✂

✂

,

✄

y 1

2 3 x☎

✄

8



4 ☎

✆

✝

✞

✝

✞

✟ 1

(A) x

(B) Not possible to find

✠

, y ✠ 7

3

2

1

✡



2

✡

(C) y = 7, x

✡

(D) x ☛

, y

☛

☛

3

3

3

10. The number of all possible matrices of order 3 × 3 with each entry 0 or
1 is:

(A) 27

(B) 18

(C) 81

(D) 512

3.4 Operations on Matrices

In this section, we shall introduce certain operations on matrices, namely,
addition of



matrices, multiplication of a matrix by a scalar, difference and
multiplication of matrices.

3.4.1 Addition of matrices

Suppose Fatima has two factories at places A and B. Each factory produces
sport

shoes for boys and girls in three different price categories labelled 1, 2 and
3. The

quantities produced by each factory are represented as matrices given
below:

Suppose Fatima wants to know the total production of sport shoes in each
price

category. Then the total production

In category 1 : for boys (80 + 90), for girls (60 + 50)

In category 2 : for boys (75 + 70), for girls (65 + 55)

In category 3 : for boys (90 + 75), for girls (85 + 75)

80 ☞ 90

60 ☞

✌

50✍

This can be represented in the matrix form as ✎75 70



65 55✏ .

☞

☞

✎

✏

✎

90 75

85 75✏

☞

☞

✑

✒
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This new matrix is the sum of the above two matrices. We observe that the
sum of

two matrices is a matrix obtained by adding the corresponding elements of
the given

matrices. Furthermore, the two matrices have to be of the same order.

a

a



a

b

b

b

11

12

13 ✁

✁

Thus, if A

is a 2 × 3 matrix and

11

12

13

B

is another

✂

✂

✄

a

a



a ☎

✄ b

b

b ☎

✆

21

22

23

✆

21

22

23 ✝

✝

a ✞ b

a ✞ b

a ✞ b

11

11



12

12

13

13 ✁

2×3 matrix. Then, we define A + B

.

✂

✄

a ✞ b

a

✞

b

a ✞ b ☎

✆

21

21

22

22

23



23 ✝

In general, if A = [ a ] and B = [ b ] are two matrices of the same order, say
m × n.

ij

ij

Then, the sum of the two matrices A and B is defined as a matrix C = [ c ]

, where

ij m × n

c = a + b , for all possible values of i and j.

ij

ij

ij

✏

2

5 1✑

✟

3 1 ✡1✠

Example 6 Given A



and B

✒

✓

, find A + B

☛

✔

1

☞

2

3

0✌

✒

2 3

✓

✕

✍

✎

✒



2✓

✖

✗

Since A, B are of the same order 2 × 3. Therefore, addition of A and B is
defined

and is given by

✏

2

3 1

5 1 1✑

✏

2

3 1

5

0✑

✘

✘

✕

✘

✘



A + B

✒

1✓

✒

1 ✓

✔

✔

✒

2

2

3 3

0

✓

✒

0



6

✓

✕

✘

✘

✒

2✓

✒

2✓

✖

✗

✖

✗

Note

✙

1. We emphasise that if A and B are not of the same order, then A + B is not

1

✦

2



3

✚

2

3

defined. For example if A

✛

, B

✧

then A + B is not defined.

★

,

✜

✢

1

0✣

1

✩



0 1✪

✤

✥

✫

✬

2. We may observe that addition of matrices is an example of binary
operation

on the set of matrices of the same order.

3.4.2 Multiplication of a matrix by a scalar

Now suppose that Fatima has doubled the production at a factory A in all
categories

(refer to 3.4.1).
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Previously quantities (in standard units) produced by factory A were

Revised quantities produced by factory A are as given below:

Boys

Girls

1 ✁2 80

2 60✂

2 ✄2 75



2 65☎

✄

☎

3 ✄2 90

2 85☎

✆

✝

160

✞

120✟

This can be represented in the matrix form as 150

✠

130✡ . We observe that

✠

✡

180

✠



170✡

☛

☞

the new matrix is obtained by multiplying each element of the previous
matrix by 2.

In general, we may define multiplication of a matrix by a scalar as follows:
if

A = [ a ]

is a matrix and k is a scalar, then k A is another matrix which is obtained

ij m × n

by multiplying each element of A by the scalar k.

In other words, k A = k [ a ]

= [ k ( a )]

, that is, ( i, j)th element of k A is ka

ij m × n

ij

m × n

ij

for all possible values of i and j.

✌

3



1 1.5✍

For example, if

A = ✎

✏

5

7

, then

✑3

✎

✏

✎

2

0

5 ✏

✒

✓

✌

3

1 1.5✍

✌



9

3

4.5✍

3A =

✎

✏

✎

✏

3

5

7

✑ 3

✔

3 5

21



9

✑

✎

✏

✎

✏

✎

2

0

5 ✏

✎

6

0

15 ✏

✒

✓

✒

✓

Negative of a matrix The negative of a matrix is denoted by – A. We
define



– A = (– 1) A.
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3

1✁

For example, let

A =

, then – A is given by

✂

5

x✄

☎

✆

✝

✟

3



1

✞

✠

✟

3

1

✞

– A = (– 1) A

( 1)

✠

✡

✞

✡

☛

5

x☞

☛



5

x☞

✞

✞

✌

✍

✌

✍

Difference of matrices If A = [ a ], B = [ b ] are two matrices of the same
order, ij

ij

say m × n, then difference A – B is defined as a matrix D = [ d ], where d =
a – b , ij

ij

ij

ij

for all value of i and j. In other words, D = A – B = A + (–1) B, that is sum
of the matrix A and the matrix – B.

1 2

3

3



1

✞

✟

✠

✟

3 ✠

Example 7 If A

, then find 2A – B.

✡

and B ✡

☛

2

3 1☞

☛

1 0



2☞

✞

✌

✍

✌

✍

Solution We have

1 2

3

3

☎

✁

1 3✁

2A – B = 2

☎

✂

2 3 1✄

✂

1 0



2✄

☎

✆

✝

✆

✝

2

4

6

☎ 3

1

3

☎

✁

✁

=

✎

✂

4



6

2✄

✂

1

0

2✄

☎

✆

✝

✆

✝

2 ☎ 3

4 ✎ 1 6 ☎ 3

☎

✁

1 5 3✁

=

✏

✂



4 1 6

0

2

2✄

✂

5

6

0✄

✎

✎

☎

✆

✝

✆

✝

3.4.3 Properties of matrix addition

The addition of matrices satisfy the following properties:

(i) Commutative Law If A = [ a ], B = [ b ] are matrices of the same order,
say

ij



ij

m × n, then A + B = B + A.

Now

A + B = [ a ] + [ b ] = [ a + b ]

ij

ij

ij

ij

= [ b + a ] (addition of numbers is commutative)

ij

ij

= ([ b ] + [ a ]) = B + A

ij

ij

(ii) Associative Law For any three matrices A = [ a ], B = [ b ], C = [ c ] of
the ij

ij

ij

same order, say m × n, (A + B) + C = A + (B + C).

Now

(A + B) + C = ([ a ] + [ b ]) + [ c ]



ij

ij

ij

= [ a + b ] + [ c ] = [( a + b ) + c ]

ij

ij

ij

ij

ij

ij

= [ a + ( b + c )]

(Why?)

ij

ij

ij

= [ a ] + [( b + c )] = [ a ] + ([ b ] + [ c ]) = A + (B + C) ij

ij

ij

ij

ij



ij
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(iii) Existence of additive identity Let A = [ a ] be an m × n matrix and ij

O be an m × n zero matrix, then A + O = O + A = A. In other words, O is the

 

additive identity for matrix addition.

(iv) The existence of additive inverse Let A = [ a ]

be any matrix, then we

ij m × n

have another matrix as – A = [– a ]

such that A + (– A) = (– A) + A= O. So

ij m × n

– A is the additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

If A = [ a ] and B = [ b ] be two matrices of the same order, say m × n, and k
and l are ij

ij

scalars, then

(i) k(A +B) = k A + k B, (ii) ( k + l)A = k A + l A (ii) k (A + B) = k ([ a ] + [
b ])

ij



ij

= k [ a + b ] = [ k ( a + b )] = [( k a ) + ( k b )]

ij

ij

ij

ij

ij

ij

= [ k a ] + [ k b ] = k [ a ] + k [ b ] = k A + k B

ij

ij

ij

ij

(iii) ( k + l ) A = ( k + l) [ a ]

ij

= [( k + l) a ] + [ k a ] + [ l a ] = k [ a ] + l [ a ] = k A + l A ij

ij

ij

ij



ij

✁

8

0 ✂

✁

2

2✂

Example 8 If A

✄

4

2☎ and B

✄

4



2 ☎ , then find the matrix X, such that

✆

✆

✄

☎

✄

☎

✄

3

6 ☎

✄

5 1 ☎

✝

✞

✝

✞

2A + 3X = 5B.

Solution We have 2A + 3X = 5B



or

2A + 3X – 2A = 5B – 2A

or

2A – 2A + 3X = 5B – 2A

(Matrix addition is commutative)

or

O + 3X = 5B – 2A

(– 2A is the additive inverse of 2A)

or

3X = 5B – 2A

(O is the additive identity)

1

or

X = (5B – 2A)

3

✟



10 ✡10

✡

☛

☞

☛

16

0

✠

✟

2 ✡

☞

☛

2☞

☛

8 0 ✠

☞

1



1 ✌

✍

or

X

✌

5

4

2

2 4

2 ✍

✎

✏

✎

✏

✎

✏

✎

✏

=

20



10

✡

✖

8

4

✑

✡

✡

3

✌

✍

✌

✍



3 ✎

✏

✎

✏

✎

✏

✎

✏

✌

✎

25

5 ✏

✎

6

12 ✍

✌

5 1



3 6 ✍

✏

✡

✡

✡

✎

✏

✎

✏

✡

✒

✓

✒

✓

✒

✓

✒

✓



✔

✕

✔

✕
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✟

✠

10 ✡

✟

☛

2

☞

10 16

10

3

✂

6



10

✁

✂

0✄

✄

☛

☞

1

1

14

=

☎

20 8

10

4 ✆ = ☎ 12 14 ✆ = ☛ 4

☞

✁

3 ☎

✆



3 ☎

✆

☛

3 ☞

☎

31

7

☎

25 6 5 12 ✆

✆

☛

☞

✝

✞

✝

✞

31

✟



✟ 7

☛

☞

☛

3

3 ☞

✌

✍

✎

3

6

✎

5

2✏

Example 9 Find X and Y, if X

and X

.

✗



Y

✏

✑

Y ✒

✒

✓

0

9✔

✓

0

1✔

✗

✕

✖

✕

✖

✎ 5

2✏

✎

3



6

Solution We have X

.

✗

✑

Y ✑ X

Y

✏

✘

✙

✘

✙

✒

✑

✓ 0

9✔

✓

0



1✔

✗

✕

✖

✕

✖

✎ 8

8

✎

8 8

or

(X + X) + (Y – Y) =

✏

2X

✏

✚

✒

✓

0 8✔

✓ 0



8✔

✕

✖

✕

✖

1 ✎8 8✏

✎

4

4

or

X =

✏

✒

2 ✓0 8✔

✓

0



4✔

✕

✖

✕

✖

✛

5

2✜

✛

3

6

Also

(X + Y) – (X – Y) =

✜

✢

✣

0

9✤

✣

0



1✤

✢

✥

✦

✥

✦

5

✛

2

4

✢

3

2 ✢

✢

✛

6

or

(X – X) + (Y + Y) =

✜



2Y

✜

★

✚

✣

0

9 1✤

✣

0

10 ✤

✧

✥

✦

✥

✦

1 ✛2

✢

4✜

✛ 1



2

✢

or

Y =

✜

★

2 ✣0

10✤

✣ 0

5✤

✥

✦

✥

✦

Example 10 Find the values of x and y from the following equation:

x

5

3

✎

7



6

✗

✎

✏

✎

4

2

✏

✏

=

✑

✓

7

y

3✔

1

✓

2✔

15

✓



14✔

✗

✕

✖

✕

✖

✕

✖

Solution We have

x

5

3

2 x

10

3 ✗

✎

✏

✎

4✏

✎



7

6

✎

7

6

✢

✛

✜

✛

4✜

✏

2

✏

✧

=

✚

✑

✒

✣

7



y

3✤

1

✣

2 ✤

15

✓

14✔

✓

✔

✓

✔

✓

✔

✢

14

2 y ✗ 6

1

2



15 14

✥

✦

✥

✦

✕

✖

✕

✖

✕

✖

✕

✖
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2 x

3

10

✂

2 x

3



6

✄

✂

7

6

✁

✄

✂

7

6

✂

4 ✄

or

=

✄

✠

✟

☎

14 1



2 y

6

2✆

☎

✆

☎

✆

☎

✆

15

2 y ✁ 4

15 14

✁



15 14

✝

✞

✝

✞

✝

✞

✝

✞

or

2 x + 3 = 7

and

2 y – 4 = 14

(Why?)

or

2 x = 7 – 3

and



2 y = 18

4

18

or

x =

and

y =

2

2

i.e.

x = 2

and

y = 9.

Example 11 Two farmers Ramkishan and Gurcharan Singh cultivates only
three

varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of
these

varieties of rice by both the farmers in the month of September and October
are given

by the following matrices A and B.

(i) Find the combined sales in September and October for each farmer in
each



variety.

(ii) Find the decrease in sales from September to October.

(iii) If both farmers receive 2% profit on gross sales, compute the profit for
each

farmer and for each variety sold in October.

Solution

(i) Combined sales in September and October for each farmer in each
variety is

given by

72
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(ii) Change in sales from September to October is given by

2

(iii) 2% of B =

B = 0.02 × B

100

= 0.02

=

Thus, in October Ramkishan receives Rs 100, Rs 200 and Rs 120 as profit
in the

sale of each variety of rice, respectively, and Grucharan Singh receives
profit of Rs



400, Rs 200 and Rs 200 in the sale of each variety of rice, respectively.

3.4.5 Multiplication of matrices

Suppose Meera and Nadeem are two friends. Meera wants to buy 2 pens
and 5 story

books, while Nadeem needs 8 pens and 10 story books. They both go to a
shop to

enquire about the rates which are quoted as follows:

Pen – Rs 5 each, story book – Rs 50 each.

How much money does each need to spend? Clearly, Meera needs Rs (5 × 2
+ 50 × 5)

that is Rs 260, while Nadeem needs (8 × 5 + 50 × 10) Rs, that is Rs 540. In
terms of

matrix representation, we can write the above information as follows:

Requirements

Prices per piece (in Rupees) Money needed (in Rupees)

5 ✞ 2 ✟ 5✞

✁

50 ✂

✁

260

✁



5

✁

2

5 ✂

✂

✂

✠

✄

8 10☎

✄

50☎

✄

8 5 10 50☎

✄



540☎

✞

✟

✞

✆

✝

✆

✝

✆

✝

✆

✝

Suppose that they enquire about the rates from another shop, quoted as
follows:

pen – Rs 4 each, story book – Rs 40 each.

Now, the money required by Meera and Nadeem to make purchases will be

respectively Rs (4 × 2 + 40 × 5) = Rs 208 and Rs (8 × 4 + 10 × 40) = Rs
432
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Again, the above information can be represented as follows:

Requirements

Prices per piece (in Rupees) Money needed (in Rupees)

2

5

4

4 ✝ 2 ✞ 40 ✝ 5 ✁

208

✁

✁

✁

✟

✂

8 10✄

✂

40✄

✂

8 4



10 4 0✄

✂

432✄

✝

✞

✝

☎

✆

☎

✆

☎

✆

☎

✆

Now, the information in both the cases can be combined and expressed in
terms of

matrices as follows:

Requirements Prices per piece (in Rupees)

Money needed (in Rupees)



2

5

5

4

5 ✝ 2 ✞ 5✝ 50

4 ✝ 2 ✞ 40 ✝ 5

✁

✁

✁

✂

8 10✄

✂ 50

40✄

✂

8 5

10 5 0 8 4



10 4 0✄

✝

✞

✝

✝

✞

✝

☎

✆

☎

✆

☎

✆

✠

260

208✡



= ☛540 432☞

✌

✍

The above is an example of multiplication of matrices. We observe that, for

multiplication of two matrices A and B, the number of columns in A should
be equal to

the number of rows in B. Furthermore for getting the elements of the
product matrix,

we take rows of A and columns of B, multiply them elementwise and take
the sum.

Formally, we define multiplication of matrices as follows:

The product of two matrices A and B is defined if the number of columns of
A is

equal to the number of rows of B. Let A = [ a ] be an m × n matrix and B = [
b ] be an ij

jk

n × p matrix. Then the product of the matrices A and B is the matrix C of
order m × p.

To get the ( i, k)th element c of the matrix C, we take the i th row of A and k
th column ik

of B, multiply them elementwise and take the sum of all these products. In
other words,

if A = [ a ]

, B = [ b ]



, then the i th row of A is [ a a ... a ] and the k th column of ij m × n

jk n × p

i 1

i 2

in

✎

b 1 k ✏

✑ b

✒

n

2 k

✑

✒

B is

, then c = a b + a b + a b + ... + a b =

a b

.

✖

ij

jk



ik

i 1

1 k

i 2

2 k

i 3 3 k

in

nk

✑

✒

j ✕1

✑

✒

✑

b ✒

✓

nk ✔

The matrix C = [ c ]

is the product of A and B.



ik m × p

✘

2

7 ✙

1 ✗1 2

For example, if C

✁

and D

✚

1

1✛ , then the product CD is defined

✜

✢

✟

✂

0



3 4 ✄

✚

✛

☎

✆

✚

5

4✛

✢

✣

✤
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2

7

1

1 2

✁

✂

✁



and is given by CD

✄

1

1 ☎ . This is a 2 × 2 matrix in which each

✆

✂

✄

0

3 4☎ ✄

☎

✝

✞

✄

5

4☎

✂

✝

✞



entry is the sum of the products across some row of C with the
corresponding entries

down some column of D. These four computations are

13

✟

✠

2 ✡

Thus CD ☛ 17

☞

13✌

✟

✍

✎

✠

6

9✡

✠

2



6

0

Example 12 Find AB, if A

and B

✡

.

☛

☛

☞

2

3✌

☞

7

9 8✌

✍

✎

✍

✎

Solution The matrix A has 2 columns which is equal to the number of rows
of B.



Hence AB is defined. Now

6(2) ✏ 9(7)

6(6) ✏ 9(9)

6(0) ✏

✑

9(8)

AB

✒

✓

✔

2(2)

3(7)

2(6)

3(9)

2(0)



3(8)✕

✏

✏

✏

✖

✗

12

✑

75 117

72

✘

63 36 ✘ 81 0 ✘

✠

72✡

✒

=

=

☞

4



21 12

27 0

24✌

✔

25

39

24✕

✘

✘

✘

✍

✎

✖

✗
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Remark If AB is defined, then BA need not be defined. In the above
example, AB is

defined but BA is not defined because B has 3 column while A has only 2
(and not 3)

rows. If A, B are, respectively m × n, k × l matrices, then both AB and BA
are defined if and only if n = k and l = m. In particular, if both A and B are
square matrices of the same order, then both AB and BA are defined.



Non-commutativity of multiplication of matrices

Now, we shall see by an example that even if AB and BA are both defined,
it is not

necessary that AB = BA.

2 3

1

2

3

✁

✂

Example 13 If A

✁

and B

✄

4 5☎ , then find AB, BA. Show that

✆

✆

✄

4



2 5 ☎

✄

☎

✂

✝

✞

✄

2 1☎

✝

✞

AB BA.

✟

Solution Since A is a 2 × 3 matrix and B is 3 × 2 matrix. Hence AB and BA
are both

defined and are matrices of order 2 × 2 and 3 × 3, respectively. Note that

✠

2 3

2 ✑ 8 ✒ 6



3 ✑ 10 ✒ 3

0

✑

✓

✔

✓

4 ✔

✠

1

2

3

✡

☛

AB

✡

☞



4 5✌ =

✕

✍

✖

✗

✖

✗

☞

4

2

5 ✌

✑ 8 ✒ 8 ✒ 10

✑ 12 ✒ 10 ✒ 5

10



3

☞

✌

☛

✘

✙

✘

✙

✎

✏

☞

2 1✌

✎

✏

2 3

2

10

☛

✠



2

21

✂

12

✂

4 ✚ 6

6 ✚

✡

✁

15

1

2 3

✁

✂

and

BA



4 5

✁

☞

✌

✄

☎

✄

4 20

8 10 12

25☎ ✍

16

☛

2



37

✆

✆

✂

✂

✚

✚

✄

4

2

5 ☎

☞

✌

✄

☎

✄

☎

✂



2 1 ✝

✞

☞

2

☛

2

☛

11✌

✄

☎

✄

2

4

4

2



6 5 ☎

✂

✂

✚

✚

✎

✏

✝

✞

✝

✞

Clearly AB BA

✟

In the above example both AB and BA are of different order and so AB BA.
But

✟

one may think that perhaps AB and BA could be the same if they were of
the same



order. But it is not so, here we give an example to show that even if AB and
BA are of

same order they may not be same.

✛

0

1

✛

0

1

✛

1

0

Example 14 If A

✜

and B

✜

, then AB

✜



.

✢

✢

✢

✣

0

1✤

✣

1

0✤

✣

✥ 1

0✤

✥

✦

✧

✦

✧

✦

✧



0

✑

✓

1

and

BA

✔

. Clearly AB BA.

✕

✟

✖ 1

0✗

✘

✙

Thus matrix multiplication is not commutative.
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Note This does not mean that AB BA for every pair of matrices A, B for

☎



which AB and BA, are defined. For instance,

✁

3

0

✁ 1

0✂

✁

3

0✂

✂

If A

, then AB = BA =

✄

, B ✄

✆

0

2✝

✆

0



4✝

✆

0

8✝

✞

✟

✞

✟

✞

✟

Observe that multiplication of diagonal matrices of same order will be
commutative.

Zero matrix as the product of two non zero matrices

We know that, for real numbers a, b if ab = 0, then either a = 0 or b = 0.
This need not be true for matrices, we will observe this through an example.

0

✡



3

5

✠

☛

✡

1

Example 15 Find AB, if A

☛

and B

.

☞

☞

✌

✍

✌

0

2✍

0



0

✎

✏

✎

✏

0 ✑

✁

1✂ ✁3

5✂

✁

0

0✂

Solution We have AB

.

✄

✄

✆

0

2✝ ✆0



0✝

✆

0

0✝

✞

✟

✞

✟

✞

✟

Thus, if the product of two matrices is a zero matrix, it is not necessary that
one of

the matrices is a zero matrix.

3.4.6 Properties of multiplication of matrices

The multiplication of matrices possesses the following properties, which we
state without

proof.

1. The associative law For any three matrices A, B and C. We have



(AB) C = A (BC), whenever both sides of the equality are defined.

2. The distributive law For three matrices A, B and C.

(i) A (B+C) = AB + AC

(ii) (A+B) C = AC + BC, whenever both sides of equality are defined.

3. The existence of multiplicative identity For every square matrix A,
there

exist an identity matrix of same order such that IA = AI = A.

Now, we shall verify these properties by examples.

1

1

✒

✓

1✔

✓

1 3✔

1 2 3

✒

✓

4✔

Example 16 If A

✕



2

0

3✖ , B

✕

0 2✖

, find

✗

✗

and C ✗

✕

2

0

2 1✖

✕

✖

✕

✖

✒

3

1



2

1 4

✘

✙

✕

✖

✕

✖

✒

✒

✘

✙

✘

✙

A(BC), (AB)C and show that (AB)C = A(BC).
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1

1

1

1 3



1 ✁ 0 ✁1 3 ✁

✂

✄

✂

✄

✂

2

4 ✄

✂

2 1 ✄

Solution We have AB ☎2

0

3✆ ☎ 0 2✆

☎

2

0 3 6

0 12✆

☎



1 18✆

✝

✝

✁

✁

✁

✝

☎

✆

☎

✆

☎

✆

☎

✆

☎

3

1

2✆ ☎ 1 4✆



☎ 3

0

2 9

2 8 ✆

☎

1 15✆

✁

✁

✞

✟

✞

✟

✞

✟

✞

✟

☛



2 1 ☞

2 ✠ 2

4 ✠ 0

6 ✡ 2

✡

8 ✠

☛

1

1

2

3 ✡

☛

4

☞

(AB) (C)

1 18

☞

✌



1 36

2

0

3 36



4 18✍

✌

✍

✎

✡

✎

✡

✠

✡

✠

✡

✡

✠

✌

✌

✍

2



0

2

✡

1✍

✌

✍

✌

1 15 ✏

✑

✍

✌

1✠ 30

2 ✠ 0



3 ✡ 30 ✡ 4 ✠ 15✍

✏

✑

✏

✑

✂

4

4

4

7 ✄

☎ 35

2

39

22✆

= ☎

✆

☎ 31

2

27



11✆

✞

✟

☛

1 3☞

1✠ 6

2 ✠ 0

3 ✡ 6

4

✡

✠

☛

3

1

☛

2

3



4

☞

Now

BC =

✡

0 2

☞

✌

0

4

0

0

0 4

0



2✍

✌

✍

✎

✠

✠

✡

✠

✌

✌

✍

2

0 ✡2

1✍

✌

✍

✌



✡ 1

4 ✏

✑

✍

✌

1

✡

✠

8

2

✡

✠

0

✡ 3 ✡ 8



4 ✠ 4✍

✏

✑

✏

✑

✂ 7

2

3

1 ✄

☎

4

0

4

2 ✆

= ☎

✆

☎ 7

2

11



8 ✆

✞

✟

☛ 1

1

1

✡

☞

☛

7

2

✡ 3

1

✡

☞

Therefore

A(BC) = 2

0



3

✌

4

0

4

2 ✍

✌

✍

✡

✌

✍

✌

✍

✌

3 ✡1

2 ✍ ✌7

2

✡



✡11

8 ✍

✏

✑

✏

✑

7 ✁ 4 7

2 ✁ 0 ✁ 2

3 4 ✁ 11

1 ✁

✂

2 8 ✄

= 1

☎

4

0

21 4

0 6

6



0 33

2

0

24✆

✁

✁

✁

✁

✁

✁

☎

✆

☎

21 4 14

6

0

4

9

4

22



3 2 16 ✆

✁

✁

✁

✁

✞

✟

4

4

4

✡

☛

7 ☞

✌ 35

✡ 2

39

✡



22✍

=

. Clearly, (AB) C = A (BC)

✌

✍

✌ 31

2

27

11✍

✡

✏

✑
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0

6

7✁

0

1



1✁

2 ✁

Example 17 If A ✂ 6

0

8✄ , B

✂

1

0

2✄ , C

✂



2 ✄

☎

✆

☎

☎

✆

✂

✄

✂

✄

✂

✄

✂

7

8

0✄

✂

1

2



0✄

✂

3 ✄

✆

✝

✞

✝

✞

✝

✞

Calculate AC, BC and (A + B)C. Also, verify that (A + B)C = AC + BC

✟

0

7

8 ✠

Solution Now, A + B ✡ 5



0

10☛

☞

✌

✡

☛

✡

8

6

0 ☛

✌

✍

✎

✟

0

7

8 ✠ ✟ 2 ✠

✟



0

✏

✌

14

24 ✠

✟10 ✠

So

(A + B) C = ✡ 5

0

10☛ ✡ 2 ☛

✡

10 ✏ 0 ✏ 30 ☛

✡

☞



20☛

✌

✌

☞

✌

✡

☛

✡

☛

✡

☛

✡

☛

✡

8

6



0 ☛ ✡ 3 ☛

✡

16 ✏ 12 ✏ 0 ☛

✡

28☛

✌

✍

✎

✍

✎

✍

✎

✍

✎

0

6

7

2



0 ✆12 ✑

✁

✁

21 ✁

9 ✁

Further

AC = ✂ 6

0

8✄ ✂ 2 ✄

✂

12

0 24 ✄

1

✂



2✄

✆

✆

☎

✆

✑

✑

☎

✂

✄

✂

✄

✂

✄

✂

✄

✂

7

8



0✄ ✂ 3 ✄

✂

14 16 0 ✄

✂ 30✄

✆

✑

✑

✝

✞

✝

✞

✝

✞

✝

✞

✟



0

1

1✠ ✟ 2 ✠

✟

0

✏

✌

2

3✠

✟

1 ✠

✡

1

0



2☛ ✡ 2 ☛

✡

✏

✏

✌

☞

2

0

6☛

✡

☞

8 ☛

and



BC = ✡

☛

✡

☛

✡

☛

✡

☛

✡

1

2

0☛ ✡ 3 ☛

✡

2

4 ✏ 0☛

✡

✌



2 ☛

✌

✍

✎

✍

✎

✍

✎

✍

✎

✟

9 ✠

✟

1 ✠

1

✟

0✠



So

AC + BC = 1

✡

2☛

✡

8 ☛

✡

20☛

✏

☞

✡

☛

✡

☛

✡

☛



✡ 30☛

✡

2 ☛

✡

28☛

✌

✍

✎

✍

✎

✍

✎

Clearly,

(A + B) C = AC + BC

1

2

3✁

Example 18 If A ✂3

2



1✄ , then show that A3 – 23A – 40 I = O

☎

✆

✂

✄

✂

4

2

1✄

✝

✞

1

✟

2

3✠ ✟1

2

3✠



1

✟

9

4

8 ✠

Solution We have

2

A

A.A

✡ 3

2

1☛ ✡3

2

1☛

1

✡

12



8 ☛

☞

☞

✌

✌

☞

✡

☛

✡

☛

✡

☛

✡ 4

2

1☛ ✡4

2

1☛



1

✡

4

6 15 ☛

✍

✎

✍

✎

✍

✎
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1

2

3✁ 19

4

8 ✁

63

46

69✁



So

A3 = A A2 = ✂3

2

1✄ 1

✂

12

8 ✄

✂

69

6



23✄

☎

✆

☎

✂

✄

✂

✄

✂

✄

✂

4

2

1✄ 14

✂

6 15 ✄

✂

92

46



63✄

✝

✞

✝

✞

✝

✞

Now

✟

63

46

69✠

✟ 1

2

3✠



✟ 1

0

0✠

A3 – 23A – 40I = ✡69

6

23☛ – 23✡3

2

1☛ – 40 ✡0



1 0☛

☞

☞

✡

☛

✡

☛

✡

☛

✡

92

46

63☛

✡

4

2

1☛

✡



0

0 1☛

✌

✍

✌

✍

✌

✍

63

46

69

☞ 23

☞ 46



☞ 69

☞

✟

✠

✟

✠

✟

40

0

0 ✠

= ✡69

6

23☛

✡

69

46



23☛

✡

0

40

0 ☛

☞

✎

☞

☞

✎

☞

✡

☛

✡

☛

✡

☛

✡



92

46

63☛

✡

92

46

23☛

✡

0

0



40☛

☞

☞

☞

☞

✌

✍

✌

✍

✌

✍

63 ☎ 23 ☎ 40

46 ☎ 46 ✏ 0

69 ☎ 69 ✏ 0 ✁

= ✂69 69 0

6

46



40 23 23 0 ✄

☎

✏

☎

✏

☎

☎

✏

✂

✄

✂

92 92 0

46

46

0



63 23 40✄

☎

✏

☎

✏

☎

☎

✝

✞

✟

0

0

0✠

= ✡0

0



0☛ ✑ O

✡

☛

✡

0

0

0☛

✌

✍

Example 19 In a legislative assembly election, a political group hired a
public relations

firm to promote its candidate in three ways: telephone, house calls, and
letters. The

cost per contact (in paise) is given in matrix A as

Cost per contact

✒

40

✓



Telephone

✔

✕

A =

100

Housecall

✔

✕

✔

50

✕

Letter

✖

✗

The number of contacts of each type made in two cities X and Y is given by

Telephone

Housecall

Letter

1000

500



5000 ✘

✙

✚

X

B

. Find the total amount spent by the group in the two

✛

✜ 3000

1000 10, 000✢ ✘ Y

✣

✤

cities X and Y.
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Solution We have

40,000

50,000

250, 000 ✁

✂

✄



X

BA = 120,

☎

000 + 100,000 +500,000 ✆ ✁ Y

✝

✞

340, 000 ✁

✂

✄

X

= ☎720,000✆ ✁ Y

✝

✞

So the total amount spent by the group in the two cities is 340,000 paise and

720,000 paise, i.e., Rs 3400 and Rs 7200, respectively.

EXERCISE 3.2

2

4



1

3

✟

✂

✄

✂

✄

✂

2

5✄

1. Let A ✠

, B ✠

, C ✠

☎ 3

2✆

☎

2



5✆

☎

3

4✆

✟

✝

✞

✝

✞

✝

✞

Find each of the following:

(i) A + B

(ii) A – B

(iii) 3A – C

(iv) AB

(v) BA



2. Compute the following:

2

2

2

2

✡

a

b

b

c ☛

☞

☞

✡

2 ab

2 bc ☛

✂

a

b ✄

✂



a

b✄

(i)

(ii)

☞

✌

✍

✌

✍

☎

b

a✆

☎

b

a✆

2

2

2

2

a



c

a

b

2

✎

ac

2

✎

☞

☞



ab

✟

✝

✞

✝

✞

✏

✑

✌

✍

✏

✑

1

✒

4

✒

✓

6✔



1

✓

2

7

6✔

2

2

2

2

✚

cos x

sin x ✛

✚

sin x

cos x✛

(iii) ✕ 8

5

16 ✖

✕

8



0

5✖ (iv)

✗

✜

✢

✣

✢

✣

✕

✖

✕

✖

2

2

2

2

✢

sin x

cos x✣

✢



cos x

sin x ✣

✤

✥

✤

✥

✕

2

8

5✖

✕

3

2

4✖

✘

✙

✘

✙

3. Compute the indicated products.

✦



1✧

a

b

a

b

1 ✟

✂

2 ✄ 1

✂

2

3

★

✩

✟

✂

✄

✂

✄



2

✄

(i)

(ii)

[2 3 4]

(iii)

★

✩

☎

b

a✆ ☎ b

a ✆

☎

2

3 ✆ ☎2



3 1✆

✟

✝

✞

✝

✞

★

3

✝

✞

✝

✞

✩

✪

✫

2



3

4

1

✦

2 1

✬

✧

✦

✧

✦

3

5✧

✦

1

0 1✧

(iv)

★

✩

★

3



4

5✩ ★0

2

4✩

(v)

3 2

★

✬ 1

2 1✩

★

✩

★

✩

★

✩



1 1 ✪

✫

★

✩

✬

★

4

5

6✩ ★3

0

5✩

✪

✫

✪

✫

✪

✫

2 ✒

✓



3

✓

3

1 3

✔

✒

(vi)

✔

✕ 1

0✖

✕

1

0

2✖ ✕

✖

✒

✘

✙

✕

3



1✖

✘

✙
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✁ 1

2

3✂

✁

3

1

2✂

✁

4

1

2✂

4. If A

✄ 5

0

2☎ , B

✄



4

2

5☎ and C

✄

0

3

2☎ , then compute

✆

✆

✆

✄

☎

✄

☎

✄

☎

✄ 1

1

1 ☎

✄



2

0

3☎

✄

1

2

3☎

✝

✞

✝

✞

✝

✞

(A+B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.

✟

2



5✠

✟

2

3

1

1 ✠

✡

3

3☛

✡

5

5

☛

✡

☛

✡

☛



1

2

4

1

2

4

5. If A

✡

☛

and B

✡

☛

, then compute 3A – 5B.

☞

☞

✡

3

3



3☛

✡

5

5

5 ☛

✡

7

2☛

✡

7

6

2 ☛

✡

2

☛

✡

☛

✡



3

3☛

✡

5

5

5 ☛

✌

✍

✌

✍

cos ✎

sin ✎

sin ✎

✏

cos ✎

✑

✒

✑

✒



6. Simplify cos✎

+ sin✎

✓

sin

cos ✔

✓

cos

sin ✔

✏

✎

✎

✎

✎

✕

✖

✕

✖

7. Find X and Y, if

✑

7



0✒

✑

3

0

(i) X + Y

and X – Y



✒

✗

✗

✓

2

5✔

✓

0

3✔

✕

✖

✕

✖

2

3

2

✏

✑

✒

✑



2

(ii) 2X + 3Y

and 3X

2Y

✒

✗

✘

✗

✓

4

0✔

✓

1

5✔

✏

✕

✖

✕

✖

✙



1

0

✙

3

2✚

✚

8. Find X, if Y =

and 2X + Y =

✛

1

4✜

✛

3

2✜

✤

✢

✣

✢

✣

✙



1

3✚

✙

y

0✚

✙

5

6

9.

✚

Find x and y, if 2

✥

✦

✛

0

x ✜

✛

1

2✜

✛



1

8✜

✢

✣

✢

✣

✢

✣

x

z

1

1

✤

✙

✚

✙

✚

✙

3

5



10.

✚

Solve the equation for x, y, z and t, if 2

✥

3

✦

3

✛

y

t ✜

✛

0

2✜

✛

4



6✜

✢

✣

✢

✣

✢

✣

2

✏

✑

✒

✑

1✒

1

✑

0✒

11. If x

, find the values of x and y.

✘



y

✗

✓

3✔

✓

1 ✔

✓

5 ✔

✕

✖

✕

✖

✕

✖

x

y

x 6

4



x ✘

✑

✒

✑

✒

✑

y

12. Given 3

✒

, find the values of x, y, z and w.

✗

✘

✓

z

w✔

✓

1 2 w✔

✓

z ✘ w



3 ✔

✏

✕

✖

✕

✖

✕

✖
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✁

cos x

sin x

0✂

13. If F ( x) ✄sin x

cos x



0☎ , show that F( x) F( y) = F( x + y).

✆

✄

☎

✄

0

0

1☎

✝

✞

14. Show that

5

✟ 1

2

1

2

1

5



1

✟

✠

✡

✠

✡

✠

✡

✠

✡

(i)

☛

☞

6

7✌ ☞3



4✌

☞

3

4✌ ☞6

7✌

✍

✎

✍

✎

✍

✎

✍

✎

1

2

3

✏1

1

0



1

✏

✑

✒

✑

✒

✑

1

0✒ ✑1

2

3✒

(ii) ✓0

1

0✔ ✓ 0

1

1✔

✓

0

1

✏



1✔ ✓0

1

0✔

✏

✕

✓

✔

✓

✔

✓

✔

✓

✔

✓

1

1

0✔ ✓ 2

3

4✔

✓



2

3

4✔ ✓1

1

0✔

✖

✗

✖

✗

✖

✗

✖

✗

✑

2

0

1✒

15. Find A2 – 5A + 6I, if A

✓

2



1

3✔

✘

✓

✔

✓

1

1

0✔

✏

✖

✗

1

✁

0

2✂

16. If A

✄ 0

2



1☎ , prove that A3 – 6A2 + 7A + 2I = 0

✆

✄

☎

✄ 2

0

3☎

✝

✞

3

✟

✠

2✡

✠ 1

0✡

17. If A



, find k so that A2 = k A – 2I

✙

and I=

☞ 4

2✌

☞ 0

1✌

✟

✍

✎

✍

✎

0

tan ✚

✛

✜

✢

✣

2 ✤



18. If A

and I is the identity matrix of order 2, show that

✥

✣

✤

tan ✚

✣

0

✤

✣

2

✤

✦

✧

cos

✟

★



sin ★

✠

✡

I + A = (I – A) ☞ sin

cos ✌

★

★

✍

✎

19. A trust fund has Rs 30,000 that must be invested in two different types
of bonds.

The first bond pays 5% interest per year, and the second bond pays 7%
interest

per year. Using matrix multiplication, determine how to divide Rs 30,000
among

the two types of bonds. If the trust fund must obtain an annual total interest
of:

(a) Rs 1800

(b) Rs 2000
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20. The bookshop of a particular school has 10 dozen chemistry books, 8
dozen

physics books, 10 dozen economics books. Their selling prices are Rs 80,
Rs 60

and Rs 40 each respectively. Find the total amount the bookshop will
receive

from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and
p × k, respectively. Choose the correct answer in Exercises 21 and 22.

21. The restriction on n, k and p so that PY + WY will be defined are:

(A) k = 3, p = n

(B) k is arbitrary, p = 2

(C) p is arbitrary, k = 3

(D) k = 2, p = 3

22. If n = p, then the order of the matrix 7X – 5Z is:

(A) p × 2

(B) 2 × n

(C) n × 3

(D) p × n

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of a matrix and special types
of matrices



such as symmetric and skew symmetric matrices.

Definition 3 If A = [ a ] be an m × n matrix, then the matrix obtained by
interchanging ij

the rows and columns of A is called the transpose of A. Transpose of the
matrix A is

denoted by A or (AT). In other words, if A = [ a ]

, then A = [ a ]

. For example,

✝

ij m × n

✝

ji n × m

✁

3

5✂

✁

3

3

0✂



if A

✄

3

1☎

, then A

✄

☎

✆

✞

✆

✄

☎

✟ 1

✄

5 1

☎

✄



0 ✟1☎

✄

✠

5 ☎✡2 3

✄

☎

✠

5 ✡3 2

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without
proof. These

may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have

(i) (A ) = A,



(ii) ( k A) = k A (where k is any constant)

✝

✝

✝

✝

(iii) (A + B) = A + B

(iv) (A B) = B A

✝

✝

✝

✝

✝

✝

☛ 3

3

2☞



2

✌

☛

1 2☞

Example 20 If A

, verify that

✍

and B ✍

✎

✏

4

2

0

1

✎

2



4✏

✑

✒

✑

✒

(i) (A ) = A,

(ii) (A + B) = A + B ,

✝

✝

✝

✝

✝

(iii) ( k B) = k B , where k is any constant.

✝

✝
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Solution

(i) We have

✂

3 4✄

✂

3

3

2✄

✂

3

3

2✄

☎

✆

A =

A

3 2



A ✝

✝

✝

✞

✟

✞

✟

✟

A

✁

☎

4

2

0✆

☎

4

2



0✆

☎

✆

✠

✡

2 0

✠

✡

☎

✆

✠

✡

Thus

(A ) = A

☛

☛



(ii) We have

☞

2

1 2

☞

✌

5

3 ✒1 4✌

✒

☞ 3

3

2✌

A =

B =

✓

A ✔ B ✕ ✍

✎

✍

✎

,



4

2

0

1

✍

2 4 ✎

✏

✑

5

4

4

✏

✑

✏

✑

✂

5

5✄

Therefore



(A + B) = ☎ 3 ✖1 4✆

☛

☎

✆

☎

4

4✆

✠

✡

✗

3 4✘

✗

2 1✘

✙

✚

✙

✚

Now

A =



3 2 , B✛ ✜ ✢1 2 ,

✙

✚

☛

✙

✚

✙

2 0✚

✙

2 4✚

✣

✤

✣

✤

✂

5

5✄

☎

✆

So



A + B =

3 ✖1 4

☛

☛

☎

✆

☎

4

4✆

✠

✡

Thus

(A + B) = A + B

☛

☛

☛

(iii) We have

2

✥ 1



2

2 k

✥

✦

✧

✦

k

2 k

k B = k

✧

★

1

✩

2 4 ✪

✩

k

2 k



4 k ✪

✫

✬

✫

✬

✭

2 k k ✮

✭

2 1✮

Then

( k B) = ✯ k 2 k ✰

k ✯ 1 2✰

B



k ✱

✲

✳

✲

✳

☛

✯

✰

✯

✰

✯

2 k 4 k ✰

✯

2 4✰

✴

✵

✴

✵

Thus



( k B) = k B

☛

☛
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✂

✄

2☎

Example 21 If A

✆

4 ✝

, verify that (AB) = B A .

✞

, B ✞ 1 3



6

✂

✡

✡

✡

✁

✆

✝

✆

5 ✝

✟

✠

Solution We have

✌

✍

2✎

✏



4 ✑ , B

✌

✒

1 3

6

A =

☛

☞

✏

✑

✏

5 ✑

✓

✔

✌ 2

✌

✍

6



12 ✎

✌

✍

2✎

then

AB =

✏

✑

✏

4 ✑ 1 3

= 4

12

✌ 24



✌ 6

✕

✖

✏

✑

✏

✑

✏

5

15

30✑

✌

✏

5 ✑

✓

✔

✓

✔

✍

1 ✎



Now

A = [–2 4 5] , B

✏

✗

✒

3 ✑

✡

✏

✑

✏

6 ✑

✌

✓

✔

1



2

✂

✄

☎

✄

4

5 ☎

B A = ✆ 3 ✝

2

4

5

✆

6

12

15✝



(AB)✚

✂

✞

✂

✞

✡

✡

✘

✙

✆

✝

✆

✝

✆

6 ✝

✆ 12

24



30✝

✂

✂

✂

✟

✠

✟

✠

Clearly

(AB) = B A

✡

✡

✡

3.6 Symmetric and Skew Symmetric Matrices

Definition 4 A square matrix A = [ a ] is said to be symmetric if A = A, that
is, ij

✡



[ a ] = [ a ] for all possible values of i and j.

ij

ji

✛

3

2

3 ✜

For example A

✢

2

1.5

1 ✣ is a symmetric matrix as A = A

✡

✤

✥

✥

✢

✣

✢



3

1

1 ✣

✥

✦

✧

Definition 5 A square matrix A = [ a ] is said to be skew symmetric matrix if

ij

A = – A, that is a = – a for all possible values of i and j. Now, if we put i = j,
we

✡

ji

ij

have a = – a . Therefore 2 a = 0 or a = 0 for all i’s.

ii

ii

ii

ii

This means that all the diagonal elements of a skew symmetric matrix are
zero.
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0

e

f ✁

For example, the matrix B ✂ e

0

g ✄ is a skew symmetric matrix as B = –B

✟

☎

✆

✂

✄

✂

f

g



0 ✄

✆

✆

✝

✞

Now, we are going to prove some results of symmetric and skew-symmetric

matrices.

Theorem 1 For any square matrix A with real number entries, A + A is a
symmetric

✟

matrix and A – A is a skew symmetric matrix.

✟

Proof Let B = A + A , then

✟



B = (A + A )

✟

✟

✟

= A + (A ) (as (A + B) = A + B )

✟

✟

✟

✟

✟

✟

= A + A (as (A ) = A)

✟

✟

✟



= A + A (as A + B = B + A)

✟

= B

Therefore

B = A + A is a symmetric matrix

✟

Now let

C = A – A✟

C = (A – A ) = A – (A ) (Why?)

✟

✟

✟

✟

✟

✟



= A – A (Why?)

✟

= – (A – A ) = – C

✟

Therefore

C = A – A is a skew symmetric matrix.

✟

Theorem 2 Any square matrix can be expressed as the sum of a symmetric
and a

skew symmetric matrix.

Proof Let A be a square matrix, then we can write

1

1

A

(A

A )

✠

(A



A )

✠

✡

☛

☛

☞

2

2

From the Theorem 1, we know that (A + A ) is a symmetric matrix and (A –
A ) is

✟

✟

1

a skew symmetric matrix. Since for any matrix A, ( k A) = k A , it follows
that

(A



A )

✠

☛

✟

✟

2

1

is symmetric matrix and

(A

A ) is skew symmetric matrix. Thus, any square

✠

☞

2

matrix can be expressed as the sum of a symmetric and a skew symmetric
matrix.
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✁

2

2



4✂

Example 22 Express the matrix B ✄ 1

3

4☎ as the sum of a symmetric and a

✆

✄

☎

✄

1

2

3☎

✝

✞

skew symmetric matrix.

Solution Here

2

✠

✡



1

1 ☛

B = ☞✠2

3 ✠2✌

✟

☞

✌

☞

4

4

3✌

✠

✠

✍

✎

3

✠



3

2

✠

✡

☛

☞

2

2 ✌

4 ✠3

3

✠

☞

✌

✡

☛

1

1



3

✠

Let

P =

(B + B )

☞

✌

☞

3

6

2✌ =

3

1

,

✏

✑

✠

2



2

☞

2

✌

☞

✌

☞

✌

☞

3

2

6✌

✠

✠

3

✍

✎

✠

☞



1

3✌

✠

☞

2

✌

✍

✎

3

✠

✠

✡

3

2

☛

☞

2



2 ✌

☞

✌

3

Now

P =

✠

☞

3

1 ✌ = P

✟

☞

2

✌

☞

3

✌

✠

☞



1

3✌

✠

☞

2

✌

✍

✎

1

Thus

P =

(B + B is a symmetric matrix.

✒)

2

1

✠

✠

✡



5

0

☛

☞

2

2 ✌

0

1

✠

✠

✡

5☛

☞

✌

1

1 ☞

✌

1

Also, let



Q =

(B – B )

1

0

6

☞

0

3 ✌

✏

✑

✑

2

2 ☞

✌

☞

2

✌

☞ 5

6



0✌

✠

☞

5

✌

✍

✎

☞

3

0 ✌

✠

☞

2

✌

✍

✎

✡

1

5



0

☛

☞

2

3 ✌

☞

✌

1

Then

Q =

✠

☞

0

3✌

✠

✑

✠



Q

✟

☞

2

✌

☞

5

✌

✠

☞

3

0✌

☞

2

✌

✍

✎
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1

Thus

Q =

(B – B ) is a skew symmetric matrix.

2

✁ 3

✁ 3

✁ 1

✁

✂

✄

✂

5

2

0

✄

☎

2

2 ✆

☎



2

2 ✆

2

✁ 2

✁

✂

4✄

☎

✆

☎

✆

✁ 3

1

Now

P + Q

3

1

0

3

☎



1

3

4✆

☎

✆

☎

✆

✝

✞

✝

✝

✁

B

2



2

☎

✆

☎

✆

☎

✆

☎

1

2

3

3



5

✆

✁

✁

☎

✆

☎

✆

✟

✠

✁

☎

1

3✆

☎

3



0 ✆

✁

✁

☎

2

✆

☎

2

✆

✟

✠

✟

✠

Thus, B is represented as the sum of a symmetric and a skew symmetric
matrix.

EXERCISE 3.3

1. Find the transpose of each of the following matrices:

✡



5 ☛

✘

✙

1

5

6 ✚

☞

1 ✌

1 ✑

✒

1✓

(i)

✛

✜

☞

✌

(ii)

(iii)

3

5



6

✔

2

3✕

✛

✜

☞

2 ✌

✖

✗

✛

2

3

1✜

✘

☞



1✌

✢

✣

✍

✎

✏

✁ 1

2

3

✁ 4

1

✁

✂

✄

✂

5✄

2. If A

☎

5

7



9✆ and B

☎

1

2

0✆ , then verify that

✝

✝

☎

✆

☎

✆

☎

2

1

1✆

☎

1

3



1✆

✁

✟

✠

✟

✠

(i) (A + B) = A + B ,

(ii) (A – B) = A – B

✤

✤

✤

✤

✤

✤

✥

3 4✦



1

✧

✥

2 1

3. If A

1 2

and B

✦

★

✩

, then verify that

✪

✫

✧

✫

★

1

2 3✩

★

✩



0 1

✬

✭

★

✩

✬

✭

(i) (A + B) = A + B

(ii) (A – B) = A – B

✤

✤

✤

✤

✤

✤

✑ 2



3

✑

✒

✓

✒

1 0✓

4. If A

, then find (A + 2B)

✮

✯

and B ✯

✤

✔

1

2✕

✔

1



2✕

✖

✗

✖

✗

5. For the matrices A and B, verify that (AB) = B A , where

✤

✤

✤

✂

0

✂

1 ✄

✄

(i) A

☎

4 ✆

(ii) A

☎



1✆

✝

, B ✝ 1 5 7

✝

✝

✁

, B

✁ 1

2 1

✰

✱

✲

✳

☎

✆

☎

✆

☎



2

☎

3 ✆

✆

✟

✠

✟

✠
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✁

cos

sin ✂

6. If (i) A

, then verify that A A = I

✄

✠

☎

sin



cos ✆

✝

✞

✟

sin ✡

cos ✡

☛

☞

(ii) If A

, then verify that A A = I

✌

✠

✍

cos



sin ✎

✏

✡

✡

✑

✒

1

✓

✔

1 5✕

7.

(i) Show that the matrix A

✖

1



2 1✗ is a symmetric matrix.

✘

✓

✖

✗

✖

5

1

3✗

✙

✚

0

1 ✓

✔

1 ✕

(ii) Show that the matrix A

✖

1

0



1 ✗ is a skew symmetric matrix.

✘

✓

✖

✗

✖

1

1

0 ✗

✓

✙

✚

☛

1

5

8. For the matrix A

☞

, verify that

✌

✍



6

7✎

✑

✒

(i) (A + A ) is a symmetric matrix

✠

(ii) (A – A ) is a skew symmetric matrix

✠

✔

0

a

b✕

1

1

9. Find

A

A and

A



, when A

✖

✘

✓

a

0

c✗

✤

A

✛

✜

✛

✜

✢

✢

✣

2



2

✖

✗

✖

b

c

0✗

✓

✓

✙

✚

10. Express the following matrices as the sum of a symmetric and a skew
symmetric

matrix:

6

✥

✦

2

2 ✧

☛



3

5☞

(i)

(ii) ★ 2

3

1 ✩

✥

✥

✍

1

1✎

★

✩

✏

✑

✒

★

2

1



3 ✩

✥

✪

✫

3

3

✓

✔

1✕

✁

1

5✂

(iii) ✖ 2

2

1✗

(iv)

✓

✓

☎



1

✝

2✆

✖

✗

✞

✟

✖

4

5

2✗

✓

✓

✙

✚
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Choose the correct answer in the Exercises 11 and 12.

11. If A, B are symmetric matrices of same order, then AB – BA is a



(A) Skew symmetric matrix

(B) Symmetric matrix

(C) Zero matrix

(D) Identity matrix

cos

✁

✂

sin

12. If A

✄

then A + A = I, if the value of is

✠

✡

☎

,

✆ sin



cos ✝

✞

✟

☛

☛

(A)

(B)

6

3

3☛

(C)

(D)

☞

2

3.7 Elementary Operation (Transformation) of a Matrix

There are six operations (transformations) on a matrix, three of which are
due to rows

and three due to columns, which are known as elementary operations or

transformations.



(i) The interchange of any two rows or two columns. Symbolically the
interchange

of i th and j th rows is denoted by R

R and interchange of i th and j th column is

i ✌

j

denoted by C

C .

i ✌

j

✍

1

3

1

✍

1

2

1✎

✎

✓



For example, applying R

R to

✏

✑

✏

✑

A

, we get 1

2

1 .

✒

1

✓

3

1

1 ✌



2

✏

✑

✏

✑

✏

5

6

7✑

✏

5

6

7✑

✔

✕

✔

✕

(ii) The multiplication of the elements of any row or column by a non zero

number. Symbolically, the multiplication of each element of the i th row by
k, where k



0 is denoted by R

k R .

✖

i ✗

i

The corresponding column operation is denoted by C

k C

i ✗

i

✦

1

1

2

✧

1

★

7 ✩

✙

1

2



1 ✚

For example, applying C

, to B

, we get ★

✩

✛

✘

C

3

3

7

✜

✢

1

★

✩

✣ 1

3 1

✪ 1



3

✤

✥

★

7 ✩

✫

✬

(iii) The addition to the elements of any row or column, the corresponding

elements of any other row or column multiplied by any non zero number.

Symbolically, the addition to the elements of i th row, the corresponding
elements

of j th row multiplied by k is denoted by R

R + k R .

i ✗

i

j
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The corresponding column operation is denoted by C

C + k C .

i ✡



i

j

1

2

1

2

✁

For example, applying R

R – 2R , to C

, we get

✁

.

2

✂

✡

2

1

✄

2



1☎

✄

0

✆ 5☎

✆

✝

✞

✝

✞

3.8 Invertible Matrices

Definition 6 If A is a square matrix of order m, and if there exists another
square

matrix B of the same order m, such that AB = BA = I, then B is called the
inverse

matrix of A and it is denoted by A– 1. In that case A is said to be invertible.

2 ✎

✟



3

✟

2

3

For example, let

A =

✠

and B =

✠

be two matrices.

☛

1

2☞

☛

1



2 ☞

✎

✌

✍

✌

✍

2 3

2 ✎

✟

✠

✟

3 ✠

Now



AB = ☛1 2☞ ☛ 1 2 ☞

✎

✌

✍

✌

✍

4 ✎ 3

✎ 6 ✏

✟

6✠

✟ 1

0

=

✠

✑

✑

I

☛



2

2

3 4☞

☛ 0

1☞

✎

✎

✏

✌

✍

✌

✍

✟

1

0

Also

BA =

✠



. Thus B is the inverse of A, in other

✑

I

☛

0

1☞

✌

✍

words B = A– 1 and A is inverse of B, i.e., A = B–1

Note

✒

1. A rectangular matrix does not possess inverse matrix, since for products
BA

and AB to be defined and to be equal, it is necessary that matrices A and B

should be square matrices of the same order.

2. If B is the inverse of A, then A is also the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists,
is unique.

Proof Let A = [ a ] be a square matrix of order m. If possible, let B and C be
two ij

inverses of A. We shall show that B = C.



Since B is the inverse of A

AB = BA = I

... (1)

Since C is also the inverse of A

AC = CA = I

... (2)

Thus

B = BI = B (AC) = (BA) C = IC = C

Theorem 4 If A and B are invertible matrices of the same order, then (AB)–
1 = B–1 A–1.
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Proof From the definition of inverse of a matrix, we have

(AB) (AB)–1 = 1

or

A–1 (AB) (AB)–1 = A–1I

(Pre multiplying both sides by A–1)

or

(A–1A) B (AB)–1 = A–1

(Since A–1 I = A–1)

or



IB (AB)–1 = A–1

or

B (AB)–1 = A–1

or

B–1 B (AB)–1 = B–1 A–1

or

I (AB)–1 = B–1 A–1

Hence

(AB)–1 = B–1 A–1

3.8.1 Inverse of a matrix by elementary operations

Let X, A and B be matrices of, the same order such that X = AB. In order to
apply a

sequence of elementary row operations on the matrix equation X = AB, we
will apply

these row operations simultaneously on X and on the first matrix A of the
product AB

on RHS.

Similarly, in order to apply a sequence of elementary column operations on
the

matrix equation X = AB, we will apply, these operations simultaneously on
X and on the

second matrix B of the product AB on RHS.



In view of the above discussion, we conclude that if A is a matrix such that
A–1

exists, then to find A–1 using elementary row operations, write A = IA and
apply a

sequence of row operation on A = IA till we get, I = BA. The matrix B will
be the

inverse of A. Similarly, if we wish to find A–1 using column operations,
then, write

A = AI and apply a sequence of column operations on A = AI till we get, I =
AB.

Remark In case, after applying one or more elementary row (column)
operations on

A = IA (A = AI), if we obtain all zeros in one or more rows of the matrix A
on L.H.S.,

then A–1 does not exist.

Example 23 By using elementary operations, find the inverse of the matrix

1

2

A =

✁

.

✂

2



1✄

☎

✆

✝

Solution In order to use elementary row operations we may write A = IA.

1

2✁

1

0✁

1

2✁

1

0✁

or

(applying R

R – 2R )

✞

A, then

✞



A

2 ✡

2

1

✂

2

1✄

✂

0

1✄

✂ 0

5✄

✂

2



1✄

☎

☎

☎

✆

✝

✆

✝

✆

✝

✆

✝
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✝

1

0

1



2

✞

1

✁

or

= ✟ 2

1✠

(applying R

–

R )

✡

A

2 ✌

2

✂

0



1✄

✟

✠

5

☎

✆

☛

5

5 ☞

✍

1

2 ✎

1

0

✏

5

5 ✑

or

✁



(applying R

R – 2R )

✏

✑

A

✥

1 ✌

1

2

✂

0

1✄

2

✒ 1

✏

✑

☎

✆

✏

5



5 ✑

✓

✔

✍

1

2 ✎

✏

5

5 ✑

Thus

A–1 = ✏

✑

2

✒ 1

✏

✑

✏

5



5 ✑

✓

✔

Alternatively, in order to use elementary column operations, we write A =
AI, i.e.,

1

2

1

0

✁

= A

✁

✂

2

1✄

✂ 0



1✄

✕

☎

✆

☎

✆

Applying C

C – 2C , we get

2 ✌

2

1

1

0

1

✕

2

✁

= A

✁

✂



2

5✄

✂

0

1✄

✕

☎

✆

☎

✆

1

Now applying C

 

, we have

✖

C

2 ✌

2

5

✍



2

1

✎

✏

5 ✑

✗

1

0✘ = A ✏

✑

✙

2

1✚

✒ 1

✏

✑

✛

✜

0

✏



5 ✑

✓

✔

Finally, applying C

C – 2C , we obtain

1 ✌

1

2

✍

1

2 ✎

1

0

✏

5

5 ✑

✁

= A ✏

✑

✂



0

1✄

2

1

✒

✏

✑

☎

✆

✏

5

5 ✑

✓

✔

✍

1

2 ✎

✏

5

5 ✑



Hence

A–1 = ✏

✑

2

✒ 1

✏

✑

✏

5

5 ✑

✓

✔
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Example 24 Obtain the inverse of the following matrix using elementary
operations

0

1

2✁

A



✂ 1

2

3✄ .

☎

✂

✄

✂

3 1

1✄

✆

✝

0

1

2

1

0

0✁

✁



Solution Write A = I A, i.e.,

✂

✄

✂

1

2

3✄ = 0 1 0 A

✂

✄

✂

✄

✂

0

0 1✄

✂

3

1



1✄

✆

✝

✆

✝

1

2

3

✞

0

1

0

✁

✟



or

✠

✡

✂

0

1

2✄

1

0

0 A (applying R

R )

✥

1 ✌



2

✂

✄

✠

✡

✠

0

0 1

✂

3

1

1✄

✡

✆

✝

☛

☞

1



2

3

0

1

0✁

✁

or

✂

✄

✂

0

1

2 ✄

1

0

0 A (applying R

R – 3R )

✎

✥

3



3

1

✂

✄

✂

✄

✂

0

3

1✄

✍

✂

0

5



8 ✄

✍

✍

✆

✝

✆

✝

1

0

1

2

✍

1

0

✍

✁

✁

or

✂



0

1

2 ✄

✂

1

0

0✄ A (applying R

R – 2R )

✎

✥

1

1

2

✂

✄

✂

✄

✂

0

3



1

✂

0

5

8 ✄

✍

✍

✄

✍

✆

✝

✆

✝

1

0

1

2

✏

✞



1

0

✍

✁

✟

or

✂

0

1

2 ✄

✠

1

0

0✡ A (applying R

R + 5R )

✎

✥

3

3



2

✂

✄

✠

✡

✠

5

3

1

✂

0

0



2 ✄

✡

✏

✆

✝

☛

☞

✑

✒

2

1

0

1

0



1

✓

✏

✞

✟

✔

1

0

0 ✕ A

1

or

✠ 0

1

2 ✡ = ✔

✕

(applying R

 

R )



3 ✎

3

✠

✡

2

✔

5

3

1 ✕

✑

✠ 0

0

1 ✡

☛

☞

✔

2

2



2 ✕

✖

✗

1

✘

✙

1

1 ✚

1

0

0

✛

2

2

2 ✜

✁

✛

✜

or

✂



0

1

2✄

1

0

0 A (applying R

R + R )

✎

✥

1

1

3

✛

✜

✂

✄

✛

5

3



1 ✜

✘

✂

0

0

1✄

✆

✝

✛

✜

✢

2

2

2 ✣
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1

✝

✞

1



1

1

0

0

✟

✁

✠

2

2

2 ✡

✂

0

1

0✄

or

✠

✡

(applying R



R – 2R )

✌

✝

4

3

✝ 1

A

✥

✂

✄

2

2

3

✠

✡

✂

0

0



1✄

✠

✡

☎

✆

5

✝ 3

1

✠

✡

☛

2

2

2 ☞

1

✝

✞



1

1 ✟

✠

2

2

2 ✡

✠

✡

Hence

A–1 = ✝4

3

✝

1

✠

✡

✠



5

3

1 ✡

✝

✠

✡

☛

2

2

2 ☞

Alternatively, write A = AI, i.e.,

1

✍

0

0

✍

0 1 2✎

✎



1

✏

2 3✑ = A ✏0 1 0✑

✏

✑

✏

✑

✏ 0

0 1

✏ 3

1 1 ✑

✑

✒

✓

✒

✓

1 0

2



0 1 0

✁

✁

✂

2 1 3✄

A 1

✂

0

0✄

or

=

(C

C )

✂

✄

✂

✄

1 ✔

2



1

✂

0

0 1

✂

3 1 ✄

✄

☎

✆

☎

✆

1

✍ 0

1

0

✍

0

0✎

✎



or

✏

2 1

1✑ = A 1

✏

0

(C

C – 2C )

✕2✑

✕

3 ✌

3

1

✏

✑

✏

✑

1

✏ 0

0



1

✏

3

1✑

✑

✕

✒

✓

✒

✓

1

✍ 0

1

1

✍

0

0✎

✎

or

✏



2 1 0✑ = A 1

✏

0

2✑

(C

C + C )

✕

3 ✌

3

2

✏

✑

✏

✑

1

✏ 0

0

1

✏

3



2✑

✑

✒

✓

✒

✓

✖

1

0 1

✗

1 0

0

✘

2 ✙

✁

1

✘

✙

or

✂



2 1 0✄ = A 1 0

(C

 

C )

✚ 1

✌

✘

✙

3

3

✂

✄

2

1

✘

1 ✙

✂



3 1 ✄

☎

✆

✘

0

0

✙

✛

2 ✜
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✞

1 ✟

1 0

0

✠ 2



1

✡

☛

✁

2

✡

☛

or

✂

0 1 0 ✄ = A 1

0

(C

C – 2C )

✠ 1

✍

✡

☛

1



1

2

✂

✄

✡

1 ☛

✂

5 3 1✄

☎

✆

✝

✡

0

0

☛

☞

2 ✌

✕

1



1

1

✖

1

✗

2

2 ✘

✎

0

0✏

✗

✘

or

✑

0 1 0✒ = A

(C

C + 5C )

✙

4

0



✙ 1

✍

✗

✘

1

1

3

✑

✒

✗

5

1 ✘

✑

0

3 1✒

✓

✔

✗



0

✘

✚

2

2 ✛

1

1

✠

✞

1 ✟

1

✡

2

2

2 ☛

✎

0



0✏

✡

☛

or

✑

0 1 0✒ = A

(C

C – 3C )

✠

4

3

1

✠

✍

✡

☛

2

2



3

✑

✒

✡

5

3

✠

1 ☛

✑

0

0 1✒

✓

✔

✡

☛

☞

2

2

2 ✌



1

1

✙

✕

1 ✖

✗

2

2

2 ✘

✗

✘

Hence

A–1 = ✙ 4

3

1

✙

✗

✘

✗

5



3

1 ✘

✙

✗

✘

✚

2

2

2 ✛

10

✜

✢

2

Example 25 Find P –1, if it exists, given P

✣

.

✤

✥

5



1✦

✜

✧

★

10

✜

✢

2✣

✢

1

0

Solution We have P = I P, i.e.,

✣

.

✤

P

✥

5

1✦

✥



0

1✦

✜

✧

★

✧

★

1

✪

1

1

✩

✪

✫

0✫

1

or

✬

5 ✭ = ✬10

✭



P (applying R

R )

1 ✍ 10 1

✬

✭

✬

✭

5

0

1

✩

1

✮

✯

✮

✯
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✞

1



0✟

✁

1

1

✂

✠

10

✡

or

✄

5 ☎ =

(applying R

R + 5R )

✌

✠

✡

P

2



2

1

✄

☎

1

0

0

✠

1✡

✆

✝

✠

2

✡

☛

☞

We have all zeros in the second row of the left hand side matrix of the
above



equation. Therefore, P–1 does not exist.

EXERCISE 3.4

Using elementary transformations, find the inverse of each of the matrices,
if it exists

in Exercises 1 to 17.

1

1

✎

1

3

✎

2 1

✍

✎

✏

✏

1.

2.



3.

✏

✑

2

3✒

✑

1 1✒

✑

2

7✒

✓

✔

✓

✔

✓

✔

✎

2

5✏

✎



2

1✏

✕

2

3

4.

✖

5.

6. ✑

✒

✑

✒

✗

5

7✘

7

4

1



3

✓

✔

✓

✔

✙

✚

✕

3 10

✕

4

5

✕

3

1

7.

✖

8.

✖



9.

✖

✗

5

2✘

✗

3

4✘

✗

2

7 ✘

✙

✚

✙

✚

✙

✚

3

2



6

✍

✎

3

✍

✎

6

✍

✏

✏

✎

1✏

10.

11.

12.

✑

✒

✑

✒

✑



4

2✒

1

✍

2

1

✍ 2

✍

✓

✔

✓

✔

✓

✔

2

✜

✢

3

3✣



2

✕

2

1

✛

✖

✕

3

13.

✖

14.

.

15. ✤2

2

3✥

✗

✘

✗

1

2✘



4

2

✤

✥

✛

✙

✚

✙

✚

✤

3

2

2✥

✜

✦

✧

1

3

✩

2



0

1

★

★

✩

2✪

✪

16.

✫

3

0

5✬

17. ✫5

1



0 ✬

★

★

✫

✬

✫

✬

✫

0

1

3

✫

2

5

0 ✬

✬

✭

✮

✭

✮



18. Matrices A and B will be inverse of each other only if

(A) AB = BA

(B) AB = BA = 0

(C) AB = 0, BA = I

(D) AB = BA = I
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Miscellaneous Examples

✁

cos n

sin n

✁

cos

sin

Example 26 If A

✂

, then prove that A n

✂



, n N.

✠

✄

✄

☎

sin

cos ✆

☎

✝

sin n

cos n ✆

✝

✞

✟

✞

✟



Solution We shall prove the result by using principle of mathematical
induction.

✁

cos n

sin n

✁

cos

sin

We have

P( n) : If A

✂

then A n

✂

, n N

✠

✄

✱

✄

☎

sin



cos ✆

☎

✝

sin n

cos n ✆

✝

✞

✟

✞

✟

✁

cos

sin ✂

✁

cos

sin



P(1) : A

✂

, so

1

A ✄

✄

☎

✆

☎

sin

cos ✆

✝

sin



cos

✝

✞

✟

✞

✟

Therefore,

the result is true for n = 1.

Let the result be true for n = k. So

✁

cos k

sin k

k

✂

✁

cos

sin



P( k) : A

✂

, then A ✄

✄

☎

✆

☎

sin

cos ✆

✝

sin k

cos k

✝

✞

✟

✞

✟



Now, we prove that the result holds for n = k +1

cos ✡

sin ✡

cos k✡

sin k

k

✡

☛

☞

☛

☞

Now

A k + 1 = A✌A ✍ ✎ sin

cos ✏ ✎ sin k



cos k ✏

✑

✡

✡

✑

✡

✡

✒

✓

✒

✓

cos cos k – sin sin k

cos sin k ✔

✁

sin cos k

✂

= ☎ sin cos k

cos sin k



sin sin k

cos cos k ✆

✝

✔

✝

✔

✞

✟

cos ( ✕

✕

✕

✕

✡

k✡)

sin (✡

k✡)

cos ( k



1)✡

sin ( k

1)✡

☛

☞

☛

☞

=

✍

✎

sin ( ✕ k

✕

✕

✕

✡ )

cos (✡



k✡)✏

✎

✑

sin ( k

1)✡

cos ( k

1) ✏

✑

✡

✡

✒

✓

✒

✓

Therefore, the result is true for n = k + 1. Thus by principle of mathematical

induction, cos n ✡



sin n ✡

☛

☞

we have A n

, holds for all natural numbers.

✍

✎

sin n

cos n ✏

✑

✡

✡

✒

✓

Example 27 If A and B are symmetric matrices of the same order, then
show that AB

is symmetric if and only if A and B commute, that is AB = BA.



Solution Since A and B are both symmetric matrices, therefore A = A and B
= B.

✖

✖

Let

AB be symmetric, then (AB) = AB

✖
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But

(AB) = B A = BA (Why?)

✝

✝

✝

Therefore

BA = AB

Conversely, if AB = BA, then we shall show that AB is symmetric.

Now



(AB) = B A

✝

✝

✝

= B A (as A and B are symmetric)

= AB

Hence AB is symmetric.

✁

2

1✂

✁

5

2✂

✁

2 5

Example 28 Let A

, B

, C

✂



. Find a matrix D such that

✄

✄

✄

☎

3

4✆

☎

7

4✆

☎



3 8✆

✞

✟

✞

✟

✞

✟

CD – AB = O.

Solution Since A, B, C are all square matrices of order 2, and CD – AB is
well

defined, D must be a square matrix of order 2.

✠

a

b

Let

D =

✡



. Then CD – AB = 0 gives

☛

c

d ☞

✌

✍

2

5

a

b

2

✎

✠

✡

✠

✡

✠



1✡ ✠5

2✡

or

= O

✎

☛

3

8☞ ☛ c

d ☞

☛

3

4☞ ☛7



4☞

✌

✍

✌

✍

✌

✍

✌

✍

2 a

✠

0

0

✏

5 c

2 b ✏

✠



5 d ✡

✠

3

0 ✡

or

=

✡

✎

☛

3 a

8 c

3 b

8 d ☞

☛

43

22☞

☛

0



0☞

✏

✏

✌

✍

✌

✍

✌

✍

2 a

✁

0

0

✑

5 c

3

2 b ✑

✁

5 d



or

✂

=

✂

☎

3 a

8 c

43 3 b 8 d

22✆

☎

0

0✆

✑

✑

✞

✟

✞

✟



By equality of matrices, we get

2 a + 5 c – 3 = 0

... (1)

3 a + 8 c – 43 = 0

... (2)

2 b + 5 d = 0

... (3)

and

3 b + 8 d – 22 = 0

... (4)

Solving (1) and (2), we get a = –191, c = 77. Solving (3) and (4), we get b =
– 110, d = 44.

✁

a

b✂

✁

191

110

Therefore



D =

✂

✄

☎

c

d ✆

☎

77

44 ✆

✞

✟

✞

✟
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Miscellaneous Exercise on Chapter 3

0 1✁

1. Let A



, show that ( a I + b A) n = an I + nan – 1 b A, where I is the identity

✂

✄

0

0☎

✆

✝

matrix of order 2 and n N.

✞

1

n 1

✎

n✎1

n✎1

✏ 3

3

3

✑

✟



1 1✠

✒

✓

2. If A

1

n

n 1

✎

n✎1

n✎1

✡

1 1☛ , prove that A

N

✔

3

3

3



, n ✕

✒

✓

.

☞

✡

☛

1

✒

n 1

✓

✎

n✎1

n✎1

✡

1 1☛

3

3



3

✌

✍

✖

✗

3

✘ 4

1✙ 2 n

✘

✁

4 n ✁

3. If A

, where n is any positive

✂

, then prove that A n ✂

✄ 1

1☎

✄

n



1 2 n☎

✘

✘

✆

✝

✆

✝

integer.

4. If A and B are symmetric matrices, prove that AB – BA is a skew
symmetric

matrix.

5. Show that the matrix B AB is symmetric or skew symmetric according as
A is

✚

symmetric or skew symmetric.

✟

0

2 y

z ✠



6. Find the values of x, y, z if the matrix A

✡

x

y

z☛ satisfy the equation

☞

✛

✡

☛

✡

x

y

z ☛

✛

✌

✍



A A = I.

✚

✟

1

2

0✠ ✟0✠

7. For what values of x : 1 2 1 ✡2

0

1☛ ✡2☛ = O?

✜

✢

✡

☛

✡

☛

✡

1



0

2☛ ✡ x☛

✌

✍

✌

✍

3

1

8. If A

✁

, show that A2 – 5A + 7I = 0.

✂

✄

1

2☎

✘

✆

✝

✥



1

0

2✦ ✥ x✦

9. Find x, if x

5

1 ✧0

2

1★ ✧4★

✩

✩

✪

O

✣

✤

✧

★

✧

★

✧

2



0

3★ ✧1★

✫

✬

✫

✬
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10. A manufacturer produces three products x, y, z which he sells in two
markets.

Annual sales are indicated below:

Market

Products

I

10,000

2,000

18,000

II

6,000

20,000

8,000



(a) If unit sale prices of x, y and z are Rs 2.50, Rs 1.50 and Rs 1.00,
respectively, find the total revenue in each market with the help of matrix
algebra.

(b) If the unit costs of the above three commodities are Rs 2.00, Rs 1.00 and
50

paise respectively. Find the gross profit.

1

✁

2

3✂

✁

7

8

9

11. Find the matrix X so that X

✂

✄

☎

4

5



6✆

☎

2

4

6✆

✝

✞

✝

✞

12. If A and B are square matrices of the same order such that AB = BA,
then prove

by induction that AB n = B n A. Further, prove that (AB) n = A n B n for all
n N.

✟



Choose the correct answer in the following questions:

✠

✡

✁

✂

13. If A =

is such that A² = I, then

☎

✆

☛

✠

✝

✞

(A) 1 + ² +

= 0

(B) 1 – ² +



= 0

☞

✌

✍

☞

✌

✍

(C) 1 – ² –

= 0

(D) 1 + ² –

= 0

☞

✌

✍

☞

✌

✍

14. If the matrix A is both symmetric and skew symmetric, then

(A) A is a diagonal matrix

(B) A is a zero matrix



(C) A is a square matrix

(D) None of these

15. If A is square matrix such that A2 = A, then (I + A)³ – 7 A is equal to

(A) A

(B) I – A

(C) I

(D) 3A

Summary

A matrix is an ordered rectangular array of numbers or functions.

✎

A matrix having m rows and n columns is called a matrix of order m × n.

✎

[ a ]

is a column matrix.

✎

ij m × 1

[ a ]

is a row matrix.

✎

ij 1 × n



An m × n matrix is a square matrix if m = n.

✎

A = [ a ]

is a diagonal matrix if a = 0, when i j.

✏

✎

ij m × m

ij
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A = [ a ]

is a scalar matrix if a = 0, when i j, a = k, ( k is some ij n × n

ij

☎

ij

constant), when i = j.

A = [ a ]

is an identity matrix, if a = 1, when i = j, a = 0, when i j.

ij n × n

ij



ij

☎

A zero matrix has all its elements as zero.

A = [ a ] = [ b ] = B if (i) A and B are of same order, (ii) a = b for all ij

ij

ij

ij

possible values of i and j.

k A = k[ a ]

= [ k( a )]

ij m × n

ij

m × n

– A = (–1)A

A – B = A + (–1) B

A + B = B + A

(A + B) + C = A + (B + C), where A, B and C are of same order.

k(A + B) = k A + k B, where A and B are of same order, k is constant.

( k + l ) A = k A + l A, where k and l are constant.

n



If A = [ a ]

and B = [ b ]

, then AB = C = [ c ]

, where c ✂

a b

ij m × n

jk n × p

ik m × p

ik

✄

ij

jk

j 1

✁

(i) A(BC) = (AB)C, (ii) A(B + C) = AB + AC, (iii) (A + B)C = AC + BC

If A = [ a ]

, then A or AT = [ a ]

ij m × n

✝

ji n × m



(i) (A ) = A, (ii) ( k A) = k A , (iii) (A + B) = A + B , (iv) (AB) = B A

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

A is a symmetric matrix if A = A.

✝

A is a skew symmetric matrix if A = – A.

✝



Any square matrix can be represented as the sum of a symmetric and a

skew symmetric matrix.

Elementary operations of a matrix are as follows:

(i) R

R or C

C

i ✠

j

i ✠

j

(ii) R

k R or C

k C

i ✡

i

i ✡

i

(iii) R



R + k R or C

C + k C

i ✡

i

 

j

i ✡

i

 

j

If A and B are two square matrices such that AB = BA = I, then B is the

inverse matrix of A and is denoted by A–1 and A is the inverse of B.

Inverse of a square matrix, if it exists, is unique.

—

—

✆

✆





Chapter 4

DETERMINANTS

All Mathematical truths are relative and conditional. — C.P.
STEINMETZ

4.1 Introduction

In the previous chapter, we have studied about matrices

and algebra of matrices. We have also learnt that a system

of algebraic equations can be expressed in the form of

matrices. This means, a system of linear equations like

a x + b y = c

1

1

1

a x + b y = c

2

2

2

✁

a



b ✂ ✁ x ✂

✁

c

can be represented as

1

1

1 ✂ . Now, this

✄

☎

a

b ✆ ☎ y✆

☎ c ✆

✝

2

2 ✞ ✝

✞

✝

2 ✞



system of equations has a unique solution or not, is

determined by the number a b – a b . (Recall that if

1

2

2

1

a

b

1

1

P.S. Laplace

or, a b – a b 0, then the system of linear

✟

✠

a

b

1

2

2



1

(1749-1827)

2

2

equations has a unique solution). The number a b – a b

1

2

2 1

✁

a

b

which determines uniqueness of solution is associated with the matrix

1

1

A

✂

✄

☎

a



b ✆

✝

2

2 ✞

and is called the determinant of A or det A. Determinants have wide
applications in

Engineering, Science, Economics, Social Science, etc.

In this chapter, we shall study determinants up to order three only with real
entries.

Also, we will study various properties of determinants, minors, cofactors
and applications

of determinants in finding the area of a triangle, adjoint and inverse of a
square matrix,

consistency and inconsistency of system of linear equations and solution of
linear

equations in two or three variables using inverse of a matrix.

4.2 Determinant

To every square matrix A = [ a ] of order n, we can associate a number (real
or

ij

complex) called determinant of the square matrix A, where a = ( i, j)th
element of A.



ij
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This may be thought of as a function which associates each square matrix
with a

unique number (real or complex). If M is the set of square matrices, K is the
set of

numbers (real or complex) and f : M

K is defined by f (A) = k, where A M and

✄

☎

k K, then f (A) is called the determinant of A. It is also denoted by | A | or
det A or .

☎

✆

a

b

a

b

✁

If A =



, then determinant of A is written as | A| =

= det (A)

✂

c

d ✝

c

d

✞

✟

Remarks

(i) For matrix A, | A | is read as determinant of A and not modulus of A.

(ii) Only square matrices have determinants.

4.2.1 Determinant of a matrix of order one

Let A = [ a ] be the matrix of order 1, then determinant of A is defined to be
equal to a

4.2.2 Determinant of a matrix of order two

a

a

11



12 ✁

Let

A =

be a matrix of order 2 × 2,

✂

a

a ✝

✞

21

22 ✟

then the determinant of A is defined as:

det (A) = |A| = =

= a a – a a

✆

11 22

21 12

2

4

Example 1 Evaluate



.

–1 2

2

4

Solution We have

= 2 (2) – 4(–1) = 4 + 4 = 8.

–1 2

x

x ✠ 1

Example 2 Evaluate x – 1 x

Solution We have

x

x ✡ 1 = x ( x) – ( x + 1) ( x – 1) = x 2 – ( x 2 – 1) = x 2 – x 2 + 1 = 1

x – 1

x

4.2.3 Determinant of a matrix of order 3 × 3

Determinant of a matrix of order three can be determined by expressing it in
terms of

second order determinants. This is known as expansion of a determinant
along



a row (or a column). There are six ways of expanding a determinant of
order

DETERMINANTS 105

3 corresponding to each of three rows (R , R and R ) and three columns (C ,
C and

1

2

3

1

2

C ) giving the same value as shown below.

3

Consider the determinant of square matrix A = [ a ]

ij 3 × 3

a

a

a

11

12

13

i.e.,



| A | = a

a

a

21

22

23

a

a

a

31

32

33

Expansion along first Row (R )

1

Step 1 Multiply first element a of R by (–1)(1 + 1) [(–1)sum of suffixes in a
11] and with the 11

1

second order determinant obtained by deleting the elements of first row (R )
and first

1

column (C ) of | A | as a lies in R and C ,



1

11

1

1

a

a

22

23

i.e.,

(–1)1 + 1 a

11

a

a

32

33

Step 2 Multiply 2nd element a of R by (–1)1 + 2 [(–1)sum of suffixes in a
12] and the second 12

1

order determinant obtained by deleting elements of first row (R ) and 2nd
column (C )

1



2

of | A | as a lies in R and C ,

12

1

2

a

a

21

23

i.e.,

(–1)1 + 2 a

12

a

a

31

33

Step 3 Multiply third element a of R by (–1)1 + 3 [(–1)sum of suffixes in a
13] and the second 13

1

order determinant obtained by deleting elements of first row (R ) and third
column (C )



1

3

of | A | as a lies in R and C ,

13

1

3

a

a

21

22

i.e.,

(–1)1 + 3 a

13

a

a

31

32

Step 4 Now the expansion of determinant of A, that is, | A | written as sum
of all three

terms obtained in steps 1, 2 and 3 above is given by

a



a

a

a

22

23

1

2

21

23

det A = |A| = (–1)1 + 1 a

✁

(–1)

a 12

11

a

a

a

a

32

33



31

33

a

a

1

3

21

22

+ (–1)

a 13 a a

31

32

or

|A| = a ( a a – a a ) – a ( a a – a a ) 11

22

33

32

23

12

21



33

31

23

+ a ( a a – a a )

13

21

32

31

22
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= a a a – a a a – a a a + a a a + a a a 11

22

33

11

32

23

12

21

33



12

31

23

13

21

32

– a a a

... (1)

13

31

22

Note We shall apply all four steps together.

Expansion along second row (R )

2

a

a

a

11

12

13



| A | = a

a

a

21

22

23

a

a

a

31

32

33

Expanding along R , we get

2

a

a

a

a

2 ✁ 1

12



13

2 ✁ 2

11

13

| A | = (–1)

a

✂

(–1)

a

21

22

a

a

a

a

32

33

31

33

a



a

2 ✁ 3

11

12

✂

(–1)

a 23 a a

31

32

= – a ( a a – a a ) + a ( a a – a a ) 21

12

33

32

13

22

11

33

31

13

– a ( a a – a a )



23

11

32

31

12

| A | = – a a a + a a a + a a a – a a a – a a a 21

12

33

21

32

13

22

11

33

22

31

13

23

11

32



 

+ a a a

23

31

12

= a a a – a a a – a a a + a a a + a a a 11

22

33

11

23

32

12

21

33

12

23

31

13

21

32



– a a a

... (2)

13

31

22

Expansion along first Column (C )

1

a

a

a

11

12

13

| A | = a

a

a

21

22

23

a



a

a

31

32

33

By expanding along C , we get

1

a

a

a

a

1 ✁ 1

22

23

2 ✁ 1

12

13

| A | = a (–1)

✂

a



(✄1)

11

21

a

a

a

a

32

33

32

33

a

a

3 ✁ 1

12

13

+ a

(–1)

31

a



a

22

23

= a ( a a – a a ) – a ( a a – a a ) + a ( a a – a a ) 11

22

33

23

32

21

12

33

13

32

31

12

23

13

22
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| A | = a a a – a a a – a a a + a a a + a a a 11



22

33

11

23

32

21

12

33

21

13

32

31

12

23

– a a a

31

13

22

= a a a – a a a – a a a + a a a + a a a 11

22



33

11

23

32

12

21

33

12

23

31

13

21

32

– a a a

... (3)

13

31

22

Clearly, values of | A | in (1), (2) and (3) are equal. It is left as an exercise to
the



reader to verify that the values of |A| by expanding along R , C and C are
equal to the

3

2

3

value of | A | obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same
value.

Remarks

(i) For easier calculations, we shall expand the determinant along that row
or column

which contains maximum number of zeros.

(ii) While expanding, instead of multiplying by (–1) i + j, we can multiply
by +1 or –1

according as ( i + j) is even or odd.

2

2

1

1 ✁

✁

(iii) Let A =

and B =



. Then, it is easy to verify that A = 2B. Also

✂

✄

✂

4

0 ✄

2

0

☎

✆

☎

✆

| A | = 0 – 8 = – 8 and | B | = 0 – 2 = – 2.

Observe that, | A | = 4 (– 2) = 22 | B | or | A | = 2 n | B |, where n = 2 is the
order of square matrices A and B.

In general, if A = k B where A and B are square matrices of order n, then |
A| = kn

| B |, where n = 1, 2, 3

1

2

4



Example 3 Evaluate the determinant = –1 3

0 .

✝

4

1

0

Solution Note that in the third column, two entries are zero. So expanding
along third

column (C ), we get

3

–1

3

1

2

1

2

= 4

– 0

✞



0

✝

4

1

4

1

–1

3

= 4 (–1 – 12) – 0 + 0 = – 52

0

sin ✟

– cos ✟

Example 4 Evaluate = – sin

.

✟

0

sin ✠

✝



cos ✟

– sin ✠

0
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Solution Expanding along R , we get

1

0

sin

– sin ✁

sin

– sin ✁

0

= 0

– sin ✁

– cos ✁

✆

– sin

0



cos ✁

0

cos ✁

– sin

= 0 – sin (0 – sin cos ) – cos (sin sin – 0)

✝

✞

✝

✝

✝

✞



= sin sin cos – cos sin sin = 0

✝

✞

✝

✝

✝

✞

3

x

3

2

Example 5 Find values of x for which

.

✂

x

1

4

1



3

x

3

2

Solution We have

✂

x

1

4

1

i.e.

3 – x 2 = 3 – 8

i.e.

x 2 = 8

Hence

x = ✄ 2 2

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

2

4



1.

–5

–1

cos

2

x – x ✟ 1 x – 1

☎

– sin ☎

2. (i)

(ii)

sin

x ✟ 1

x ✟ 1

☎

cos ☎

✠

1

2✡



3. If

A =

, then show that | 2A | = 4 | A |

☛

4

2☞

✌

✍

✎

1

0

1 ✏

4. If

A = ✑ 0

1

2 ✒ , then show that | 3 A | = 27 | A |

✑

✒

✑

0



0

4 ✒

✓

✔

5. Evaluate the determinants

3

–1

–2

3

– 4

5

(i)

0

0

–1

(ii)

1

1

–2

3



–5

0

2

3

1
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0

1

2

2

–1

–2

(iii)

–1 0

–3

(iv)

0

2

–1

–2



3

0

3

–5

0

1

1

–2 ✁

6. If A = ✂ 2

1

–3 ✄ , find | A |

✂

✄

✂

5

4

–9 ✄

☎

✆

7. Find values of x, if



2

4

2 x

4

2

3

x

3

(i)

(ii)

✝

✝

5

1

6

x

4

5

2 x



5

x

2

6

2

8. If

, then x is equal to

✝

18

x

18

6

(A) 6

(B) ± 6

(C) – 6

(D) 0

4.3 Properties of Determinants

In the previous section, we have learnt how to expand the determinants. In
this section,

we will study some properties of determinants which simplifies its
evaluation by obtaining



maximum number of zeros in a row or a column. These properties are true
for

determinants of any order. However, we shall restrict ourselves upto
determinants of

order 3 only.

Property 1 The value of the determinant remains unchanged if its rows and
columns

are interchanged.

a

a

a

1

2

3

Verification Let

= b

b

b

1

2



3

✥

c

c

c

1

2

3

Expanding along first row, we get

b

b

b

b

b

b

2

3

1

3

1



2

= a

✞

a

✟

a

1

2

3

✥

c

c

c

c

c

c

2

3

1



3

1

2

= a ( b c – b c ) – a ( b c – b c ) + a ( b c – b c ) 1

2 3

3

2

2

1

3

3

1

3

1

2

2

1

By interchanging the rows and columns of , we get the determinant

✥

a



b

c

1

1

1

= a

b

c

✥ 1

2

2

2

a

b

c

3

3

3
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Expanding along first column, we get

✆ 1

= a ( b c – c b ) – a ( b c – b c ) + a ( b c – b c )

✆1

1

2

3

2

3

2

1

3

3

1

3

1

2

2

1



Hence

=

✆

✆

1

Remark It follows from above property that if A is a square matrix, then

det (A) = det (A ), where A = transpose of A.

✟

✟

Note If R = i th row and C = i th column, then for interchange of row and

i

i

columns, we will symbolically write C

R

i ✠

i

Let us verify the above property by example.

2

–3



5

Example 6 Verify Property 1 for = 6

0

4

✆

1

5

–7

Solution Expanding the determinant along first row, we have

0

4

6

4

6

0

= 2

– (–3)

✁

5

✆



5

–7

1

–7

1

5

= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)

= – 40 – 138 + 150 = – 28

By interchanging rows and columns, we get

2

6

1

= –3

0

5 (Expanding along first column)

✆ 1

5

4

–7

0



5

6

1

6

1

= 2

– (–3)

✂

5

4

–7

4

–7

0

5

= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)

= – 40 – 138 + 150 = – 28



Clearly

=

✆

✆

1

Hence, Property 1 is verified.

Property 2 If any two rows (or columns) of a determinant are interchanged,
then sign

of determinant changes.

a

a

a

1

2

3

Verification Let = b

b

b

1

2



3

✆

c

c

c

1

2

3
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Expanding along first row, we get

= a ( b c – b c ) – a ( b c – b c ) + a ( b c – b c )

✆

1

2

3

3

2

2

1

3



3

1

3

1

2

2

1

Interchanging first and third rows, the new determinant obtained is given by

c

c

c

1

2

3

= b

b

b

1

2

3



✆ 1

a

a

a

1

2

3

Expanding along third row, we get

= a ( c b – b c ) – a ( c b – c b ) + a ( b c – b c )

✆ 1

1

2

3

2

3

2

1

3

3

1



3

2

1

1

2

= – [ a ( b c – b c ) – a ( b c – b c ) + a ( b c – b c )]

1

2

3

3

2

2

1

3

3

1

3

1

2

2



1

Clearly

= –

✆ 1

✆

Similarly, we can verify the result by interchanging any two columns.

Note We can denote the interchange of rows by R

R and interchange of

i ✠

j

columns by C

C .

i ✠

j

2

–3

5

Example 7 Verify Property 2 for = 6

0



4 .

✆

1

5

–7

2

–3

5

Solution = 6

0

4 = – 28 (See Example 6)

✆

1

5 –7

Interchanging rows R and R i.e., R

R , we have

2

3

2 ✠

3



2

–3

5

= 1

5

–7

✆1

6

0

4

Expanding the determinant along first row, we have

✆1

5

–7

1

–7

1

5

= 2



– (–3)

✁

5

✆1

0

4

6

4

6

0

= 2 (20 – 0) + 3 (4 + 42) + 5 (0 – 30)

= 40 + 138 – 150 = 28
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Clearly

= –

✆ 1

✆

Hence, Property 2 is verified.



Property 3 If any two rows (or columns) of a determinant are identical (all
corresponding

elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant ,
then

✆

✆

does not change. However, by Property 2, it follows that has changed its
sign

✆

Therefore

= –

✆

✆

or

= 0

✆

Let us verify the above property by an example.

3

2

3



Example 8 Evaluate = 2

2

3

✆

3

2

3

Solution Expanding along first row, we get

= 3 (6 – 6) – 2 (6 – 9) + 3 (4 – 6)

✆

= 0 – 2 (–3) + 3 (–2) = 6 – 6 = 0

Here R and R are identical.

1

3

Property 4 If each element of a row (or a column) of a determinant is
multiplied by a

constant k, then its value gets multiplied by k.

a

b

c



1

1

1

Verification Let = a

b

c

2

2

2

✆

a

b

c

3

3

3

and be the determinant obtained by multiplying the elements of the first row
by k.

✆ 1

Then



k a

k b

k c

1

1

1

=

a

b

c

2

2

2

✆ 1

a

b

c

3

3

3



Expanding along first row, we get

= k a ( b c – b c ) – k b ( a c – c a ) + k c ( a b – b a )

✆ 1

1

2

3

3

2

1

2

3

2

3

1

2

3

2

3

= k [ a ( b c – b c ) – b ( a c – c a ) + c ( a b – b a )]

1



2

3

3

2

1

2

3

2

3

1

2

3

2

3

= k ✆
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k a

k b

k c

a



b

c

1

1

1

1

1

1

Hence

a

b

c

a

b

c

2

2

2

= k

2



2

2

a

b

c

a

b

c

3

3

3

3

3

3

Remarks

(i) By this property, we can take out any common factor from any one row
or any

one column of a given determinant.

(ii) If corresponding elements of any two rows (or columns) of a
determinant are

proportional (in the same ratio), then its value is zero. For example



a

a

a

1

2

3

=

b

b

b

1

2

3

= 0 (rows R and R are proportional)

✆

1

2

k a

k a

k a



1

2

3

102 18 36

Example 9 Evaluate

1

3

4

17

3

6

102 18 36

6(17)

6(3)

6(6)

17

3 6

Solution Note that

1

3



4

1

3

4

6 1

3

4

0

17

3

6

17

3

6

17

3 6

(Using Properties 3 and 4)

Property 5 If some or all elements of a row or column of a determinant are
expressed

as sum of two (or more) terms, then the determinant can be expressed as
sum of two



(or more) determinants.

a

a

a

a

✄

✄

✄

✁

✂

a ✁ ✂

a

1

1

2

2

3 ✁ ✂3

1

2

3



1

2

3

For example,

b

b

b

b

b

b

☎

b

b

b

1

2

3

= 1

2

3



1

2

3

c

c

c

c

c

c

c

c

c

1

2

3

1

2

3

1

2



3

a ☎ ✄

a ☎ ✄

a

1

1

2

2

3 ☎ ✄3

Verification L.H.S. =

b

b

b

1

2

3

c

c

c

1



2

3
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Expanding the determinants along the first row, we get

= ( a + ) ( b c – c b ) – ( a + ) ( b c – b c )

✆

1

✡1

2

3

2

3

2

✡2

1

3

3

1



+ ( a + ) ( b c – b c )

3

✡3

1

2

2

1

= a ( b c – c b ) – a ( b c – b c ) + a ( b c – b c ) 1

2

3

2

3

2

1

3

3

1

3

1

2



2

1

+

( b c – c b ) – ( b c – b c ) + ( b c – b c )

✡ 1

2

3

2

3

✡2

1

3

3

1

✡3

1

2

2

1



(by rearranging terms)

a

a

a

1

2

3

1

2

3

= b

b

b

= R.H.S.

✁

b

b

b

1

2



3

1

2

3

c

c

c

c

c

c

1

2

3

1

2

3

Similarly, we may verify Property 5 for other rows or columns.

a

b

c



Example 10 Show that a ✂ 2 x

b ✂ 2 y

c ✂ 2 z ✄ 0

x

y

z

a

b

c

a

b

c

a

b

c

Solution We have a

= a

b

c ✂ 2 x

2 y



2 z

✁

2 x

b ✁ 2 y

c ✁ 2 z

x

y

z

x

y

z

x

y

z

(by Property 5)

= 0 + 0 = 0

(Using Property 3 and Property 4)

Property 6 If, to each element of any row or column of a determinant, the
equimultiples

of corresponding elements of other row (or column) are added, then value
of determinant



remains the same, i.e., the value of determinant remain same if we apply the
operation

R

R + k R or C

C + k C .

i

☎

i

j

i ☎

i

j

Verification

a

a

a

1

2

3

a ✝ k c



a ✝ k c

a ✝ k c

1

1

2

2

3

3

Let

= b

b

b

1

2

3

and

=

b

b



b

,

✆

✆ 1

1

2

3

c

c

c

1

2

3

c

c

c

1

2

3

where



is obtained by the operation R

R + k R .

✆1

1 ☎

1

3

Here, we have multiplied the elements of the third row (R ) by a constant k
and

3

added them to the corresponding elements of the first row (R ).

1

Symbolically, we write this operation as R

R + k R .

1 ☎

1

3
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Now, again

a

a

a



k c

k c

k c

1

2

3

1

2

3

= b

b

b

b

b

b

1

2

3

1

2



3

(Using Property 5)

✆ 1

c

c

c

c

c

c

1

2

3

1

2

3

= + 0

(since R and R are proportional)

✆

1

3



Hence

=

✆

✆

1

Remarks

(i) If

is the determinant obtained by applying R

k R or C

k C to the

✆1

i ✄

i

i ✄

i

determinant , then = k .

✆

✆1

✆

(ii) If more than one operation like R



R + k R is done in one step, care should be

i ✄

i

j

taken to see that a row that is affected in one operation should not be used
in

another operation. A similar remark applies to column operations.

a

a ✁ b

a ✁ b ✁ c

Example 11 Prove that

3

2 a

3 a

.

✁

2 b

4 a ✁ 3 b ✁ 2 c ✂ a

3 a

6 a ✁ 3 b 10 a ✁ 6 b ✁ 3 c



Solution Applying operations R

R – 2R and R

R – 3R to the given

2 ✄

2

1

3 ✄

3

1

determinant , we have

✆

a

a ✁ b

a ✁ b ✁ c

= 0

a

2 a ✁ b

✆

0

3 a



7 a ✁ 3 b

Now applying R

R – 3R , we get

3 ✄

3

2

a

a ☎ b

a ☎ b ☎ c

= 0

a

2 a ☎ b

✆

0

0

a

Expanding along C , we obtain

1

a

2 a ✝ b



= a

+ 0 + 0

✆

0

a

= a ( a 2 – 0) = a ( a 2) = a 3
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Example 12 Without expanding, prove that

x

y

y

z

z

x

=

z

x

y

✁



0

✆

1

1

1

Solution Applying R

R + R to , we get

1

✆

✄

1

2

x ✂ y ✂ z

x ✂ y ✂ z

x ✂ y ✂ z

=

z

x

y

✆



1

1

1

Since the elements of R and R are proportional, = 0.

1

3

✆

Example 13 Evaluate

1 a

b c

= 1 b

c a

✆

1 c

a b

Solution Applying R

R – R and R

R – R , we get

2 ✄

2



1

3 ✄

3

1

1

a

b c

= 0

b ☎ a

c ( a ☎ b)

✆

0

c ☎ a

b ( a ☎ c)

Taking factors ( b – a) and ( c – a) common from R and R , respectively, we
get 2

3

1

a

b c



= ( b ✝ a) ( c ✝ a) 0

1

– c

✆

0

1

– b

= ( b – a) ( c – a) [(– b + c)] (Expanding along first column)

= ( a – b) ( b – c) ( c – a)

b

c

a

a

Example 14 Prove that

b

c

a

b

✁

4 abc



c

c

a

b

b ✂ c

a

a

Solution Let =

b

c ✂ a

b

✆

c

c

a ✂ b
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Applying

R

R – R – R to , we get

1 ✄



1

2

3

✆

0

–2 c

–2 b

= b

c

a

b

✆

c

c

a

b

Expanding along R , we obtain

1

c

b



c ✂ a

✁

a

b

b

b

= 0

– (–2 c)

✂ (–2 b)

✆

c

a

c

c

✁

b

c

a ✁ b

= 2 c ( a b + b 2 – bc) – 2 b ( b c – c 2 – ac)

= 2 a b c + 2 cb 2 – 2 bc 2 – 2 b 2 c + 2 bc 2 + 2 abc



= 4 abc

2

3

x

x

1 x

Example 15 If x, y, z are different and

2

3

, then

☎

✝

y

y

1

y ✝ 0

2

3

z



z

1

z

show that 1 + xyz = 0

Solution We have

2

3

x

x

1✞ x

2

3

= y

y

1 ✞ y

✆

2

3

z



z

1✞ z

2

2

3

x

x

1

x

x

x

2

2

3

= y

y

1

(Using Property 5)

✞



y

y

y

2

2

3

z

z

1

z

z

z

2

2

1

x

x

1

x

x



2

2

2

= ( 1

(Using C

C and then C

C )

✟

) 1

y

y ✞ xyz 1

y

y

3✠

2

1 ✠

2

2



2

1

z

z

1

z

z

2

1

x

x

2

= 1

y

y (1✞ xyz)

2

1

z

z
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2

1

x

x

=

2

2

1

(Using R

R –R and R

R – R )

☎

✂

xyz 0

y ✄ x

y ✄ x

✁

2☎

2



1

3

3

1

2

2

0

z ✄ x

z ✄ x

Taking out common factor ( y – x) from R and ( z – x) from R , we get

2

3

2

1

x

x

= (1+ xyz) ( y– x) ( z– x) 0

1

y ✝ x

✆



0

1

z ✝ x

= (1 + xyz) ( y – x) ( z – x) ( z – y) (on expanding along C ) 1

Since = 0 and x, y, z are all different, i.e., x – y 0, y – z 0, z – x 0, we get

✆

✞

✞

✞

1 + xyz = 0

Example 16 Show that

1 ✟ a

1

1

✠

1

1

1



1

1 b

1

abc 1

✡

✟

☛

✟

✟

✟

☛

abc ✟ bc ✟ ca ✟ ab

☞

✍

a

b

c ✌

1



1

1 c

✎

✟

Solution Taking out factors a, b, c common from R , R and R , we get

1

2

3

1

1

1

✏

1

a

a

a

1

1

1



L.H.S. = abc

✏

1

b

b

b

1

1

1

✏

1

c

c

c

Applying R

R + R + R , we have

1☎

1

2

3



1

1

1

1

1

1

1

1

1

1✑

✑

✑

1 ✑

✑

✑

1 ✑

✑

✑

a

b



c

a

b

c

a

b

c

1

1

1

= abc

✑

1

✆

b

b

b

1

1



1

✑

1

c

c

c
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1

1

1

1

1

1 ✁ 1

1

1

= abc 1+

✂

✂

✂



1

✄

a

b

c ☎

✆

✝

b

b

b

1

1

1

✂

1

c

c

c

Now applying C

C – C , C



C – C , we get

2 ✞

2

1

3 ✞

3

1

1

0

0

1

1

1 ✁

1

= abc 1+

✂

✂



1 0

✟

✄

a

b

c ☎

✆

✝

b

1

0 1

c

☛

1

1

1 ☞

= abc 1✌

✌

✌



1

✍

1 – 0 ✎

✠

✡

✏

a

b

c ✑ ✒

✓

✔

✕

☛

1

1

1

= abc 1+

☞



= abc + bc + ca + ab = R.H.S.

✌

✌

✏

a

b

c ✑

✔

✕

Note Alternately try by applying C

C – C and C

C – C , then apply

1 ✞

1

2

3 ✞

3

2

✖



C

C – a C .

1 ✞

1

3

EXERCISE 4.2

Using the property of determinants and without expanding in Exercises 1 to
7, prove

that:

x

a

x

a ✙ b

b ✙ c

c ✙ a

✗

a

1.

y

b



y

2.

b ✙ c

c ✙ a

a ✙ b ✚ 0

✗

b ✘ 0

z

c

z

c ✙ a

a ✙ b

b ✙ c

✗

c

2

7

65

1 bc



a b ✢ c

✛

✜

3.

3

8

75

4.

1 ca

b c ✢ a

✣

0

✘

0

✛

✜

5

9 86

1 ab



c a ✢ b

✛

✜

b ✗ c

q ✗ r

y ✗ z

a

p

x

5.

c ✗ a

r ✗ p

z ✗ x ✘ 2 b

q

y

a ✗ b

p ✗ q

x ✗ y

c

r



z
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2

0

a

b

✂

a

ab

ac

2

2

2

2

6.

a

0

c

ba



✂ b

bc ✄ 4 a b c

✁

0

7.

b

c

0

2

ca

cb

✂

c

By using properties of determinants, in Exercises 8 to 14, show that:

2

1 a

a

2

8. (i) 1 b



b ✄ a ✂ b b ✂ c c ✂ a

☎

✆

☎

✆

☎

✆

2

1 c

c

1

1

1

(ii) a

b

c ✟ a ✠ b b ✠ c c ✠ a



a ✡ b ✡ c

✝

✞

✝

✞

✝

✞

✝

✞

3

3

3

a

b

c

2



x

x

yz

2

9.

y

y

zx = ( x – y) ( y – z) ( z – x) ( xy + yz + zx) 2

z

z

xy

x + 4

2 x

2 x

2

10. (i) 2 x

x + 4

2x ✁ 5 x ✌ 4 4



x

☛

☞

☛

☞

2 x

2 x

x + 4

y + k

y

y

2

(ii)

y

y + k

y

✏

k



3 y ✑ k

✍

✎

y

y

y + k

a

b

c

2 a

2 a

3

11. (i)

2 b

b

c

a

2 b

✁



a ✌ b ✌ c

✒

✓

2 c

2 c

c

a

b

x ✑ y ✑ 2 z

x

y

3

(ii)

z

y ✑ z ✑ 2 x

y

✏

2 x ✑ y ✑ z

✔

✕



z

x

z ✑ x ✑ 2 y
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2

1

x

x

2

2

3

12.

x

1

x ✂ 1 ✄ x ✁

2

x

x

1

2



2

1 ✝ a ✄ b

2 ab

✄ 2 b

3

13.

2

2

2

2

2 ab

1✄ a ✝ b

2 a

✂

1✝ a ✝ b

☎

✆

2

2



2 b

✄ 2 a

1 ✄ a ✄ b

2

a ✝ 1

ab

ac

2

2

2

2

14.

ab

b ✝1

bc

✂

1✝ a ✝ b ✝ c

2

ca



cb

c ✝ 1

Choose the correct answer in Exercises 15 and 16.

15. Let A be a square matrix of order 3 × 3, then | k A | is equal to

(A) k| A |

(B) k 2 | A |

(C) k 3 | A |

(D) 3 k | A |

16. Which of the following is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

4.4 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices
are

1

( x , y ), ( x , y ) and ( x , y ), is given by the expression

[ x ( y – y ) + x ( y – y ) +

1



1

2

2

3

3

2

1

2

3

2

3

1

x ( y – y )]. Now this expression can be written in the form of a determinant
as 3

1

2

x

y

1

1

1



1

=

x

y

1

... (1)

2

2

✞

2 x y 1

3

3

Remarks

(i) Since area is a positive quantity, we always take the absolute value of the

determinant in (1).
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(ii) If area is given, use both positive and negative values of the determinant
for

calculation.



(iii) The area of the triangle formed by three collinear points is zero.

Example 17 Find the area of the triangle whose vertices are (3, 8), (– 4, 2)
and (5, 1).

Solution The area of triangle is given by

3

8 1

1

=

– 4

2 1

✆

2

5

1 1

1

=

✂



3 2 – 1 – 8 – 4 – 5 ✄ 1 – 4 – 10 ☎

✁

✁

✁

2 ✝

✞

1

61

=

3 ✄ 72 – 14 ✡

✟

✠

2

2

Example 18 Find the equation of the line joining A(1, 3) and B (0, 0) using
determinants

and find k if D( k, 0) is a point such that area of triangle ABD is 3sq units.

Solution Let P ( x, y) be any point on AB. Then, area of triangle ABP is
zero (Why?). So 0



0 1

1 1 3 1 = 0

2 x y 1

1

This gives

y – 3 x = 0 or y = 3 x,

☛

☞

2

which is the equation of required line AB.

Also, since the area of the triangle ABD is 3 sq. units, we have

1

3 1

1 0 0 1 = ± 3

2 k 0 1

✌

3 k

This gives,



, i.e., k = 2.

✎

✡

✍

3

2

EXERCISE 4.3

1. Find area of the triangle with vertices at the point given in each of the
following :

(i) (1, 0), (6, 0), (4, 3)

(ii) (2, 7), (1, 1), (10, 8)

(iii) (–2, –3), (3, 2), (–1, –8)
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2. Show that points

A ( a, b + c), B ( b, c + a), C ( c, a + b) are collinear.

3. Find values of k if area of triangle is 4 sq. units and vertices are

(i) ( k, 0), (4, 0), (0, 2)

(ii) (–2, 0), (0, 4), (0, k)

4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants.

(ii) Find equation of line joining (3, 1) and (9, 3) using determinants.



5. If area of triangle is 35 sq units with vertices (2, – 6), (5, 4) and ( k, 4).
Then k is (A) 12

(B) –2

(C) –12, –2

(D) 12, –2

4.5 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in
compact form

using minors and cofactors.

Definition 1 Minor of an element a of a determinant is the determinant
obtained by

ij

deleting its i th row and j th column in which element a lies. Minor of an
element a is ij

ij

denoted by M .

ij

Remark Minor of an element of a determinant of order n( n 2) is a
determinant of

☛

order n – 1.

1



2

3

Example 19 Find the minor of element 6 in the determinant

✁

4

5

6

7

8

9

Solution Since 6 lies in the second row and third column, its minor M is
given by

23

1

2

M =

= 8 – 14 = – 6 (obtained by deleting R and C in ).

23

7

8

2



3

✆

Definition 2 Cofactor of an element a , denoted by A is defined by

ij

ij

A = (–1) i + j M , where M is minor of a .

ij

ij

ij

ij

1

–2

Example 20 Find minors and cofactors of all the elements of the
determinant 4 3

Solution Minor of the element a is M

ij

ij

Here a = 1. So M = Minor of a = 3

11

11

11



M = Minor of the element a = 4

12

12

M = Minor of the element a = –2

21

21
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M = Minor of the element a = 1

22

22

Now, cofactor of a is A . So

ij

ij

A = (–1)1 + 1 M = (–1)2 (3) = 3

11

11

A = (–1)1 + 2 M = (–1)3 (4) = – 4

12

12



A = (–1)2 + 1 M = (–1)3 (–2) = 2

21

21

A = (–1)2 + 2 M = (–1)4 (1) = 1

22

22

Example 21 Find minors and cofactors of the elements a , a in the
determinant

11

21

a

a

a

11

12

13

= a

a

a

21

22



23

✆

a

a

a

31

32

33

Solution By definition of minors and cofactors, we have

a

a

22

23

Minor of a = M =

= a a – a a

11

11

a

a

22



33

23

32

32

33

Cofactor of a = A = (–1)1+1 M = a a – a a

11

11

11

22

33

23

32

a

a

12

13

Minor of a = M =

= a a – a a

21



21

a

a

12

33

13

32

32

33

Cofactor of a = A = (–1)2+1 M = (–1) ( a a – a a ) = – a a + a a 21

21

21

12

33

13

32

12

33

13

32



Remark Expanding the determinant , in Example 21, along R , we have

✆

1

a

a

a

a

a

a

21

22

22

23

21

23

= (–1)1+1 a

+ (–1)1+2 a

+ (–1)1+3 a a

a

✆



11

a

a

12

a

a

13

31

32

32

33

31

33

= a A + a A + a A , where A is cofactor of a

11

11

12

12

13

13



ij

ij

= sum of product of elements of R with their corresponding cofactors

1

Similarly, can be calculated by other five ways of expansion that is along R
, R ,

✆

2

3

C , C and C .

1

2

3

Hence = sum of the product of elements of any row (or column) with their

✆

corresponding cofactors.

Note If elements of a row (or column) are multiplied with cofactors of any

other row (or column), then their sum is zero. For example,
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= a A + a A + a A

✆

11

21

12

22

13

23

a

a

a

a

12

13

11

13

a

a

= a (–1)1+1

+ a (–1)1+2



+ a (–1)1+3 11

12

11

a

a

12

a

a

13

32

33

31

33

a

a

31

32

a

a

a



11

12

13

= a

a

a

11

12

13 = 0 (since R and R are identical)

1

2

a

a

a

31

32

33

Similarly, we can try for other rows and columns.

Example 22 Find minors and cofactors of the elements of the determinant

2



3

–

5

6

0

4 and verify that a A + a A + a A = 0

11

31

12

32

13

33

1

5

7

–

0

4

Solution We have M =

= 0 –20 = –20; A = (–1)1+1 (–20) = –20



11

5

– 7

11

6

4

M =

= – 42 – 4 = – 46;

A = (–1)1+2 (– 46) = 46

12

1

– 7

12

6

0

M =

= 30 – 0 = 30;

A = (–1)1+3 (30) = 30

13

1



5

13

3

–

5

M =

= 21 – 25 = – 4;

A = (–1)2+1 (– 4) = 4

21

5

7

–

21

2

5

M =

= –14 – 5 = –19;

A = (–1)2+2 (–19) = –19

22

1



– 7

22

2

– 3

M =

= 10 + 3 = 13;

A = (–1)2+3 (13) = –13

23

1

5

23

– 3

5

M =

= –12 – 0 = –12;

A = (–1)3+1 (–12) = –12

31

0

4

31



126

MATHEMATICS

2

5

M =

= 8 – 30 = –22;

A = (–1)3+2 (–22) = 22

32

6

4

32

2

– 3

and

M =

= 0 + 18 = 18;

A = (–1)3+3 (18) = 18

33

6

0



33

Now

a = 2, a = –3, a = 5; A = –12, A = 22, A = 18

11

12

13

31

32

33

So

a A + a A + a A

11

31

12

32

13

33

= 2 (–12) + (–3) (22) + 5 (18) = –24 – 66 + 90 = 0

EXERCISE 4.4

Write Minors and Cofactors of the elements of following determinants:



2

– 4

a

c

1. (i)

(ii)

0

3

b

d

1

0

0

1

0

4

2. (i) 0

1

0

(ii)



3

5

– 1

0

0 1

0

1

2

5

3 8

3. Using Cofactors of elements of second row, evaluate = 2

0 1 .

✆

1

2

3

1

x

yz

4. Using Cofactors of elements of third column, evaluate = 1



y

zx .

✆

1

z

xy

a

a

a

11

12

13

5. If = a

a

a

21

22

23 and A is Cofactors of a , then value of

is given by

✆



ij

ij

✆

a

a

a

31

32

33

(A) a A + a A + a A

(B) a A + a A + a A

11

31

12

32

13

33

11

11

12



21

13

31

(C) a A + a A + a A

(D) a A + a A + a A



21

11

22

12

23

13

11

11

21

21

31

31

4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section,
we shall

discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A, i.e., A–1 we shall first define adjoint of a
matrix.
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4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix A = [ a ]



is defined as the transpose of

ij n × n

the matrix [A ]

, where A is the cofactor of the element a . Adjoint of the matrix A

ij n × n

ij

ij

is denoted by adj A.

a

a

a

11

12

13 ✁

Let

A = ✂ a

a

a ✄

21

22



23

✂

✄

✂

a

a

a

31

32

33 ✄

☎

✆

A

A

A

A

A

A

11

12



13 ✁

11

21

31 ✁

Then

adj A = Transpose of ✂A

A

A ✄ = ✂A

A

A ✄

21

22

23

12

22



32

✂

✄

✂

✄

✂

A

A

A

✂

A

A

A

31

32

33 ✄

☎

13

23



33 ✄

☎

✆

✆

✝

2

3✞

Example 23 Find adj A for A =

✟

1

4✠

✡

☛

Solution We have A = 4, A = –1, A = –3, A = 2

11

12

21



22

☞

A

A ✌

☞

4

–3

11

21

✌

Hence

adj A =

=

✍

A

A ✎

✍

–1

2 ✎

✏



12

22 ✑

✏

✑

Remark For a square matrix of order 2, given by

✝

a

a

11

12 ✞

A = ✟ a

a ✠

✡

21

22 ☛

The adj A can also be obtained by interchanging a and a and by changing
signs 11

22



of a and a , i.e.,

12

21

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order n, then

A( adj A) = ( adj A) A =

,

❆

✒

where I is the identity matrix of order n
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Verification

a

a

a

11

12

13

A



A

A

✁

11

21

31 ✁

✂

✄

Let

A = a

a

a

✂

✄

21

22

23

, then adj A = A

A

A



12

22

32

✂

✄

✂

✄

✂

A

A

A

✂

a

a

a

31

32

33 ✄

☎

13



23

33 ✄

☎

✆

✆

Since sum of product of elements of a row (or a column) with
corresponding

cofactors is equal to | A | and otherwise zero, we have

1

0

0

✝

A

0

0 ✞

✁

A ( adj A) = ✟ 0

A



0 ✠ = A ✂0 1 0✄ = A I

✟

✠

✂

✄

✂

0

0

1

✟

0

0



A ✠

✄

☎

✆

✡

☛

Similarly, we can show ( adj A) A = A I

Hence A ( adj A) = ( adj A) A = A I

Definition 4 A square matrix A is said to be singular if A = 0.

☞

1

2✌

For example, the determinant of matrix A =

is zero

✍

4

8✎

✏

✑



Hence A is a singular matrix.

Definition 5 A square matrix A is said to be nonsingular if A 0

✒

1

2

☞

1

2✌

Let

A =

. Then A =

= 4 – 6 = – 2 0.

✒

✍

3

4✎

3 4

✏

✑

Hence A is a nonsingular matrix



We state the following theorems without proof.

Theorem 2 If A and B are nonsingular matrices of the same order, then AB
and BA

are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product
of their

respective determinants, that is, AB = A B , where A and B are square
matrices of

the same order

✓

A

0

0 ✔

Remark We know that ( adj A) A = A I = ✕ 0

A

0 ✖

✕

✖

✕

0

0



A ✖

✗

✘
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Writing determinants of matrices on both sides, we have

A

0

0

( adj A) A =

0

A

0

0

0

A

1

0

0

3

i.e.



|( adj A)| |A| = A 0

1

0

(Why?)

0

0

1

i.e.

|( adj A)| |A| = | A |3 (1)

i.e.

|( adj A)| = | A |2

In general, if A is a square matrix of order n, then | adj (A) | = | A | n – 1.

Theorem 4 A square matrix A is invertible if and only if A is nonsingular
matrix.

Proof Let A be invertible matrix of order n and I be the identity matrix of
order n.

Then, there exists a square matrix B of order n such that AB = BA = I

Now

AB = I. So AB = I or A B = 1 (since I 1, AB

A B )

This gives



A

0. Hence A is nonsingular.

✂

Conversely, let A be nonsingular. Then A 0

✂

Now

A ( adj A) = ( adj A) A = A I

(Theorem 1)

✁

1

✄

✁

1

or

A

adj A

adj A ✄

☎

A ☎ I

✆



| A |

✝

✆

| A |

✝

✞

✟

✞

✟

1

or

AB = BA = I, where B =

adj A

| A |

1

Thus

A is invertible and A–1 =

adj A



| A |

1

✠

3

3✡

Example 24 If A = 1

☛

4

3☞ , then verify that A adj A = | A | I. Also find A–1.

☛

☞

1

☛

3

4☞

✌

✍

Solution We have A = 1 (16 – 9) –3 (4 – 3) + 3 (3 – 4) = 1 0

✂
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Now A = 7, A = –1, A = –1, A = –3, A = 1,A = 0, A = –3, A = 0,

11

12

13

21

22

23

31

32

A = 1

33

✁

7

3

3✂

Therefore

adj A = ✄ 1

1



0 ☎

✄

☎

✄

1

0

1 ☎

✆

✝

1 3

3

7

✞3



3

✞

✟

✠

✟

✠

Now

A ( adj A) = 1

✡

4

3☛ ✡ 1

1



0☛

✞

✡

☛

✡

☛

1

✡

3

4☛ ✡ 1

0



1☛

✞

☞

✌

☞

✌

✟

7

✍

✍

✍

✍

✞

3 ✞ 3

3

✞

3 0



✞ 3

0

3✠

= ✡7

4 3

3 ✍ 4 ✍ 0

✍

✍

✞ 3

0

3☛

✞

✞

✞

✡

☛



✡ 7

3 4

3 ✍ 3 ✍ 0

3 ✍ ✍

✞

0

4☛

✞

✞

✞

☞

✌

✁ 1

0

0

✁

1

0



0✂

✂

= ✄0

1

0☎ = (1) ✄0 1 0☎ = A . I

✄

☎

✄

☎

✄ 0

0

1

✄

0

0



1☎

☎

✆

✝

✆

✝

7

3

✟

7

✞ 3

3

✞

✞



3

✞

✠

✟

✠

1

✡

☛

✎ 1

1

Also

A

=

✡

1

1

0☛ =



1

✞

1

0

✞

✏

adj A

A

1

✡

☛

✡

☛

✡

1

0



1☛

✞

✡

1

0

1☛

✞

☞

✌

☞

✌

2

3

1

✑

✒

✓

✒

2✓



Example 25 If A =

and B

, then verify that (AB)–1 = B–1A–1.

✔

✕

1

4✖

✕

1

3 ✖

✑

✑

✗

✘

✗

✘

2

3

1

✑



2

✑

✒

✓

✒

✓

✒

1

5 ✓

Solution We have AB =

✔

✕

1

4✖ ✕ 1

3 ✖ ✕ 5



14✖

✑

✑

✑

✗

✘

✗

✘

✗

✘

Since,

AB = –11 0, (AB)–1 exists and is given by

✙

1

1

14

1 14

✧



5★

✚

✚

✛

5✜

(AB)–1 =

adj (AB)

✩

✢

✚

AB

11

✪

✫

✣

5

1✤

11 5



1

✚

✚

✬

✭

✥

✦

Further, A = –11 0 and B = 1 0. Therefore, A–1 and B–1 both exist and are
given by

✙

✙

1 ✑ 4

✑

✒

3✓

✒ 3

2

1

✓

A–1 = ✑



, B✮ ✔

11 ✕ 1

2 ✖

✕ 1

1✖

✑

✗

✘

✗

✘
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1 3

2

1

1 14

✂

5

✁ 14

✁

✂



5

✁ 4

✁

✂

✄

✂

3

Therefore

1

1

B A

✄

✄

✄

☎

✁

☎

✁

☎

11 ✆1



1✝ ✆ 1

2 ✝

11 ✆

5

11 ✆ 5

1✝

✁



✁ 1✝

✁

✞

✟

✞

✟

✞

✟

✞

✟

Hence (AB)–1 = B–1 A–1

✠

2

3✡

Example 26 Show that the matrix A =



satisfies the equation A2 – 4A + I = O,

☛

1

2☞

✌

✍

where I is 2 × 2 identity matrix and O is 2 × 2 zero matrix. Using this
equation, find A–1.

✠

2

3✡ ✠2

3✡

✠

7 12

Solution We have

2

A



A.A

✡

✎

✎

✎

☛

1

2☞ ☛1

2☞

☛

4

7 ☞

✌

✍

✌

✍

✌

✍

✠



0

0

✠

7 12✡

✠

8 12✡

✠

1

0✡

✡

Hence

2

A

✎

✎



O

✎

✏

4A ✑ I

✏

✑

☛

4

7 ☞

☛

4

8 ☞

☛

0

1☞

☛

0



0☞

✌

✍

✌

✍

✌

✍

✌

✍

Now

A2 – 4A + I = O

Therefore

A A – 4A = – I

or

A A (A–1) – 4 A A–1 = – I A–1 (Post multiplying by A–1 because |A| 0)

✒

or

A (A A–1) – 4I = – A–1

or

AI – 4I = – A–1



4

0

2

3

2

✏

✠

✡

✠

✡

✠

3✡

or

A–1 = 4I – A =

✎

✏

☛



0

4☞

☛

1

2☞

☛

1

2 ☞

✏

✌

✍

✌

✍

✌

✍

2



3

✏

✠

✡

✓ 1

Hence

A

✎

☛

1

2 ☞

✏

✌

✍

EXERCISE 4.5

Find adjoint of each of the matrices in Exercises 1 and 2.

1

✔

✕



1 2✖

✂

1

2✄

1.

2. ✗ 2

3

5✘

✆

3

4✝

✗

✘

✞

✟

✗

2

0



1✘

✔

✙

✚

Verify A ( adj A) = ( adj A) A = | A | I in Exercises 3 and 4

1 ✔

✕

1

2 ✖

✗

✘

✂

2

3 ✄

3

0

✔ 2

3.



4. ✗

✘

✆

4

6✝

✁

✁

✞

✟

✗ 1

0

3 ✘

✙

✚
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Find the inverse of each of the matrices (if it exists) given in Exercises 5 to
11.

✞



1

2

3✟

✁

1

5

✁

2

2✂

✂

✠

✡

5.

6.

7.

0

2

4

✄



4

3 ☎

✄

3

2☎

✠

✡

✆

✝

✆

✝

✠

0

0

5✡

☛

☞



1

✌

✞

1

2

✞

2

1

3

✞ 1

0

0 ✟

✟

✟

✠

✡

8.



3

3

0

9. ✠ 4

1 0✡

10. ✠0

2



✌ 3✡

✌

✠

✡

✠

✡

✠

✡

✠

3

2

4

✠

7

2



1

✠

5

2

1✡

✌

✡

✌

✡

✌

☛

☞

☛

☞

☛

☞

✍

1



0

0

✎

11.

✏

0

cos

sin

✑

✒

✒

✏

✑

✏

0

sin



cos ✑

✒

✓

✒

✔

✕

✖

6

8

✖

3

7✗

✗

12. Let A =

and B =

. Verify that (AB)–1 = B–1 A–1.

✘

2

5✙

✘



7

9✙

✚

✛

✚

✛

✖

3

1✗

13. If A =

, show that A2 – 5A + 7I = O. Hence find A–1.

✘

1 2✙

✜

✚

✛

✖ 3

2✗

14. For the matrix A =

, find the numbers a and b such that A2 + a A + b I = O.



✘ 1

1✙

✚

✛

✞

1

1

1 ✟

15. For the matrix A = ✠1

2

3✡

✌

✠

✡

✠

2

1



3 ✡

✌

☛

☞

Show that A3– 6A2 + 5A + 11 I = O. Hence, find A–1.

2

✌

✞

1

1 ✟

16. If A = ✠ 1

2



1✡

✌

✌

✠

✡

✠

1

1

2 ✡

✌

☛

☞

Verify that A3 – 6A2 + 9A – 4I = O and hence find A–1

17. Let A be a nonsingular square matrix of order 3 × 3. Then | adj A | is
equal to

(A) | A |

(B) | A |2

(C) | A |3



(D) 3 | A |

18. If A is an invertible matrix of order 2, then det (A–1) is equal to

1

(A) det (A)

(B)

(C) 1

(D) 0

det (A)
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4.7 Applications of Determinants and Matrices

In this section, we shall discuss application of determinants and matrices for
solving the

system of linear equations in two or three variables and for checking the
consistency of

the system of linear equations.

Consistent system A system of equations is said to be consistent if its
solution (one

or more) exists.

Inconsistent system A system of equations is said to be inconsistent if its
solution

does not exist.

Note In this chapter, we restrict ourselves to the system of linear equations



having unique solutions only.

4.7.1 Solution of system of linear equations using inverse of a matrix

Let us express the system of linear equations as matrix equations and solve
them using

inverse of the coefficient matrix.

Consider the system of equations

a x + b y + c z = d

1

1

1

1

a x + b y + c z = d

2

2

2

2

a x + b y + c z = d

3

3

3



3

✁

a

b

c ✂

✁

x✂

✁

d

1

1

1

1 ✂

Let

A = ✄ a

b

c ☎ , X

✄

y☎

✆



and B ✄

✆

d ☎

2

2

2

2

✄

☎

✄

☎

✄

☎

✄

a

b

c ☎

✄

z ☎

✄



d

✝

3

3

3 ✞

✝

✞

✝

3 ☎

✞

Then, the system of equations can be written as, AX = B, i.e.,

✁

d

✁

a

b

c ✂ ✁ x



1

1

1

✂

1 ✂

✄ a

b

c ☎ ✄ y☎

✄

d ☎

2

2

2

=



2

✄

☎

✄

☎

✄

☎

✄

d

✄

a

b

c ☎ ✄ z

✝

3 ☎

✝

3

3



3

☎

✞

✝

✞

✞

Case I If A is a nonsingular matrix, then its inverse exists. Now

AX = B

or

A–1 (AX) = A–1 B

(premultiplying by A–1)

or

(A–1A) X = A–1 B

(by associative property)

or

I X = A–1 B

or

X = A–1 B



This matrix equation provides unique solution for the given system of
equations as

inverse of a matrix is unique. This method of solving system of equations is
known as

Matrix Method.
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Case II If A is a singular matrix, then | A | = 0.

In this case, we calculate ( adj A) B.

If ( adj A) B O, (O being zero matrix), then solution does not exist and the

✂

system of equations is called inconsistent.

If ( adj A) B = O, then system may be either consistent or inconsistent
according

as the system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations

2 x + 5 y = 1

3 x + 2 y = 7

Solution The system of equations can be written in the form AX = B, where

2

5✁



x✁

1✁

A =

, X ✄

and B ✄

☎

3

2✆

☎

y✆

☎ 7✆

✝

✞

✝

✞

✝

✞



Now, A = –11 0, Hence, A is nonsingular matrix and so has a unique
solution.

✂

1

2

✟ 5✁

Note that

A–1 = ✟ 11☎ 3 2 ✆

✟

✝

✞

1

2

✟ 5✁

1

Therefore

X = A–1B = –

✁



11 ☎ 3

2 ✆ ☎7✆

✟

✝

✞

✝

✞

x

1 ✠

✡

33☛ ✡ 3

✁

☛



i.e.

= ✠

☞

☎

y ✆

11 ✌ 11 ✍ ✌ 1✍

✠

✝

✞

✎

✏

✎

✏

Hence

x = 3, y = – 1

Example 28 Solve the following system of equations by matrix method.

3 x – 2 y + 3 z = 8

2 x + y – z = 1



4 x – 3 y + 2 z = 4

Solution The system of equations can be written in the form AX = B, where

3

2

✑

✒

3 ✓

✒

x✓

✒

8✓

A

✔

2

1

1✕ , X

✔

y✕ and B

✔



1✕

✖

✑

✖

✖

✔

✕

✔

✕

✔

✕

✔

4

3

2 ✕

✔

z ✕

✔



4✕

✑

✗

✘

✗

✘

✗

✘

We see that

A = 3 (2 – 3) + 2(4 + 4) + 3 (– 6 – 4) = – 17 0

✂
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Hence, A is nonsingular and so its inverse exists. Now

A = –1,

A = – 8,

A = –10

11

12

13

A = –5,



A = – 6,

A = 1

21

22

23

A = –1,

A = 9,

A = 7

31

32

33

✁

1

5

1✂

1

Therefore

A–1 =

✄

8



6

9 ☎

17 ✄

☎

✄

10

1

7 ☎

✆

✝

✞ 1

✞

5 ✞

✟

1✠ ✟8✠

1

So



X =

–1

A B =

✡

8

6

9 ☛ ✡1☛

✞

✞

✞

17 ✡

☛

✡

☛

✡

10

1



7 ☛ ✡4☛

✞

☞

✌

☞

✌

✁

17✂

✁ 1

✁

x ✂

✂

1

i.e.

✄

y ☎ =

✄

34☎



✄ 2☎

✍

✄

☎

17 ✄

☎

✄

☎

✄

51☎

✄ 3

✄



z ☎

☎

✆

✝

✆

✝

✆

✝

Hence

x = 1, y = 2 and z = 3.

Example 29 The sum of three numbers is 6. If we multiply third number by
3 and add

second number to it, we get 11. By adding first and third numbers, we get
double of the

second number. Represent it algebraically and find the numbers using
matrix method.

Solution Let first, second and third numbers be denoted by x, y and z,
respectively.

Then, according to given conditions, we have

x + y + z = 6

y + 3 z = 11



x + z = 2 y or x – 2 y + z = 0

This system can be written as A X = B, where

x

✎

6

✎

1

1

1✏

✎

✏

✏

A = ✑0

1

3✒ , X = ✑ ✒



y and B = 11

✑

✒

✑

✒

✑

✒

✑

✒

–

z

✑

0

✑

1



2 1✒

✑

✒

✒

✓

✔

✓

✔

✓

✔

Here A

. Now we find adj A

✗

1 1 ✘ 6 – (0 – 3) ✘ 0 – 1 ✗ 9 ✙ 0

✕

✖

✕

✖

A = 1 (1 + 6) = 7,

A = – (0 – 3) = 3,



A = – 1

11

12

13

A = – (1 + 2) = – 3,

A = 0,

A = – (– 2 – 1) = 3

21

22

23

A = (3 – 1) = 2,

A = – (3 – 0) = – 3,

A = (1 – 0) = 1

31

32

33
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7

–3



2 ✁

Hence

adj A = ✂ 3

0

–3✄

✂

✄

✂

–1

3

1 ✄

☎

✆

7

– 3

2 ✁

1

1

Thus

A –1 =



adj (A) = ✂ 3

0

– 3✄

A

9 ✂

✄

✂

– 1

3

1 ✄

☎

✆

Since

X = A–1 B

✝

7

– 3

2 ✞ ✝ 6 ✞

1



X =

✟

3

0

– 3✠ 1

✟

1✠

9 ✟

✠

✟

✠

✟

– 1

3



1 ✠ ✟ 0 ✠

✡

☛

✡

☛

x

42

☞ 1

☞

9

✒

33 ✓

☞

0

☞

✌

✌

✌

✌



1

1

✍

✎

y

✍

18

✍18✎

✍

2✎

✓

0 ✓ 0✎



or

=

=

=

✍

✎

✍

✎

✍

✎

✍

✎

z

9

9

✍

3

✍



27

✍

✎

✎

✒ 6 ✓ 33 ✓ 0✎

✍

✎

✏

✑

✏

✑

✏

✑

✏

✑

Thus

x = 1, y = 2, z = 3

EXERCISE 4.6

Examine the consistency of the system of equations in Exercises 1 to 6.

1. x + 2 y = 2



2. 2 x – y = 5

3. x + 3 y = 5

2 x + 3 y = 3

x + y = 4

2 x + 6 y = 8

4. x + y + z = 1

5. 3 x– y – 2 z = 2

6. 5 x – y + 4 z = 5

2 x + 3 y + 2 z = 2

2 y – z = –1

2 x + 3 y + 5 z = 2

ax + ay + 2 az = 4

3 x – 5 y = 3

5 x – 2 y + 6 z = –1

Solve system of linear equations, using matrix method, in Exercises 7 to 14.

7. 5 x + 2 y = 4

8. 2 x – y = –2

9. 4 x – 3 y = 3

7 x + 3 y = 5

3 x + 4 y = 3



3 x – 5 y = 7

10. 5 x + 2 y = 3

11. 2 x + y + z = 1

12. x – y + z = 4

3

3 x + 2 y = 5

x – 2 y – z =

2 x + y – 3 z = 0

2

3 y – 5 z = 9

x + y + z = 2

13. 2 x + 3 y +3 z = 5

14. x – y + 2 z = 7

x – 2 y + z = – 4

3 x + 4 y – 5 z = – 5

3 x – y – 2 z = 3

2 x – y + 3 z = 12
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2

–3



5✁

15. If A = ✂3

2

– 4✄ , find A–1. Using A–1 solve the system of equations

✂

✄

✂

1

1

–2✄

☎

✆

2 x – 3 y + 5 z = 11

3 x + 2 y – 4 z = – 5

x + y – 2 z = – 3

16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2
kg onion,

4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3
kg

rice is Rs 70. Find cost of each item per kg by matrix method.

Miscellaneous Examples



Example 30 If a, b, c are positive and unequal, show that value of the
determinant

a

b

c

= b

c

a is negative.

✝

c

a

b

Solution Applying C

C + C + C to the given determinant, we get

1 ✞

1

2

3

a

1 b



c

✟

b ✟ c

b

c

= a

= ( a + b + c) 1 c

a

✟

b ✟ c

c

a

✝

a

1 a

b

✟



b ✟ c

a

b

1

b

c

= ( a + b + c) 0

c – b

a – c (Applying R

R –R ,and R

R –R )

2✞

2

1

3✞

3

1

0

a – b



b – c

= ( a + b + c) [( c – b) ( b – c) – ( a – c) ( a – b)] (Expanding along C ) 1

= ( a + b + c)(– a 2 – b 2 – c 2 + ab + bc + ca) 1

–

=

( a + b + c) (2 a 2 + 2 b 2 + 2 c 2 – 2 ab – 2 bc – 2 ca) 2

1

–

=

( a + b + c) [( a – b)2 + ( b – c)2 + ( c – a)2]

2

 

which is negative (since a + b + c > 0 and ( a – b)2 + ( b – c)2 + ( c – a)2 >
0)
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Example 31 If a, b, c, are in A.P, find value of

2 y

4 5 y



7

8 y

a

3 y

5 6 y 8 9 y

b

4 y

6

7 y

9 10 y

c

Solution Applying R

R + R – 2R to the given determinant, we obtain

1 ✄

1

3

2

0

0

0



3 y ✁ 5 6 y ✁ 8 9 y ✁ b = 0 (Since 2 b = a + c) 4 y ✁ 6

7 y ✁ 9 10 y ✁ c

Example 32 Show that

2

y✝ z

xy

zx

✂

☎

2

=

xy

x

= 2 xyz ( x + y + z)3

✝

z



yz

✂

☎

✆

2

xz

yz

x✝ y

✂

☎

Solution Applying R

x R , R

y R , R

z R to and dividing by xyz, we get

1 ✄

1

2 ✄

2

3 ✄



3

✆

2

2

2

x y z

x y

x z

✝

✞

✟

1

2

2

2

=

xy

y x z



y z

✝

✞

✟

✆

xyz

2

2

2

xz

yz

z x

y

✝

✞

✟

Taking common factors x, y, z from C C and C , respectively, we get

1



2

3

2

2

2

y ✝ z

x

x

✠

✡

xyz

2

2

2

=

y

x ✝ z



y

✠

✡

✆

xyz

2

2

2

z

z

x ✝ y

✠

✡

Applying C

C – C , C

C – C , we have

2 ✄

2



1

3 ✄

3

1

2

2

2

2

2

y ✌ z

x – y ✌ z

x ✍ y ✌ z

☛

☞

☛

☞

☛

☞

2

2



2

=

y

x ✌ z

✍

y

0

☛

☞

✆

2

2

2

z

0

x ✌ y

– z

☛

☞
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Taking common factor ( x + y + z) from C and C , we have

2

3

2

y ✂ z

x – y ✂ z

x – y ✂ z

✁

✁

✁

= (

2

x + y + z)2

y

x ✂ z – y

0

✁

✆

2

z



0

x ✂ y – z

✁

Applying R

R – (R + R ), we have

1 ✄

1

2

3

2 yz

– 2 z

– 2 y

= ( x + y + z)2

2

y

x ☎ y + z

0

✆

2

z



0

x ✝ y – z

1

✞

1

Applying C

(C +

C ) and C

, we get

✠

C ✡

C ✟

2 ✄

2

y

1

3

☛



3

1 ☞

z

✌

✍

2 yz

0

0

2

y

= ( x + y + z)2

2

y

x z

✎

✆

z

2

z

2



z

x

y

✎

y

Finally expanding along R , we have

1

= ( x + y + z)2 (2 yz) [( x + z) ( x + y) – yz] = ( x + y + z)2 (2 yz) ( x 2 + xy +
xz)

✆

= ( x + y + z)3 (2 xyz)

–

–

✏

1

1

2 ✑ ✏ 2

0

1 ✑

Example 33 Use product ✒0



2

3✓ ✒

–

9

2

3✓

–

to solve the system of equations

✒

✓

✒

✓

–

–

✒

3

2

4 ✓ ✒ 6

1



2✓

✔

✕

✔

✕

x – y + 2 z = 1

2 y – 3 z = 1

3 x – 2 y + 4 z = 2

✖

1

– 1

2 ✗ ✖ – 2

0

1 ✗

Solution Consider the product ✘0

2

– 3✙ ✘ 9

2



– 3✙

✘

✙

✘

✙

✘

3

– 2

4 ✙ ✘ 6

1

– 2 ✙

✚

✛

✚

✛
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2

9

✟



1

0

0

✁

12

0

2 ✁ 2

1✁

✂

3 4✄

✠

= ☎ 0 18 18

0

4 3

0 6



6✆ = ✡0 1 0☛

✁

✁

✁

☎

✆

✡

☛

✡

0

0

1

☎

6 18 24

0

4

4



3 6 8✆

☛

✁

✁

✁

☞

✌

✝

✞

– 1

–

–

✍

1

1

2 ✎

✍

2

0



1 ✎

Hence

✏0

2

– 3✑

✏

9

2

– 3✑

✒

✏

✑

✏

✑

–

–

✏

3

2



4 ✑

✏

6

1

2✑

✓

✔

✓

✔

Now, given system of equations can be written, in matrix form, as follows

✟

1

✍

1

–1

2 ✎ ✍ x✎

✠

✏

0



2

–3✑ ✏ y✑ = ✡1☛

✏

✑

✏

✑

✡

☛

✡

2

✏

3

–2



4 ✑ ✏ z ✑

☛

✓

✔

✓

✔

☞

✌

✕ 1

x

1

–

✢

1

✢

2

0



1

✖

✣

✣

✗

1

2 ✘

✗

1

✟

✠

✘

or

✡

☛

y = ✙0

2

3✚

✙



1✚ = ✤ 9

2

3✥

–

✤

1✥

✖

✡

☛

✙

✚

✙

✚

✤

✥

✤

✥



z

–

✤

2

✤

6

1

2

✙

3

✥

✥

✖ 2

4✚

✙



2✚

✡

☛

☞

✌

✦

✧

✦

✧

✛

✜

✛

✜

2 ✁ 0 ✁

✂

2✄

✂

0✄

= ☎ 9



2 6 ✆

☎

★

5✆

✁

☎

✆

☎

✆

☎

6 1 4 ✆

☎

3✆

✁

✝

✞

✝

✞



Hence

x = 0, y = 5 and z = 3

Example 34 Prove that

a ✪ bx

c ✪ dx

p ✪ qx

a

c

p

2

= ax

✫

✬

✪

b

cx ✪ d

px ✪ q

(1 x ) b

d



q

✩

u

v

w

u

v

w

Solution Applying R

R – x R to , we get

1

✩

✭

1

2

2

2

2

a (1✮ x )

c (1✮ x )



p (1 ✮ x )

=

ax ✯ b

cx ✯ d

px ✯ q

✩

u

v

w

a

c

p

2

= (1✰ x ) ax ✱ b

cx ✱ d

px ✱ q

u

v

w
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Applying R

R – x R , we get

2 ✄

2

1

a

c

p

2

= (1 x ) b

d

q

✆

u

v

w

Miscellaneous Exercises on Chapter 4

x

sin ✁

cos ✁



1. Prove that the determinant – sin

is independent of .

✁

– x

1

☞

cos ✁

1

x

2

2

3

a

a

bc

1 a

a

2. Without expanding the determinant, prove that

2

2



3

b

b

ca

b

b .

✂

1

2

2

3

c

c

ab

1 c

c

cos☎ cos✝

cos ☎ sin✝

– sin ☎



3. Evaluate

– sin

.

✝

cos✝

0

sin ☎ cos✝

sin ☎ sin✝

cos☎

4. If a, b and c are real numbers, and

b ✞ c

c ✞ a

a ✞ b

= c

= 0,

✞

a



a ✞ b

b ✞ c

✆

a ✞ b

b ✞ c

c ✞ a

Show that either a + b + c = 0 or a = b = c.

x ✟ a

x

x

5. Solve the equation

x

x

, a 0

✟

a



x

✠

0

✡

x

x

x ✟ a

2

2

a

bc

ac c

☛

6. Prove that 2

2

a

ab

b

ac



= 4 a 2 b 2 c 2

☛

2

2

ab

b

bc

c

☛

✎

3

– 1

1 ✏

✎

1

2

2

– ✏



– 1

✑

✒

✑

✒

7. If A–1 = – 15

6

5

–

and B✓ – 1

3

0 , find AB

✌

✍

✑

✒

✑

✒

✑

5



– 2

2 ✒

✑

0

– 2

1 ✒

✔

✕

✔

✕
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1

2

–

1✁

8. Let A = ✂ 2

–

3



1✄ . Verify that

✂

✄

✂

1

1

5✄

☎

✆

(i) [ adj A]–1 = adj (A–1)

(ii) (A–1)–1 = A

x

y

x ✝ y

9. Evaluate

y

x ✝ y

x

x ✝ y



x

y

1

x

y

10. Evaluate 1

x ✝ y

y

1

x

x+ y

Using properties of determinants in Exercises 11 to 15, prove that:

2

✞

✞

✟

✠

✡



11.

2

= ( – ) ( – ) ( – ) ( + + )

✟

✟

✡

✠

✞

☛

✌

✌

☞

☞

☛

☞

☛

✌



2

✡

✡

✞

✠

✟

2

3

x

x

1

px

✍

12.

2

3

y

y



1

py = (1 + pxyz) ( x – y) ( y – z) ( z – x), where p is any scalar.

✍

2

3

z

z

1

pz

✍

3 a

– a+ b

– a+ c

13.

– b

= 3( a + b + c) ( ab + bc + ca)

✠

a

3 b



– b ✠ c

– c ✠ a

– c+ b

3c

1

1

sin ✑

cos ✑

cos

✝

p

1✝ p ✝ q

✑

✒

✓

✎

✏

14.



2

3

sin ✔

cos✔

cos ✔

✕

✒

✓

0

✝

2 p

4 ✝ 3 p ✝ 2 q = 1

15.

✎

✏

3

6

sin ✖

cos ✖



cos

✝

3 p 10 ✝ 6 p ✝ 3 q

✖

✒

✓

✎

✏

16. Solve the system of equations

2

3

10

✗

✗

✘

4

x

y

z
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4

6

5

–

✁

1

x

y

z

6

9

20

–

✁

2

x

y

z

Choose the correct answer in Exercise 17 to 19.



17. If a, b, c, are in A.P, then the determinant

x ✂ 2

x ✂ 3

x ✂ 2 a

x ✂ 3

x ✂ 4

x ✂ 2 b is

x ✂ 4

x ✂ 5

x ✂ 2 c

(A) 0

(B) 1

(C) x

(D) 2 x

✄

x

0

0☎

18. If x, y, z are nonzero real numbers, then the inverse of matrix A

✆



0

y

0✝ is

✞

✆

✝

✆

0

0

z✝

✟

✠

✡ 1

✡ 1

☛

x

0



0

☛

x

0

0 ☞

☞

✌

✍

✌

✍

(A)

✡ 1

✡ 1

(B) xyz ✌ 0

y

0

✌

0

y



0 ✍

✍

✌

✍

✌

✍

✡ 1

✡

1

0

0

z

0

0



z

✎

✏

✎

✏

✄

1

0

0

✑

x

0

0✒

☎

1

1

(C)

✓

0

y



0✔

(D)

✆

0

1

0✝

xyz ✓

✔

xyz ✆

✝

✆

0

0

1

✓

0

0



z✔

✝

✕

✖

✟

✠

1

sin ✗

✑

1 ✒

19. Let A = ✓ sin

1

sin ✔ , where 0



2 . Then

✘

✗

✗

✙

✚

✙

✛

✓

✔

✓

1

sin

1 ✔

✘

✘

✗

✕

✖

(A) Det (A) = 0



(B) Det (A) (2, )

✜

✢

(C) Det (A) (2, 4)

(D) Det (A) [2, 4]

✜

✜
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Summary

Determinant of a matrix A = [ a ]

is given by | a | = a

11 1 × 1

11

11

✁

a

a

Determinant of a matrix

11



12

A

✂

is given by

✄

☎

a

a ✆

✝

21

22 ✞

a

a

11

12

A ✄

= a a – a a

a

a



11

22

12

21

21

22

✟

a

b

c

1

1

1 ✠

Determinant of a matrix A

✡

a

b

c ☛ is given by (expanding along R )

☞



2

2

2

1

✡

☛

✡

a

b

c

3

3

3 ☛

✌

✍

a

b

c

1



1

1

b

c

a

c

a

b

2

2

2

2

2

2

A ✎ a

b

c ✎ a

✏

b

✑



c

2

2

2

1

1

1

b

c

a

c

a

b

3

3

3

3

3

3

a



b

c

3

3

3

For any square matrix A, the |A| satisfy following properties.

|A | = |A|, where A = transpose of A.

✒

✒

If we interchange any two rows (or columns), then sign of determinant

changes.

If any two rows or any two columns are identical or proportional, then
value

of determinant is zero.

If we multiply each element of a row or a column of a determinant by
constant

k, then value of determinant is multiplied by k.

Multiplying a determinant by k means multiply elements of only one row

(or one column) by k.

If

3



A ✔ [ a ]

, then k .A ✔ k A

ij 3✓3

If elements of a row or a column in a determinant can be expressed as sum

of two or more elements, then the given determinant can be expressed as

sum of two or more determinants.

If to each element of a row or a column of a determinant the equimultiples
of

corresponding elements of other rows or columns are added, then value of

determinant remains same.
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Area of a triangle with vertices ( x , y ), ( x , y ) and ( x , y ) is given by 1

1

2

2

3

3

x

y

1

1



1

1

✁

✂

x

y

1

2

2

2 x y 1

3

3

Minor of an element a of the determinant of matrix A is the determinant

ij

obtained by deleting i th row and jth column and denoted by M .

ij

Cofactor of a of given by A = (– 1) i+ j M

ij

ij

ij



Value of determinant of a matrix A is obtained by sum of product of
elements

of a row (or a column) with corresponding cofactors. For example,

A = a A + a A + a A .

11

11

12

12

13

13

If elements of one row (or column) are multiplied with cofactors of
elements

of any other row (or column), then their sum is zero. For example, a A + a

11

21

12

A + a A = 0

22

13

23

✄



A

A

A

✄

a

a

a

11

12

13 ☎

11

21

31 ☎

If A

✆

a

a

a ✝ then adj A

✆



, where A is

✞

A

A

A ✝

✞

,

21

22

23

12

22

32

 



ij

✆

✝

✆

✝

✆

A

A

A

✆

a

a

a

31

32

33 ✝

✟

13



23

33 ✝

✟

✠

✠

cofactor of aij

A ( adj A) = ( adj A) A = | A | I, where A is square matrix of order n.

A square matrix A is said to be singular or nonsingular according as

| A | = 0 or | A | 0.

✡

If AB = BA = I, where B is square matrix, then B is called inverse of A.

Also A–1 = B or B–1 = A and hence (A–1)–1 = A.

A square matrix A has inverse if and only if A is nonsingular.

–1

1

A

☛

( adj A)



A

If

a x + b y + c z = d

1

1

1

1

a x + b y + c z = d

2

2

2

2

a x + b y + c z = d ,

3

3

3

3

then these equations can be written as A X = B, where

☞

a



b

c ✌

☞

x✌

☞

d

1

1

1

1 ✌

A ✍ a

b

c ✎ , X = ✍ y✎

✂

and B = ✍ d ✎

2

2

2



2

✍

✎

✍

✎

✍

✎

✍

a

b

c ✎

✍

z ✎

✍

d

✏

3

3



3 ✑

✏

✑

✏

3 ✎

✑
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Unique solution of equation AX = B is given by X = A–1 B, where A

.

✁

0

A system of equation is consistent or inconsistent according as its solution

exists or not.

For a square matrix A in matrix equation AX = B

(i) | A | 0, there exists unique solution

✂

(ii) | A | = 0 and ( adj A) B 0, then there exists no solution

✂

(iii) | A | = 0 and ( adj A) B = 0, then system may or may not be consistent.



Historical Note

The Chinese method of representing the coefficients of the unknowns of

several linear equations by using rods on a calculating board naturally led to
the

discovery of simple method of elimination. The arrangement of rods was
precisely

that of the numbers in a determinant. The Chinese, therefore, early
developed the

idea of subtracting columns and rows as in simplification of a determinant

‘ Mikami, China, pp 30, 93.

Seki Kowa, the greatest of the Japanese Mathematicians of seventeenth

century in his work ‘ Kai Fukudai no Ho’ in 1683 showed that he had the
idea of

determinants and of their expansion. But he used this device only in
eliminating a

quantity from two equations and not directly in the solution of a set of
simultaneous

linear equations. ‘T. Hayashi, “The Fakudoi and Determinants in Japanese

Mathematics,” in the proc. of the Tokyo Math. Soc., V.

Vendermonde was the first to recognise determinants as independent
functions.

He may be called the formal founder. Laplace (1772), gave general method
of



expanding a determinant in terms of its complementary minors. In 1773
Lagrange

treated determinants of the second and third orders and used them for
purpose

other than the solution of equations. In 1801, Gauss used determinants in
his

theory of numbers.

The next great contributor was Jacques - Philippe - Marie Binet, (1812)
who

stated the theorem relating to the product of two matrices of m-columns and
n-

rows, which for the special case of m = n reduces to the multiplication
theorem.

Also on the same day, Cauchy (1812) presented one on the same subject.
He

used the word ‘determinant’ in its present sense. He gave the proof of
multiplication

theorem more satisfactory than Binet’s.

The greatest contributor to the theory was Carl Gustav Jacob Jacobi, after

this the word determinant received its final acceptance.





Chapter 5

CONTINUITY AND

DIFFERENTIABILITY

The whole of science is nothing more than a refinement

of everyday thinking. ” — ALBERT EINSTEIN

5.1 Introduction

This chapter is essentially a continuation of our study of

differentiation of functions in Class XI. We had learnt to

differentiate certain functions like polynomial functions and

trigonometric functions. In this chapter, we introduce the

very important concepts of continuity, differentiability and

relations between them. We will also learn differentiation

of inverse trigonometric functions. Further, we introduce a

new class of functions called exponential and logarithmic

functions. These functions lead to powerful techniques of

differentiation. We illustrate certain geometrically obvious

conditions through differential calculus. In the process, we

will learn some fundamental theorems in this area.

Sir Issac Newton



5.2 Continuity

(1642-1727)

We start the section with two informal examples to get a feel of continuity.
Consider

the function

1, if x ✁

✂

0

f ( x) ✄ ☎2, if x ✆ 0

✝

This function is of course defined at every

point of the real line. Graph of this function is

given in the Fig 5.1. One can deduce from the

graph that the value of the function at nearby

points on x-axis remain close to each other

except at x = 0. At the points near and to the

left of 0, i.e., at points like – 0.1, – 0.01, – 0.001,

the value of the function is 1. At the points near

and to the right of 0, i.e., at points like 0.1, 0.01,

Fig 5.1
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0.001, the value of the function is 2. Using the language of left and right
hand limits, we

may say that the left (respectively right) hand limit of f at 0 is 1
(respectively 2). In

particular the left and right hand limits do not coincide. We also observe
that the value

of the function at x = 0 concides with the left hand limit. Note that when we
try to draw

the graph, we cannot draw it in one stroke, i.e., without lifting pen from the
plane of the

paper, we can not draw the graph of this function. In fact, we need to lift the
pen when

we come to 0 from left. This is one instance of function being not
continuous at x = 0.

Now, consider the function defined as

1

✁

, if x

0

f ( x) ✂ ✄2, if x ✂ 0

☎



This function is also defined at every point. Left and the right hand limits at
x = 0

are both equal to 1. But the value of the

function at x = 0 equals 2 which does not

coincide with the common value of the left

and right hand limits. Again, we note that we

cannot draw the graph of the function without

lifting the pen. This is yet another instance of

a function being not continuous at x = 0.

Naively, we may say that a function is

continuous at a fixed point if we can draw the

graph of the function around that point without

Fig 5.2

lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely as follows:

Definition 1 Suppose f is a real function on a subset of the real numbers and
let c be a point in the domain of f. Then f is continuous at c if

lim f ( x) ✝ f ( c)

x✆ c

More elaborately, if the left hand limit, right hand limit and the value of the
function



at x = c exist and equal to each other, then f is said to be continuous at x = c.
Recall that if the right hand and left hand limits at x = c coincide, then we
say that the common

value is the limit of the function at x = c. Hence we may also rephrase the
definition of continuity as follows: a function is continuous at x = c if the
function is defined at

x = c and if the value of the function at x = c equals the limit of the function
at

x = c. If f is not continuous at c, we say f is discontinuous at c and c is
called a point of discontinuity of f.
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Example 1 Check the continuity of the function f given by f ( x) = 2 x + 3 at
x = 1.

Solution First note that the function is defined at the given point x = 1 and
its value is 5.

Then find the limit of the function at x = 1. Clearly

lim f ( x) ✁ lim (2 x ✂ 3) ✁ 2 (1) ✂ 3 ✁ 5

x

1

x

1

Thus

lim f ( x) ✁ 5✁ f (1)



x

1

Hence, f is continuous at x = 1.

Example 2 Examine whether the function f given by f ( x) = x 2 is
continuous at x = 0.

Solution First note that the function is defined at the given point x = 0 and
its value is 0.

Then find the limit of the function at x = 0. Clearly

2

2

lim f ( x) ☎ lim x ☎ 0 ☎ 0

x✄ 0

x✄ 0

Thus

lim f ( x) ✁ 0 ✁ f (0)

x

0

Hence, f is continuous at x = 0.

Example 3 Discuss the continuity of the function f given by f( x) = | x | at x
= 0.



Solution By definition

✆

x, if x ✝

✞

0

f ( x) = ✟ , x if x ✠ 0

✡

Clearly the function is defined at 0 and f (0) = 0. Left hand limit of f at 0 is

lim f ( x) ✌ lim (– x) ✌ 0

x

0☛

x

0☛

☞

☞

Similarly, the right hand limit of f at 0 is

lim f ( x) ✌ lim x ✌ 0

x



0✍

x

0✍

☞

☞

Thus, the left hand limit, right hand limit and the value of the function
coincide at

x = 0. Hence, f is continuous at x = 0.

Example 4 Show that the function f given by

3

✎

x ✏ 3, if x ✑

✒

0

f ( x) = ✓1,

if x ☎

✒

0

✔

is not continuous at x = 0.
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Solution The function is defined at x = 0 and its value at x = 0 is 1. When x
0, the

✂

function is given by a polynomial. Hence,

lim f ( x) =

3

3

lim ( x ✄ 3) ☎ 0 ✄ 3 ☎ 3

x

0

x✁0

Since the limit of f at x = 0 does not coincide with f (0), the function is not
continuous at x = 0. It may be noted that x = 0 is the only point of
discontinuity for this function.

Example 5 Check the points where the constant function f ( x) = k is
continuous.

Solution The function is defined at all real numbers and by definition, its
value at any

real number equals k. Let c be any real number. Then

lim f ( x) = lim k ✆ k



x

c

x

c

Since f ( c) = k = lim f ( x) for any real number c, the function f is

continuous at x✝ c

every real number.

Example 6 Prove that the identity function on real numbers given by f ( x)
= x is continuous at every real number.

Solution The function is clearly defined at every point and f ( c) = c for
every real number c. Also,

lim f ( x) = lim x ✞ c

x

x✝ c

✝

c

Thus, lim f ( x) = c = f ( c) and hence the function is continuous at every real
number.

x

c



Having defined continuity of a function at a given point, now we make a
natural

extension of this definition to discuss continuity of a function.

Definition 2 A real function f is said to be continuous if it is continuous at
every point in the domain of f.

This definition requires a bit of elaboration. Suppose f is a function defined
on a

closed interval [ a, b], then for f to be continuous, it needs to be continuous
at every point in [ a, b] including the end points a and b. Continuity of f at a
means lim f ( x) = f ( a)

x

a✟

✠

and continuity of f at b means

lim f ( x) = f( b)

–

x✠ b

Observe that lim f ( x) and lim f ( x) do not make sense. As a consequence x



a

✟

✡

x✠ b

✠

of this definition, if f is defined only at one point, it is continuous there, i.e.,
if the

domain of f is a singleton, f is a continuous function.
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Example 7 Is the function defined by f ( x) = | x |, a continuous function?

Solution We may rewrite f as

x, if x ✁

✂

0

f ( x) = ✄ , x if x ☎ 0

✆

By Example 3, we know that f is continuous at x = 0.



Let c be a real number such that c < 0. Then f ( c) = – c. Also lim f ( x) = lim
(

(Why?)

✞

x) ✟ – c

x

x✝ c

✝

c

Since lim f ( x)

, f is continuous at all negative real numbers.

✡

f ( c)

x✠ c

Now, let c be a real number such that c > 0. Then f ( c) = c. Also lim f ( x) =

lim x ✟ c (Why?)

x



x✝ c

✝

c

Since lim f ( x)

, f is continuous at all positive real numbers. Hence, f

✡

f ( c)

x✠ c

is continuous at all points.

Example 8 Discuss the continuity of the function f given by f ( x) = x 3 + x
2 – 1.

Solution Clearly f is defined at every real number c and its value at c is c 3
+ c 2 – 1. We also know that

lim f ( x) =

3

2

3

2

lim ( x ☞ x ✌ 1) ✍ c ☞ c ✌1



x

x☛ c

✝

c

Thus lim f ( x)

, and hence f is continuous at every real number. This means

✟

f ( c)

x✝ c

f is a continuous function.

1

Example 9 Discuss the continuity of the function f defined by f ( x) =

, x 0.

✎

x

Solution Fix any non zero real number c, we have

1

1



lim f ( x) ✑ lim

✑

x✏ c

x✏ c x

c

1

Also, since for c 0, f ( c)

, we have lim f ( x)

and hence, f is continuous

✡

f ( c)

✑

✎

c

x✠ c

at every point in the domain of f. Thus f is a continuous function.
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We take this opportunity to explain the concept of infinity. This we do by
analysing



1

the function f ( x) =

near x = 0. To carry out this analysis we follow the usual trick of

x

finding the value of the function at real numbers close to 0. Essentially we
are trying to

find the right hand limit of f at 0. We tabulate this in the following (Table
5.1).

Table 5.1

x

1

0.3

0.2

0.1 = 10–1

0.01 = 10–2

0.001 = 10–3

10– n

f ( x)

1

3.333...

5



10

100 = 102

1000 = 103

10 n

We observe that as x gets closer to 0 from the right, the value of f ( x) shoots
up higher. This may be rephrased as: the value of f ( x) may be made larger
than any given number by choosing a positive real number very close to 0.
In symbols, we write

lim f ( x) ✂ ✄ ☎

x✁ 0

(to be read as: the right hand limit of f ( x) at 0 is plus infinity). We wish to
emphasise that +

is NOT a real number and hence the right hand limit of f at 0 does not exist
(as

✆

a real number).

Similarly, the left hand limit of f at 0 may be found. The following table is
self

explanatory.

Table 5.2

x

– 1

– 0.3



– 0.2

– 10–1

– 10–2

– 10–3

– 10– n

f ( x)

– 1

– 3.333...

– 5

– 10

– 102

– 103

– 10 n

From the Table 5.2, we deduce that the

value of f ( x) may be made smaller than any

given number by choosing a negative real

number very close to 0. In symbols,

we write



lim f ( x) ✂

☎

✞

x

0✝

✁

(to be read as: the left hand limit of f ( x) at 0 is

minus infinity). Again, we wish to emphasise

that – is NOT a real number and hence the

✆

left hand limit of f at 0 does not exist (as a real

number). The graph of the reciprocal function

given in Fig 5.3 is a geometric representation

of the above mentioned facts.

Fig 5.3
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Example 10 Discuss the continuity of the function f defined by

x



2, if x ✁

✂

1

f ( x) = ✄ x ☎ 2, if x ✆ 1

✝

Solution The function f is defined at all points of the real line.

Case 1 If c < 1, then f ( c) = c + 2. Therefore, lim f ( x) ✟ lim f ( x ✠ 2) ✟ c

✠ 2

x✞ c

x✞ c

Thus, f is continuous at all real numbers less than 1.

Case 2 If c > 1, then f ( c) = c – 2. Therefore,

lim f ( x)

( x – 2) = c – 2 = f ( c)

✟

lim

x✞ c



x✞ c

Thus, f is continuous at all points x > 1.

Case 3 If c = 1, then the left hand limit of f at

x = 1 is

lim f ( x) ✟ lim ( x ✠ 2) ✟ 1 ✠ 2 ✟ 3

–

–

x

1

✞

x

1

✞

The right hand limit of f at x = 1 is

lim f ( x) ✟ lim ( x ☛ 2) ✟ 1 ☛ 2 ✟ 1

☛

x

1✡



x

1✡

✞

✞

Since the left and right hand limits of f at x = 1

Fig 5.4

do not coincide, f is not continuous at x = 1. Hence

x = 1 is the only point of discontinuity of f. The graph of the function is
given in Fig 5.4.

Example 11 Find all the points of discontinuity of the function f defined by

x ☞ 2, if x ✌

✍

1

✎

f ( x) =

0, if x ✏

✑

1

✎



x ✒ 2, if x ✓ 1

✔

Solution As in the previous example we find that f

is continuous at all real numbers x 1. The left

✕

hand limit of f at x = 1 is

lim f ( x) ✘ lim ( x ✙ 2) ✘ 1✙ 2 ✘ 3

✖

–

x

1

✗

x

1

✗

The right hand limit of f at x = 1 is

lim f ( x) ✟ lim ( x ☛ 2) ✟ 1 ☛ 2 ✟ 1

☛

x



1✡

x

1✡

✞

✞

Since, the left and right hand limits of f at x = 1

do not coincide, f is not continuous at x = 1. Hence

x = 1 is the only point of discontinuity of f. The

graph of the function is given in the Fig 5.5.

Fig 5.5
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Example 12 Discuss the continuity of the function defined by

x

2, if x ✁

✂

0



f ( x) = ✄

☎

x

2, if x ✆ 0

✝

Solution Observe that the function is defined at all real numbers except at
0. Domain

of definition of this function is

D D where D = { x R : x < 0} and

1 ✞

2

1

✟

D = { x R : x > 0}

2

✟

Case 1 If c D , then lim f ( x)



( x + 2)

✡

lim

✟

1

x✠ c

x✠ c

= c + 2 = f ( c) and hence f is continuous in D .

1

Case 2 If c D , then lim f ( x)

( – x + 2)

☞

lim

✟

2

x☛ c

x☛ c

= – c + 2 = f ( c) and hence f is continuous in D .



2

Since f is continuous at all points in the domain of f,

we deduce that f is continuous. Graph of this

function is given in the Fig 5.6. Note that to graph

Fig 5.6

this function we need to lift the pen from the plane

of the paper, but we need to do that only for those points where the function
is not

defined.

Example 13 Discuss the continuity of the function f given by

x, if x ✌

✍

0

✎

f ( x) = ✏ 2

x , if x ✑

✎

0

✒

Solution Clearly the function is defined at



every real number. Graph of the function is

given in Fig 5.7. By inspection, it seems prudent

to partition the domain of definition of f into

three disjoint subsets of the real line.

Let

D = { x R : x < 0}, D = {0} and

1

✟

2

Fig 5.7

D = { x R : x > 0}

3

✟

Case 1 At any point in D , we have f ( x) = x 2 and it is easy to see that it is
continuous 1

there (see Example 2).

Case 2 At any point in D , we have f ( x) = x and it is easy to see that it is
continuous 3

there (see Example 6).
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Case 3 Now we analyse the function at x = 0. The value of the function at 0
is f (0) = 0.

The left hand limit of f at 0 is

2

2

lim f ( x) ✂ lim x ✂ 0 ✂ 0

–

x✁0

x✁0

The right hand limit of f at 0 is

lim f ( x) ✆ lim x ✆ 0

x

0✄

x

0✄

☎

☎

Thus lim f ( x)



= f (0) and hence f is continuous at 0. This means that f is

✆

0

x☎0

continuous at every point in its domain and hence, f is a continuous
function.

Example 14 Show that every polynomial function is continuous.

Solution Recall that a function p is a polynomial function if it is defined by

p( x) = a + a x + ... + a xn for some natural number n, a 0 and a R. Clearly
this 0

1

n

n ✝

i ✞

function is defined for every real number. For a fixed real number c, we
have

lim p ( x) ✠ p ( c)

x✟ c

By definition, p is continuous at c. Since c is any real number, p is
continuous at every real number and hence p is a continuous function.



Example 15 Find all the points of discontinuity of the greatest integer
function defined

by f ( x) = [ x], where [ x] denotes the greatest integer less than or equal to x.

Solution First observe that f is defined for all real numbers. Graph of the
function is given in Fig 5.8. From the graph it looks like that f is
discontinuous at every integral

point. Below we explore, if this is true.

Fig 5.8
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Case 1 Let c be a real number which is not equal to any integer. It is evident
from the graph that for all real numbers close to c the value of the function
is equal to [ c]; i.e., lim f ( x)

. Also f ( c) = [ c] and hence the function is continuous at all real

✁

lim [ x] ✁ [ c]

x

c

x

c

numbers not equal to integers.

Case 2 Let c be an integer. Then we can find a sufficiently small real
number



r > 0 such that [ c – r] = c – 1 whereas [ c + r] = c.

This, in terms of limits mean that

lim f ( x) = c – 1, lim f ( x) = c

x

c✂

x

c✄

☎

Since these limits cannot be equal to each other for any c, the function is

discontinuous at every integral point.

5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we
learnt some

algebra of limits. Analogously, now we will study some algebra of
continuous functions.

Since continuity of a function at a point is entirely dictated by the limit of
the function at

that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 Suppose f and g be two real functions continuous at a real
number c.

Then

(1) f + g is continuous at x = c.



(2) f – g is continuous at x = c.

(3) f . g is continuous at x = c.

✆

f

(4)

✝

is continuous at x = c, (provided g ( c) 0).

☛

✞

g ✟

✠

✡

Proof We are investigating continuity of ( f + g) at x = c. Clearly it is
defined at x = c. We have

lim( f

= lim [ f ( x)

(by definition of f + g)

☞



g ( x)]

☞

g ) ( x)

x

c

x

c

= lim f ( x)

(by the theorem on limits)

☞

lim g ( x)

x

c

x

c

= f ( c) + g( c)

(as f and g are continuous)

= ( f + g) ( c)

(by definition of f + g)

Hence, f + g is continuous at x = c.



Proofs for the remaining parts are similar and left as an exercise to the
reader.
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Remarks

(i) As a special case of (3) above, if f is a constant function, i.e., f ( x) = for
some

✝

real number , then the function ( . g) defined by ( . g) ( x) = . g( x) is also

✝

✝

✝

✝

continuous. In particular if = – 1, the continuity of f implies continuity of –
f.

✝

(ii) As a special case of (4) above, if f is the constant function f ( x) = , then
the

✝



function

defined by ✁ ( x)

✁

is also continuous wherever g ( x) 0. In

g

g

✂

✄

g( x)

1

particular, the continuity of g implies continuity of

.

g

The above theorem can be exploited to generate many continuous functions.
They

also aid in deciding if certain functions are continuous or not. The following
examples

illustrate this:

Example 16 Prove that every rational function is continuous.

Solution Recall that every rational function f is given by

p( x)



f ( x) ☎

, q( x) ✆ 0

q( x)

where p and q are polynomial functions. The domain of f is all real numbers
except points at which q is zero. Since polynomial functions are continuous
(Example 14), f is continuous by (4) of Theorem 1.

Example 17 Discuss the continuity of sine function.

Solution To see this we use the following facts

lim sin x ✟ 0

x✞0

We have not proved it, but is intuitively clear from the graph of sin x near 0.

Now, observe that f ( x) = sin x is defined for every real number. Let c be a
real number. Put x = c + h. If x

c we know that h

0. Therefore

✠

✠

lim f ( x) = lim sin x

x



x✡ c

✡

c

= lim sin( c ☛ h)

h✞0

= lim [sin c cos h ☛ cos c sin h]

h✞0

= lim [sin c cos h] ☛ lim [cos c sin h]

h✞0

h✞0

= sin c + 0 = sin c = f ( c)

Thus lim f ( x) = f ( c) and hence f is a continuous function.

x✡ c
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Remark A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by f ( x) = tan x is a continuous
function.



sin x

Solution The function f ( x) = tan x =

. This is defined for all real numbers such

cos x

that cos x 0, i.e., x (2 n +1)

. We have just proved that both sine and cosine

✂

✂

2

functions are continuous. Thus tan x being a quotient of two continuous
functions is

continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to

composition of functions. Recall that if f and g are two real functions, then

( f o g) ( x) = f ( g ( x))

is defined whenever the range of g is a subset of domain of f. The following
theorem

(stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose f and g are real valued functions such that ( f o g) is
defined at c.

If g is continuous at c and if f is continuous at g ( c), then ( f o g) is
continuous at c.



The following examples illustrate this theorem.

Example 19 Show that the function defined by f ( x) = sin ( x 2) is a
continuous function.

Solution Observe that the function is defined for every real number. The
function

f may be thought of as a composition g o h of the two functions g and h,
where g ( x) = sin x and h ( x) = x 2. Since both g and h are continuous
functions, by Theorem 2, it can be deduced that f is a continuous function.

Example 20 Show that the function f defined by

f ( x) = |1 – x + | x | |,

where x is any real number, is a continuous function.

Solution Define g by g ( x) = 1 – x + | x | and h by h ( x) = | x | for all real x.
Then ( h o g) ( x) = h ( g ( x))

= h (1– x + | x |)

= | 1– x + | x | | = f ( x)

In Example 7, we have seen that h is a continuous function. Hence g being a
sum

of a polynomial function and the modulus function is continuous. But then f
being a

composite of two continuous functions is continuous.
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EXERCISE 5.1



1. Prove that the function f ( x) = 5 x – 3 is continuous at x = 0, at x = – 3
and at x = 5.

2. Examine the continuity of the function f ( x) = 2 x 2 – 1 at x = 3.

3. Examine the following functions for continuity.

1

(a) f ( x) = x – 5

(b) f ( x) = x 5

2

x ✁ 25

(c) f ( x) =

(d) f ( x) = | x – 5 |

x ✂ 5

4. Prove that the function f ( x) = xn is continuous at x = n, where n is a
positive integer.

5. Is the function f defined by

x, if x ✄

☎

1

f ( x) ✆ ✝5, if x >1

✞



continuous at x = 0? At x = 1? At x = 2?

Find all points of discontinuity of f, where f is defined by

| x | ✡3, if x ☛ ☞

✌

3

2 x ✟ 3, if x ✄

☎

2

6.

f ( x)

7.

f ( x)

✍

✎

☞ 2 x,

if ☞ 3 ✏

✑

x < 3

✆



✝ 2 x ✠ 3, if x > 2

✞

✍ 6 x ✡ 2, if x ✒ 3

✓

✚

x

✔

| x | , if x

, if x ✛ 0

✕

✖

0

8.

f ( x)

9.

f ( x)

✜

✢

✣



| x |

✗

✘

x

✖

0, if x

✜

✤ 1,

if x ✥ 0

✗

0

✙

✦

x

3

✧

1, if x ★

✯

x ✰ 3, if x ✱

✲



2

✩

1

✪

10.

f ( x)

f ( x)

✫

11.

✬

2

✳

x

✴

2

✧

1, if x ✭

x ✵ 1,

if x ✶

✲



2

✪

1

✮

✷

10

✯

x

✰

1, if x ✱

✲

1

12.

f ( x) ✳ ✴ 2

x ,

if x ✶

✲

✷

1

13. Is the function defined by



x ✸ 5, if x ✹

✺

1

f ( x) ✻ ✼ x ✽5, if x ✾1

✿

a continuous function?
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Discuss the continuity of the function f, where f is defined by

2 ,

x if x ✞

✟

0

✁

3, if 0

x 1

14.

f ( x)

✂



15.

f ( x)

✠

✡

0,

if 0 ☛ x ☛

☞

1

✄

4, if 1 ☎ x ☎

✆

3

✂

5, if 3

x 10

✠

4 ,



x if x > 1

✝

✌

✍ 2,

if x

✍

✁

1

16.

f ( x)

✂

✍

✄

2 ,

x if

1 ☎

✆

x 1

✂



2,

if x ✎ 1

✝

17. Find the relationship between a and b so that the function f defined by
ax ✏ 1, if x ✑

✒

3

f ( x) ✓ ✔ bx ✏ 3, if x ✕ 3

✖

is continuous at x = 3.

18. For what value of is the function defined by

✗

2

✘

✙

( x ✚ 2 x), if x ✛

✜

0

f ( x) ✢ ✣4 x ✤1,



if x ✥

✜

0

✦

continuous at x = 0? What about continuity at x = 1?

19. Show that the function defined by g ( x) = x – [ x] is discontinuous at all
integral points. Here [ x] denotes the greatest integer less than or equal to x.

20. Is the function defined by f ( x) = x 2 – sin x + 5 continuous at x = ?

✧

21. Discuss the continuity of the following functions:

(a) f ( x) = sin x + cos x

(b) f ( x) = sin x – cos x

(c) f ( x) = sin x . cos x

22. Discuss the continuity of the cosine, cosecant, secant and cotangent
functions.

23. Find all points of discontinuity of f, where

★

sin x , if x ✩

✪

0



f ( x) ✫ ✬ x

✪

x ✭ 1, if x ✮ 0

✯

24. Determine if f defined by

★

2

1

x sin

, if x ✰

✪

0

f ( x) ✫ ✬

x

✪

0,

if x ✫ 0

✯

is a continuous function?
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25. Examine the continuity of f, where f is defined by

sin x

cos x, if x ✁

✂

0

f ( x) ✄ ☎ 1,

if x ✄ 0

✆

Find the values of k so that the function f is continuous at the indicated
point in Exercises 26 to 29.



k cos x , if x ✝

✞

✟

✠

✍

✠

✝

✡

2 x

2

26.

f ( x)

at x =

☛

☞

2

3,



if x

✝

✠

☛

✠

✌

2

2

✞

kx , if x ✎

✠

2

27.

f ( x) ☛

at x = 2

☞

3,



if x ✏

✠

2

✌

kx ✑ 1, if x ✒ ✓

✔

28.

f ( x) ✕

at x =

✖

cos x,

if x

✙

✗

✓

✘

kx ✚ 1, if x ✛

✂

5

29.



f ( x) ✄

at x = 5

3

☎

x

5, if x ✜ 5

✆

30. Find the values of a and b such that the function defined by

5,

if x ✢

✣

2

f ( x)

✤

✥

ax ✦ b, if 2 ✧ x ✧

★

10

✤

21,



if x ✩ 10

✪

is a continuous function.

31. Show that the function defined by f ( x) = cos ( x 2) is a continuous
function.

32. Show that the function defined by f ( x) = | cos x | is a continuous
function.

33. Examine that sin | x | is a continuous function.

34. Find all the points of discontinuity of f defined by f ( x) = | x | – | x + 1 |.

5.3. Differentiability

Recall the following facts from previous class. We had defined the
derivative of a real

function as follows:

Suppose f is a real function and c is a point in its domain. The derivative of f
at c is defined by

f ( c ✬ h) ✭ f ( c)

lim

h✫0

h
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d



provided this limit exists. Derivative of f at c is denoted by f ( c) or ( f ( x)) |
c . The

✠

dx

function defined by

f ( x ✁ h) ✂ f ( x)

f ✄( x) ☎ lim

h

0

h

wherever the limit exists is defined to be the derivative of f. The derivative
of f is d

dy

denoted by f ( x) or

( f ( x)) or if y = f ( x) by

or y . The process of finding

✠

dx

dx

✠



derivative of a function is called differentiation. We also use the phrase
differentiate

f ( x) with respect to x to mean find f ( x).

✠

The following rules were established as a part of algebra of derivatives:

(1) ( u ± v) = u ± v

✠

✠

✠

(2) ( uv) = u v + uv (Leibnitz or product rule)

✠

✠

✠

u ✆

u v

✆

✝



uv

(3)

✆

✞

✟

, wherever v 0 (Quotient rule).

✎

✡

☛

☞

2

✌

v ✍

v

The following table gives a list of derivatives of certain standard functions:

Table 5.3

f ( x)

xn

sin x



cos x

tan x

f ( x)

nxn – 1

cos x

– sin x

sec2 x

✠

Whenever we defined derivative, we had put a caution provided the limit
exists.

Now the natural question is; what if it doesn’t? The question is quite
pertinent and so is

f ( c ✁ h) ✂ f ( c)

its answer. If lim

does not exist, we say that f is not differentiable at c.

h

0

h

In other words, we say that a function f is differentiable at a point c in its
domain if both f ( c

f ( c ✁ )



h ✂ f ( c)

✁

h) ✂ f ( c)

lim

and lim

are finite and equal. A function is said

–

h

0

h

h

0✏

h

to be differentiable in an interval [ a, b] if it is differentiable at every point
of [ a, b]. As in case of continuity, at the end points a and b, we take the
right hand limit and left hand limit, which are nothing but left hand
derivative and right hand derivative of the function

at a and b respectively. Similarly, a function is said to be differentiable in an
interval ( a, b) if it is differentiable at every point of ( a, b).
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Theorem 3 If a function f is differentiable at a point c, then it is also
continuous at that point.

Proof Since f is differentiable at c, we have

f ( x) ✁ f ( c)

lim

✂

f ✄( c)

x

c

x ✁ c

But for x c, we have

☎

f ( x) ✁ f ( c)

f ( x) – f ( c) =

. ( x ✁ c)

x ✁ c

f ( x) ✟

✠

f ( c)

Therefore



lim [ f ( x)

= lim

. ( x ✟ c)✡

✝

f ( c)]

x

x

☛

☞

✞ c

✌

x ✟ c

✆

c

✍

f ( x) ✏

✑

f ( c)



or

lim [ f ( x)]

lim

✒

. lim [( x ✏ c)]

✝

lim [ f ( c)] =

x

✓

✔

✆

c

x✆ c

x✎ c

x✎ c

x ✏

✕

c

✖



= f ( c) . 0 = 0

✗

or

lim f ( x) = f ( c)

x✘ c

Hence f is continuous at x = c.

Corollary 1 Every differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we
have

seen that the function defined by f ( x) = | x | is a continuous function.
Consider the left hand limit

f (0 ✙ h) ✁ f (0)

✁

h

lim

✂

✂

✁ 1

–

h

0



h

h

The right hand limit

f (0 ✙ )

h ✁ f (0)

h

lim

✂

✂

1

h

0✚

h

h

f (0 ✙ h) ✁ f (0)

Since the above left and right hand limits at 0 are not equal, lim

h

0

h



does not exist and hence f is not differentiable at 0. Thus f is not a
differentiable

function.

5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative
example. Say,

we want to find the derivative of f, where

f ( x) = (2 x + 1)3
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One way is to expand (2 x + 1)3 using binomial theorem and find the
derivative as

a polynomial function as illustrated below.

d

d

f ( x)

3

=

(2 x 1) ✁

✂

dx



dx ✄

☎

d

3

2

=

(8 x ✂ 12 x ✂ 6 x ✂ 1)

dx

= 24 x 2 + 24 x + 6

= 6 (2 x + 1)2

Now, observe that

f ( x) = ( h o g) ( x)

where g( x) = 2 x + 1 and h( x) = x 3. Put t = g( x) = 2 x + 1. Then f( x) = h(
t) = t 3. Thus df

dh dt

=

6 (2 x + 1)2 = 3(2 x + 1)2 . 2 = 3 t 2 . 2 =

✆

dx

dt dx



The advantage with such observation is that it simplifies the calculation in
finding

the derivative of, say, (2 x + 1)100. We may formalise this observation in
the following

theorem called the chain rule.

Theorem 4 (Chain Rule) Let f be a real valued function which is a
composite of two

dt

dv

functions u and v ; i.e., f = v o u. Suppose t = u ( x) and if both and

exist, we have

dx

dt

df

dv dt

✝

✆

dx

dt dx

We skip the proof of this theorem. Chain rule may be extended as follows.
Suppose



f is a real valued function which is a composite of three functions u, v and w
; i.e., f = ( w o u) o v. If t = v ( x) and s = u ( t), then df

d ( w o u) dt

dw ds dt

✝

✆

✝

✆

✆

dx

dt

dx

ds

dt dx

provided all the derivatives in the statement exist. Reader is invited to
formulate chain

rule for composite of more functions.

Example 21 Find the derivative of the function given by f ( x) = sin ( x 2).

Solution Observe that the given function is a composite of two functions.
Indeed, if

t = u( x) = x 2 and v( t) = sin t, then



f ( x) = ( v o u) ( x) = v( u( x)) = v( x 2) = sin x 2
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dv

dt

Put t = u( x) = x 2. Observe that

cos t and

2 x exist. Hence, by chain rule

dt

dx

df

dv dt

=

✁

cos t ✁ 2 x

dx

dt dx

It is normal practice to express the final result only in terms of x. Thus

df =

2



cos t ✂ 2 x ✄ 2 x cos x

dx

Alternatively, We can also directly proceed as follows:

dy

d

y = sin ( x 2)

 

(sin x 2)

✡

dx

dx

d

= cos x 2

( x 2) = 2 x cos x 2

dx

Example 22 Find the derivative of tan (2 x + 3).

Solution Let f ( x) = tan (2 x + 3), u ( x) = 2 x + 3 and v( t) = tan t. Then ( v
o u) ( x) = v( u( x)) = v(2 x + 3) = tan (2 x + 3) = f ( x) dv

2

Thus f is a composite of two functions. Put t = u( x) = 2 x + 3. Then sec t
and



dt

dt

exist. Hence, by chain rule

☎

2

dx

df

dv dt

2

✁

2sec (2 x ✆ 3)

dx

dt dx

Example 23 Differentiate sin (cos ( x 2)) with respect to x.

Solution The function f ( x) = sin (cos ( x 2)) is a composition f ( x) = ( w o
v o u) ( x) of the three functions u, v and w, where u( x) = x 2, v( t) = cos t
and w( s) = sin s. Put dw

ds

dt

t = u( x) = x 2 and s = v ( t) = cos t. Observe that cos s,

and



2 x

✝

sin t

ds

dt

dx

exist for all real x. Hence by a generalisation of chain rule, we have

df

dw ds dt = (cos s) . (– sin t) . (2 x) = – 2 x sin x 2 . cos (cos x 2)

☎

✞

✞

dx

ds dt dx
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Alternatively, we can proceed as follows:

y = sin (cos x 2)

dy



d

d

Therefore

sin (cos x 2) = cos (cos x 2)

(cos x 2)

dx

dx

dx

d

= cos (cos x 2) (– sin x 2)

( x 2)

dx

= – sin x 2 cos (cos x 2) (2 x)

= – 2 x sin x 2 cos (cos x 2)

EXERCISE 5.2

Differentiate the functions with respect to x in Exercises 1 to 8.

1. sin ( x 2 + 5)

2. cos (sin x)

3. sin ( ax + b)

sin ( ax ✁ b)



4. sec (tan ( x ))

5.

6. cos x 3 . sin2 ( x 5)

cos ( cx ✁ d )

7.

2

2 cot x

8. cos

x

✂

✄

☎

✆

9. Prove that the function f given by

f ( x) = | x – 1 |, x R

✝

is not differentiable at x = 1.

10. Prove that the greatest integer function defined by

f ( x) = [ x], 0 < x < 3

is not differentiable at x = 1 and x = 2.



5.3.2 Derivatives of implicit functions

Until now we have been differentiating various functions given in the form
y = f ( x).

But it is not necessary that functions are always expressed in this form. For
example,

consider one of the following relationships between x and y:

x – y – = 0

✟

x + sin xy – y = 0

In the first case, we can solve for y and rewrite the relationship as y = x – .
In

✟

the second case, it does not seem that there is an easy way to solve for y.
Nevertheless,

there is no doubt about the dependence of y on x in either of the cases.
When a

relationship between x and y is expressed in a way that it is easy to solve for
y and write y = f ( x), we say that y is given as an explicit function of x. In
the latter case it

CONTINUITY AND DIFFERENTIABILITY

167

is implicit that y is a function of x and we say that the relationship of the
second type, above, gives function implicitly. In this subsection, we learn to



differentiate implicit

functions.

dy

Example 24 Find

if x – y = .

dx

✟

Solution One way is to solve for y and rewrite the above as

y = x – ✟

dy

But then

= 1

dx

Alternatively, directly differentiating the relationship w.r.t., x, we have

d

d

( x



y)

✁

=

dx

dx

d ✁

Recall that

means to differentiate the constant function taking value

dx

✟

everywhere w.r.t., x. Thus

d

d

( x)

= 0

✂

( y)

dx

dx

which implies that



dy

dx

=

✄

1

dx

dx

dy

Example 25 Find

, if y + sin y = cos x.

dx

Solution We differentiate the relationship directly with respect to x, i.e.,

dy

d

d

=

(cos x)

☎

(sin y)

dx



dx

dx

which implies using chain rule

dy

dy = – sin x

☎

cos y ✆

dx

dx

dy

sin x

This gives

= ✝

dx

1✞ cos y

where

y



(2 n + 1)

✠

✟

168

MATHEMATICS

5.3.3 Derivatives of inverse trigonometric functions

We remark that inverse trigonometric functions are continuous functions,
but we will

not prove this. Now we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f ( x) = sin–1 x assuming it
exists.

Solution Let y = sin–1 x. Then, x = sin y.

Differentiating both sides w.r.t. x, we get

dy

1 = cos y dx

dy

1

1



which implies that

=

✁

dx

1

cos y

cos (sin

x)

Observe that this is defined only for cos y 0, i.e., sin–1 x ✄

, i.e., x – 1, 1,

✂

☎

, ✄

✂

✂

2 2

i.e., x (– 1, 1).

✆

To make this result a bit more attractive, we carry out the following
manipulation.



Recall that for x (– 1, 1), sin (sin–1 x) = x and hence

✆

cos2 y = 1 – (sin y)2 = 1 – (sin (sin–1 x))2 = 1 – x 2

Also, since y

✝

, cos y is positive and hence cos y =

2

1✍ x

✡

, ✝

✞

✟

✠

✆

2 2 ☛

☞

✌



Thus, for x (– 1, 1),

✆

dy

1

1

✎

✎

2

dx

cos y

1 ✏ x

Example 27 Find the derivative of f given by f ( x) = tan–1 x assuming it
exists.

Solution Let y = tan–1 x. Then, x = tan y.

Differentiating both sides w.r.t. x, we get

dy

1 = sec2 y dx

which implies that

dy

1



1

1

1

✒

2

✒

2

✒

1

✒

✑

2

2

dx

sec y

1✓ tan y

1✓ (tan (tan

x))

1✓ x
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Finding of the derivatives of other inverse trigonometric functions is left as
exercise.

The following table gives the derivatives of the remaining inverse
trigonometric functions

(Table 5.4):

Table 5.4

f ( x)

cos–1 x

cot–1 x

sec–1 x

cosec–1 x

1

1

1

☎

✁ 1

f ( x)

2

✠

2



1 x

2

1

2

x

x ☎1

✂

x

x

x ✄1

Domain of f

(–1, 1)

R

(– , –1) (1, )



(– , –1) (1, )

✆

✝

✆

✆

✝

✆

✠

EXERCISE 5.3

dy

Find

in the following:

dx

1. 2 x + 3 y = sin x

2. 2 x + 3 y = sin y

3. ax + by 2 = cos y

4. xy + y 2 = tan x + y

5. x 2 + xy + y 2 = 100



6. x 3 + x 2 y + xy 2 + y 3 = 81

✞

2 x ✡

7. sin2 y + cos xy =

8. sin2 x + cos2 y = 1

9. y = sin–1

✟

☛

2

1 x ☞

✌

✍

✎

3

1

1

✏

3 x ✒ x ✑



10. y = tan–1

, ✗

✘

x ✘

✓

2

1 3 x ✔

3

3

✒

✕

✖

2

✚

✛

✜

✙ 1

1

x

11.



y ✢ cos

, 0 ✣ x ✣

✤

✥

1

2

1✦

✧

x ★

2

✚

✛

✜

✙ 1

1 x

12.

y ✢ sin

, 0 ✣ x ✣

✤

✥



1

2

1 ✦

✧

x ★

✪

✫

✩ 1

2 x

13.

y ✬ cos

, ✭ 1✮ x ✮ 1

✯

2

✲

1 x ✰

✱

✳

✶1

2



1

1

14.

y

✗

✗

✘

✘

✷

sin

2 x 1 x

,

x

✴

✵

2

2

1 ✞



1

✡

1

15.

y ✹ sec✸

, 0 ✺ x

2

✺

☛

✍

2 x

1☞

✻

✎

2
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5.4 Exponential and Logarithmic Functions

Till now we have learnt some aspects of different classes of functions like
polynomial



functions, rational functions and trigonometric functions. In this section, we
shall

learn about a new class of (related)

functions called exponential functions and

logarithmic functions. It needs to be

emphasized that many statements made

in this section are motivational and precise

proofs of these are well beyond the scope

of this text.

The Fig 5.9 gives a sketch of

y = f ( x) = x, y = f ( x) = x 2, y = f ( x) = x 3

1

2

3

and y = f ( x) = x 4. Observe that the curves

4

get steeper as the power of x increases.

Steeper the curve, faster is the rate of

growth. What this means is that for a fixed

increment in the value of x (> 1), the

Fig 5.9



increment in the value of y = f ( x) increases as n increases for n = 1, 2, 3, 4.
It is n

conceivable that such a statement is true for all positive values of n, where f
( x) = xn.

n

Essentially, this means that the graph of y = f ( x) leans more towards the y-
axis as n n

increases. For example, consider f ( x) = x 10 and f ( x) = x 15. If x increases
from 1 to 10

15

2, f increases from 1 to 210 whereas f increases from 1 to 215. Thus, for the
same

10

15

increment in x, f grow faster than f .

15

10

Upshot of the above discussion is that the growth of polynomial functions is
dependent

on the degree of the polynomial function – higher the degree, greater is the
growth.

The next natural question is: Is there a function which grows faster than any
polynomial

function. The answer is in affirmative and an example of such a function is



y = f ( x) = 10 x.

Our claim is that this function f grows faster than f ( x) = xn for any positive
integer n.

n

For example, we can prove that 10 x grows faster than f

( x) = x 100. For large values

100

of x like x = 103, note that f ( x) = (103)100 = 10300 whereas f (103) =

3

10

100

10

= 101000.

Clearly f ( x) is much greater than f

( x). It is not difficult to prove that for all

100

x > 103, f ( x) > f ( x). But we will not attempt to give a proof of this here.
Similarly, by 100

choosing large values of x, one can verify that f ( x) grows faster than f ( x)
for any n

positive integer n.
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Definition 3 The exponential function with positive base b > 1 is the
function

y = f ( x) = bx

The graph of y = 10 x is given in the Fig 5.9.

It is advised that the reader plots this graph for particular values of b like 2,
3 and 4.

Following are some of the salient features of the exponential functions:

(1) Domain of the exponential function is R, the set of all real numbers.

(2) Range of the exponential function is the set of all positive real numbers.

(3) The point (0, 1) is always on the graph of the exponential function (this
is a

restatement of the fact that b 0 = 1 for any real b > 1).

(4) Exponential function is ever increasing; i.e., as we move from left to
right, the

graph rises above.

(5) For very large negative values of x, the exponential function is very
close to 0. In

other words, in the second quadrant, the graph approaches x-axis (but never

meets it).

Exponential function with base 10 is called the common exponential
function. In



the Appendix A.1.4 of Class XI, it was observed that the sum of the series

1

1

1

...

1!

2!

is a number between 2 and 3 and is denoted by e. Using this e as the base
we obtain an extremely important exponential function y = ex.

This is called natural exponential function.

It would be interesting to know if the inverse of the exponential function
exists and

has nice interpretation. This search motivates the following definition.

Definition 4 Let b > 1 be a real number. Then we say logarithm of a to base
b is x if bx = a.

Logarithm of a to base b is denoted by log a. Thus log a = x if bx = a. Let
us b

b

work with a few explicit examples to get a feel for this. We know 23 = 8. In
terms of

logarithms, we may rewrite this as log 8 = 3. Similarly, 104 = 10000 is
equivalent to

2



saying log 10000 = 4. Also, 625 = 54 = 252 is equivalent to saying log 625
= 4 or

10

5

log 625 = 2.

25

On a slightly more mature note, fixing a base b > 1, we may look at
logarithm as

a function from positive real numbers to all real numbers. This function,
called the

logarithmic function, is defined by

log : R+

R

b

✞

x

log x = y if by = x

✞

b

172

MATHEMATICS



As before if the base b = 10, we say it

is common logarithms and if b = e, then

we say it is natural logarithms. Often

natural logarithm is denoted by ln. In this

chapter, log x denotes the logarithm

function to base e, i.e., ln x will be written

as simply log x. The Fig 5.10 gives the plots

of logarithm function to base 2, e and 10.

Some of the important observations

about the logarithm function to any base

b > 1 are listed below:

Fig 5.10

(1) We cannot make a meaningful definition of logarithm of non-positive
numbers

and hence the domain of log function is R+.

(2) The range of log function is the set of all real numbers.

(3) The point (1, 0) is always on the graph of the log function.

(4) The log function is ever increasing,

i.e., as we move from left to right

the graph rises above.

(5) For x very near to zero, the value



of log x can be made lesser than

any given real number. In other

words in the fourth quadrant the

graph approaches y-axis (but never

meets it).

(6) Fig 5.11 gives the plot of y = ex and

y = ln x. It is of interest to observe

that the two curves are the mirror

Fig 5.11

images of each other reflected in the line y = x.

Two properties of ‘log’ functions are proved below:

(1) There is a standard change of base rule to obtain log p in terms of log p.
Let

a

b

log p = , log p = and log a = . This means a = p, b✁ = p and b✂ = a.

a

☛

b

☞



b

✌

Substituting the third equation in the first one, we have

( b✂) = b✄☎ = p

Using this in the second equation, we get

b✁ = p = b✂
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which implies

=

or = ✁ . But then

☞

☛

☛

✂

log p

log p =

b

a

log a



b

(2) Another interesting property of the log function is its effect on products.
Let

log pq = . Then b✄ = pq. If log p = and log q = , then b☎ = p and b✌ = q.

b

☛

b

☞

b

But then b

+

✄ = pq = b☎ b✌ = b☎

✌

which implies = + , i.e.,

☛

☞

log pq = log p + log q

b

b

b



A particularly interesting and important consequence of this is when p = q.
In

this case the above may be rewritten as

log p2 = log p + log p = 2 log p

b

b

b

An easy generalisation of this (left as an exercise!) is

log pn = n log p

b

for any positive integer n. In fact this is true for any real number n, but we
will

not attempt to prove this. On the similar lines the reader is invited to verify

x

log b

= log x – log y

y

b

b

Example 28 Is it true that x = e log x for all real x?



Solution First, observe that the domain of log function is set of all positive
real numbers.

So the above equation is not true for non-positive real numbers. Now, let y
= e log x. If y > 0, we may take logarithm which gives us log y = log ( e log
x) = log x . log e = log x. Thus y = x. Hence x = e log x is true only for
positive values of x.

One of the striking properties of the natural exponential function in
differential

calculus is that it doesn’t change during the process of differentiation. This
is captured

in the following theorem whose proof we skip.

Theorem 5

d

(1) The derivative of ex w.r.t., x is ex; i.e.,

( ex) = ex.

dx

1

d

1

(2) The derivative of log x w.r.t., x is

; i.e.,

(log x) =

.



x

dx

x
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Example 29 Differentiate the following w.r.t. x:

(i) e– x

(ii) sin (log x), x > 0

(iii) cos–1 ( ex)

(iv) e cos x

Solution

(i) Let y = e– x. Using chain rule, we have

dy = x d

e

(– x) = – e– x

✁

dx

dx

(ii) Let y = sin (log x). Using chain rule, we have

dy



d

cos (log x)

= cos (log x) ✁

(log x) ✂

dx

dx

x

(iii) Let y = cos–1 ( ex). Using chain rule, we have

dy

✄ 1

x

d

x

✄ e

=

☎

( e ) ✆

dx

x 2

2



1✄ (

)

dx

e

1

x

✄

e

(iv) Let y = e cos x. Using chain rule, we have

dy = cos x

cos

✝

(✞ sin ) ✟ ✞ (sin )

x

e

x

x e

dx

EXERCISE 5.4



Differentiate the following w.r.t. x:

x

e

3

✠

1

1.

2.

sin

x

e

3.

x

e

sin x

2

5

4. sin (tan–1 e– x)

5. log (cos ex)

6.



x

x

✡

✡

...

x

e

e

✡

e

cos x

7.

x

, x ☞ 0

e

, x

8. log (log x), x > 1

9.

☛



0

log x

10. cos (log x + ex), x > 0

5.5. Logarithmic Differentiation

In this section, we will learn to differentiate certain special class of
functions given in

the form

y = f ( x) = [ u( x)] v ( x)

By taking logarithm (to base e) the above may be rewritten as

log y = v( x) log [ u( x)]
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Using chain rule we may differentiate this to get

1 dy

1

. u ( x) + v ( x) . log [ u( x)]

✠

✠

✁

v( x)



y dx

u( x)

which implies that

dy

☎

v( x)

y

u ( x)

v ( x) log u( x) ✆

✝

✞

✟

✡

✟

✞

✂

✄



dx

☛

u( x)

☞

✌

✍

The main point to be noted in this method is that f ( x) and u( x) must
always be positive as otherwise their logarithms are not defined. This
process of differentiation is

known as logarithms differentiation and is illustrated by the following
examples:

2

( x ✎ 3) ( x ✏ 4)

Example 30 Differentiate

w.r.t. x.

2

3 x ✏ 4 x ✏ 5

2

( x ✑ 3) ( x ✒ 4)

Solution Let y ✓

2



(3 x ✒ 4 x ✒ 5)

Taking logarithm on both sides, we have

1

log y =

[log ( x – 3) + log ( x 2 + 4) – log (3 x 2 + 4 x + 5)]

2

Now, differentiating both sides w.r.t. x, we get

1 dy

1

1

2 x

6 x ✡

☎



4

✆

=

✡

✕

✔

☛

2

2

y dx

2 ( x

3)

x

4

3 x

4 x



5 ☞

✕

✡

✡

✡

✌

✍

dy

y

1

2 x

6 x ✖

✗



4

✘

or

=

✙

✖

✚

2

2

dx

2 ( x 3)

x

4

3 x

4 x



5✛

✙

✖

✖

✖

✜

✢

2

1

( x ✣ 3) ( x ✤ 4)

1

2 x

6 x ✤

✥

4

=

✦

2

✤



2

✣

✧

2

2

3 x

4 x

5

( x

3)

x

4

3 x

4 x



5★

✣

✤

✤

✤

✤

✤

✩

✪

Example 31 Differentiate ax w.r.t. x, where a is a positive constant.

Solution Let y = ax. Then

log y = x log a

Differentiating both sides w.r.t. x, we have

1 dy

= log a

y dx
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dy

or



= y log a

dx

d

x

Thus

( a ) = ax log a

dx

d

x

d

x log a

x log a d

Alternatively

( a ) =

( e

)

e

( x log a)

dx

dx



dx

= ex log a . log a = ax log a.

Example 32 Differentiate x sin x, x > 0 w.r.t. x.

Solution Let y = x sin x. Taking logarithm on both sides, we have

log y = sin x log x

1 dy

d

d

Therefore

.

= sin x

(log x) ✁ log x

(sin x)

y dx

dx

dx

1 dy

1

or



= (sin x)

✂

log x cos x

y dx

x

dy

✄

sin x

☎

or

= y

✆

cos x log x

dx

✝



x

✞

✟

✠

sin x ✄ sin x

☎

= x

✆

cos x log x

✝

x

✞

✟

✠

=

sin x 1

✡



sin

☛

sin

x

x

x ☞ x

☛

cos x log x

dy

Example 33 Find

, if yx + xy + xx = ab.

dx

Solution Given that yx + xy + xx = ab.

Putting u = yx, v = xy and w = xx, we get u + v + w = ab du

dv

dw

Therefore

... (1)

✂

✂



0

dx

dx

dx

Now, u = yx. Taking logarithm on both sides, we have

log u = x log y

Differentiating both sides w.r.t. x, we have
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1 du

d

d

= x

(log y) ✁ log y

( x)

u dx

dx

dx

1 dy



= x

✂

✄

log y ✂1

y dx

du

☎

x dy

✆

x ✝ x dy

✞

So

= u

✟

log y ✠ y

✟

log y ... (2)



dx

✡

y dx

☛

☞

y dx

✌

✍

✎

✏

✑

Also v = xy

Taking logarithm on both sides, we have

log v = y log x

Differentiating both sides w.r.t. x, we have

1 dv

d

dy

= y



(log x) ✓ log x

✒

v dx

dx

dx

1

dy

= y

✁

log x

x

dx

dv

✔

y

dy ✕

So

= v

✖

log x



dx

✗

x

dx ✘

✙

✚

y ✔ y

dy ✕

= x

... (3)

✖

log x

✗

x

dx ✘

✙

✚

Again

w = xx

Taking logarithm on both sides, we have



log w = x log x.

Differentiating both sides w.r.t. x, we have

1 dw

d

d

= x

(log x) ✓ log x ✒

( x)

✒

w dx

dx

dx

1

= x ✒

✓

log x ✒1

x

dw

i.e.

= w (1 + log x)



dx

= xx (1 + log x)

... (4)
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From (1), (2), (3), (4), we have

x

x dy

✁

y

dy

y

log

y

y

x

+ xx (1 + log x) = 0

✄



log x

✁

✂

✂

✂

y dx

x

dx ☎

✄

☎

✆

✝

✆

✝

dy

or

( x . yx –1 + xy . log x)

= – xx (1 + log x) – y . xy–1 – yx log y

dx



x

y 1

✞

x

dy

✟

[ y log y ✠ y . x

✠

x (1 ✠ log x)]

Therefore

=

dx

x 1

x .

✞

y



y

✠

x log x

EXERCISE 5.5

Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

( x ✡1) ( x ✡ 2)

1. cos x . cos 2 x . cos 3 x

2.

( x ✡ 3) ( x ✡ 4) ( x ✡ 5)

3. (log x)cos x

4. xx – 2sin x

x

☛

1

1

✒



1

☞

✌

✍

✎

5. ( x + 3)2 . ( x + 4)3 . ( x + 5)4

6.

✓

✏

x

x ✠

✠

✔

✕

x

✑

✖

x ✗

7. (log x) x + x log x



8. (sin x) x + sin–1 x

2

x cos x

x ✘1

9. x sin x + (sin x)cos x

10.

x

✘

2

x ✙1

1

11. ( x cos x) x + ( sin ) x

x

x

dy

Find

of the functions given in Exercises 12 to 15.

dx

12. xy + yx = 1

13. yx = xy



14. (cos x) y = (cos y) x

15. xy = e( x – y)

16. Find the derivative of the function given by f ( x) = (1 + x) (1 + x 2) (1 +
x 4) (1 + x 8) and hence find f (1).

✚

17. Differentiate ( x 2 – 5 x + 8) ( x 3 + 7 x + 9) in three ways mentioned
below: (i) by using product rule

(ii) by expanding the product to obtain a single polynomial.

(iii) by logarithmic differentiation.

Do they all give the same answer?
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18. If u, v and w are functions of x, then show that

d

du

dv

dw

( u. v. w) =

v. w + u .

. w + u . v

dx



dx

dx

dx

in two ways - first by repeated application of product rule, second by
logarithmic

differentiation.

5.6 Derivatives of Functions in Parametric Forms

Sometimes the relation between two variables is neither explicit nor
implicit, but some

link of a third variable with each of the two variables, separately,
establishes a relation

between the first two variables. In such a situation, we say that the relation
between

them is expressed via a third variable. The third variable is called the
parameter. More

precisely, a relation expressed between two variables x and y in the form

x = f ( t), y = g ( t) is said to be parametric form with t as a parameter.

In order to find derivative of function in such form, we have by chain rule.

dy

dy dx

=

dt



dx dt

dy

dy

✁

dx

dt

or

=

☎

whenever

0✂

✄

dx

dx

dt

✆

✝

✞

dt



dy

g (

✟

t) ✠

dy

dx

Thus

=

as

g ( t) and

[provided f ( t) 0]

☛

f (

✟

✏

✑

☞



t) ✡

☛

✟

dx

f ( t)

dt

dt

✌

✟

✍

✎

dy

Example 34 Find

, if x = a cos , y = a sin .

✒

✒

dx

Solution Given that



x = a cos , y = a sin

✒

✒

dx

dy

Therefore

= – a sin ,

= a cos

d

✒

d

✒

✓

✓

dy

dy

a cos

d

✔



Hence

=

✔

✕

✕

✖

cot ✔

dx

dx

✖

a sin ✔

d✔
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dy

Example 35 Find

, if x = at 2, y = 2 at.

dx

Solution Given that x = at 2, y = 2 at

dx



dy

So

= 2 at and

= 2 a

dt

dt

dy

dy

2 a

1

dt

Therefore

=

dx

dx

2 at

t

dt

dy

Example 36 Find



, if x = a ( + sin ), y = a (1 – cos ).

✍

✍

✍

dx

dx

dy

Solution We have

= a(1 + cos ),

= a (sin )

d

✍

✍

d

✁

✁

dy

dy

a sin



d

✂

✂

Therefore

=

✂

tan

dx

dx

a (1✄ cos )

✂

2

d✂

dy

Note It may be noted here that

is expressed in terms of parameter only

dx

☎

without directly involving the main variables x and y.

2



2

2

dy

Example 37 Find

3

3

3

, if x

.

✆

y ✝ a

dx

Solution Let x = a cos3 , y = a sin3 . Then

✍

✍

2

2

2

2

3



3

x

=

3

3

3

3

( a cos ✟) ✠ ( a sin ✟)

✞

y

2

2

2

2

=

3

3



a (cos

✡

✟

✠

(sin ✟)

a

2

2

2

Hence, x = a cos3 , y = a sin3 is parametric equation of 3

3

3

x ✞ y ☛ a

✍

✍

dx

dy

Now



= – 3 a cos2 sin and

= 3 a sin2 cos

d

✍

✍

d

✍

✍

✁

✁
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dy

dy

2

3 a sin

cos

y

d



Therefore

=

3

✁

✁

✂

tan ✁ ✂

dx

2

dx

✂

3 a cos

sin

x

d

Note Had we proceeded in implicit way, it would have been quite tedious.

✄

EXERCISE 5.6

If x and y are connected parametrically by the equations given in Exercises
1 to 10,



dy

without eliminating the parameter, Find

.

dx

1. x = 2 at 2, y = at 4

2. x = a cos , y = b cos

✍

✍

4

3. x = sin t, y = cos 2 t

4. x = 4 t, y = t

5. x = cos – cos 2 , y = sin – sin 2

✍

✍

✍

✍

3

sin t

3

cos t



6. x = a ( – sin ), y = a (1 + cos ) 7. x =

, y ☎

✍

✍

✍

cos 2 t

cos 2 t

✆

t ✝

8.

x

y = a sin t 9. x = a sec , y = b tan

✞

a cos t ✟

✍

✍

✠



log tan 2✡

☛

☞

10. x = a (cos + sin ), y = a (sin – cos )

✍

✍

✍

✍

✍

✍

✌1

✌ 1

11. If

sin t

cos

✎

,

t

dy



y

x

a

y ✎ a

, show that

✎

✏

dx

x

5.7 Second Order Derivative

Let

y = f ( x). Then

dy = f ( x)

... (1)

dx

✑

If f ( x) is differentiable, we may differentiate (1) again w.r.t. x. Then, the
left hand

✑

d ✒ dy ✓



side becomes

which is called the second order derivative of y w.r.t. x and

dx ✔ dx ✕

✖

✗

2

d y

is denoted by

. The second order derivative of f ( x) is denoted by f ( x). It is also 2

✘

dx
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denoted by D2 y or y or y if y = f ( x). We remark that higher order
derivatives may be

✎

2

defined similarly.

2

d y

Example 38 Find



, if y = x 3 + tan x.

2

dx

Solution Given that y = x 3 + tan x. Then

dy = 3 x 2 + sec2 x

dx

2

d y

d

2

2

Therefore

=

3 x ✂ sec x✁

2

dx

dx

= 6 x + 2 sec x . sec x tan x = 6 x + 2 sec2 x tan x 2

d y

Example 39 If y = A sin x + B cos x, then prove that



.

✄

y ☎ 0

2

dx

Solution We have

dy = A cos x – B sin x

dx

2

d y

d

and

=

(A cos x – B sin x)

2

dx

dx

= – A sin x – B cos x = – y

2

d y



Hence

+ y = 0

2

dx

2

d y

dy

Example 40 If y = 3 e 2 x + 2 e 3 x, prove that

.

✆

5

✝

6 y ✞ 0

2

dx

dx

Solution Given that y = 3 e 2 x + 2 e 3 x. Then

dy = 6 e 2 x + 6 e 3 x = 6 ( e 2 x + e 3 x) dx

2



d y

Therefore

= 12 e 2 x + 18 e 3 x = 6 (2 e 2 x + 3 e 3 x)

2

dx

2

d y

dy

Hence

+ 6 y = 6 (2 e 2 x + 3 e 3 x)

✆

5

2

dx

dx

– 30 ( e 2 x + e 3 x) + 6 (3 e 2 x + 2 e 3 x) = 0

CONTINUITY AND DIFFERENTIABILITY

183

2

d y



dy

Example 41 If y = sin–1 x, show that (1 – x 2)

x

.

✁

0

2

dx

dx

Solution We have y = sin–1 x. Then

dy

1

=

dx

2

(1✂ x )

2

dy

or



(1✄ x )

☎

1

dx

d ✆

2

dy

So

(1

x ) .

✝

✞

✟

✠

✡

0

dx ☛

dx ☞



2

2

d y

dy d

2

or

(1 x ) ✎

✏

✎

(1 x ) ✁ 0

✌

✍

2

dx

dx dx

2

2

d y

dy

2 x



or

(1 ✑ x ) ✒

✑

✒

✓

0

2

2

dx

dx 2 1✑ x

2

2

d y

dy

Hence

(1 x )

x

✁

0

2



dx

dx

Alternatively, Given that y = sin–1 x, we have

1

y

, i.e.,

2

2

1

1 ✘ x

y ✙ 1

✔

✖

✗

2

1

1

✕

x

So



2

2

(1✑ x ) . 2 y y ✚ y (0 ✑ 2 x) ✓ 0

1 2

1

Hence

(1 – x 2) y – xy = 0

2

1

EXERCISE 5.7

Find the second order derivatives of the functions given in Exercises 1 to
10.

1. x 2 + 3 x + 2

2. x 20

3. x . cos x

4. log x

5. x 3 log x

6. ex sin 5 x

7. e 6 x cos 3 x

8. tan–1 x

9. log (log x)



10. sin (log x)

2

d y

11. If y = 5 cos x – 3 sin x, prove that

✏

y ✁ 0

2

dx
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2

d y

12. If y = cos–1 x, Find

in terms of y alone.

2

dx

13. If y = 3 cos (log x) + 4 sin (log x), show that x 2 y + xy + y = 0

2

1

2



d y

dy

14. If y = A emx + B enx, show that

( m ✁ n)

✁

mny ✂ 0

2

dx

dx

2

d y

15. If y = 500 e 7 x + 600 e– 7 x, show that

✄

49 y

2

dx

2

2

d y

☎



dy

16. If ey ( x + 1) = 1, show that

✆

✝

2

dx

✞

dx ✟

✠

✡

17. If y = (tan–1 x)2, show that ( x 2 + 1)2 y + 2 x ( x 2 + 1) y = 2

2

1

5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without
proof. We

shall also learn the geometric interpretation of these theorems.

Theorem 6 (Rolle’s Theorem) Let f : [ a, b]



R be continuous on [ a, b] and

☛

differentiable on ( a, b), such that f( a) = f( b), where a and b are some real
numbers.

Then there exists some c in ( a, b) such that f ( c) = 0.

☞

In Fig 5.12 and 5.13, graphs of a few typical differentiable functions
satisfying the

hypothesis of Rolle’s theorem are given.

Fig 5.12

Fig 5.13

Observe what happens to the slope of the tangent to the curve at various
points

between a and b. In each of the graphs, the slope becomes zero at least at
one point.

That is precisely the claim of the Rolle’s theorem as the slope of the tangent
at any

point on the graph of y = f ( x) is nothing but the derivative of f ( x) at that
point.
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Theorem 7 (Mean Value Theorem) Let f : [ a, b]



R be a continuous function on

✞

[ a, b] and differentiable on ( a, b). Then there exists some c in ( a, b) such
that f ( )

b

f ( a)

f ✁( c) ✂

b

a

Observe that the Mean Value Theorem (MVT) is an extension of Rolle’s
theorem.

Let us now understand a geometric interpretation of the MVT. The graph of
a function

y = f( x) is given in the Fig 5.14. We have already interpreted f ( c) as the
slope of the

✠

f ( b)

f ( a)

tangent to the curve y = f ( x) at ( c, f ( c)). From the Fig 5.14 it is clear that
b

a



is the slope of the secant drawn between ( a, f ( a)) and ( b, f ( b)). The
MVT states that there is a point c in ( a, b) such that the slope of the tangent
at ( c, f( c)) is same as the slope of the secant between ( a, f ( a)) and ( b, f (
b)). In other words, there is a point c in ( a, b) such that the tangent at ( c, f (
c)) is parallel to the secant between ( a, f ( a)) and ( b, f ( b)).

Fig 5.14

Example 42 Verify Rolle’s theorem for the function y = x 2 + 2, a = – 2 and
b = 2.

Solution The function y = x 2 + 2 is continuous in [– 2, 2] and differentiable
in (– 2, 2).

Also f (– 2) = f ( 2) = 6 and hence the value of f ( x) at – 2 and 2 coincide.
Rolle’s theorem states that there is a point c (– 2, 2), where f ( c) = 0. Since f
( x) = 2 x, we

✆

✄

✄

get c = 0. Thus at c = 0, we have f ( c) = 0 and c = 0 (– 2, 2).

✄

✆

Example 43 Verify Mean Value Theorem for the function f ( x) = x 2 in the
interval [2, 4].

Solution The function f ( x) = x 2 is continuous in [2, 4] and differentiable
in (2, 4) as its derivative f ( x) = 2 x is defined in (2, 4).

✄

186



MATHEMATICS

Now,

f (2) = 4 and f (4) = 16. Hence

f ( )

b

f ( a)

16 4

✁

✁

6

b

a

4 2

MVT states that there is a point c (2, 4) such that f ( c) = 6. But f ( x) = 2 x
which

✆

✠

✠



implies c = 3. Thus at c = 3 (2, 4), we have f ( c) = 6.

✆

✠

EXERCISE 5.8

1. Verify Rolle’s theorem for the function f ( x) = x 2 + 2 x – 8, x [– 4, 2].

✆

2. Examine if Rolle’s theorem is applicable to any of the following
functions. Can

you say some thing about the converse of Rolle’s theorem from these
example?

(i) f ( x) = [ x] for x [5, 9]

(ii) f ( x) = [ x] for x [– 2, 2]

✆

✆

(iii) f ( x) = x 2 – 1 for x [1, 2]

✆

3. If f : [– 5, 5]

R is a differentiable function and if f ( x) does not vanish

✞

✂



anywhere, then prove that f (– 5) f (5).

✄

4. Verify Mean Value Theorem, if f ( x) = x 2 – 4 x – 3 in the interval [ a, b],
where a = 1 and b = 4.

5. Verify Mean Value Theorem, if f ( x) = x 3 – 5 x 2 – 3 x in the interval [ a,
b], where a = 1 and b = 3. Find all c (1, 3) for which f ( c) = 0.

✂

✆

6. Examine the applicability of Mean Value Theorem for all three functions
given in

the above exercise 2.

Miscellaneous Examples

Example 44 Differentiate w.r.t. x, the following function:

1

2

(i)

3 x

(ii) sec x

–1

e



(iii) log (log x)

✝

3cos x

☎

2 ☎

2

7

2 x ☎ 4

Solution

1

1

1

2

✟

(i) Let y = 3 x

=

2

2



(3 x ✡ 2) ✡ (2 x ✡ 4)

☎

2 ☎

2

2 x ☎ 4

2

Note that this function is defined at all real numbers x

. Therefore

☛

3

dy

1

1

1

☞

☞

1

1

d

1



2

☞

✌

✍

d

2

=

2

2

(3 x

✎

✏

✎

☎

2)

(3 x ☎ 2) ☎

(2 x ☎ 4)

(2 x ☎

✑

✒



4)

dx

2

dx

✓

2 ✔

dx
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1

3

1

✁

1✂

2

=

2

2

(3 x ✄ 2)

☎



(3) ✆

(2 x ✄ 4)

☎

✝

✞

4 x

2

✟

2✠

3

2 x

=

☞

3

2 3 x ✌ 2

2

2



2 x ✌ 4

✡

☛

2

This is defined for all real numbers x

.

✍

✎

3

2

(ii) Let

sec x

✏ 1

y ✑ e

✒

3cos

x

This is defined at every real number in [

. Therefore

✕1, 1] ✕



0

✓

✔

dy

2

sec x

d

2

✖

1

✗

= e

✘

(sec x) ✙ 3 ✚

dx

✛

2

dx

1



x ✜

✢

✣

✚

2

sec x

✖

d

✗

✖

1

✗

= e

✘

2sec x

(sec x) ✙ 3 ✚

✛

✜

✛

2



dx

1

x ✜

✢

✣

✢

✣

✚

2

sec x

✖

1

✗

= 2sec x (sec x tan x) e

✙

3 ✚

✛

2 ✜

1✚

✢



x ✣

2

2

sec x

✤

1

✥

= 2sec x tan x e

✦

3 ✧

★

2 ✩

1 ✧

✪

x ✫

Observe that the derivative of the given function is valid only in [ 1

as

✕



, 1] ✕ 0

✓

✔

the derivative of cos–1 x exists only in (– 1, 1) and the function itself is not

defined at 0.

log (log x)

(iii) Let y = log (log x) =

(by change of base formula).

7

log 7

The function is defined for all real numbers x > 1. Therefore

dy

1

d

=

(log (log x))

dx

log 7 dx

1

1



d

=

✬

(log x)

log 7 log x dx

1

= x log7 log x
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Example 45 Differentiate the following w.r.t. x.

x 1

✟

✡

☛

✠ 1

2

✁

x

(i) cos –1 (sin x)



(ii)

1

sin

tan

✂

(iii) sin

✄

1 cos x ☎

☞

✎

1✍ 4 x ✌

✆

✝

✞

✏

Solution

(i) Let f ( x) = cos –1 (sin x). Observe that this function is defined for all real
numbers.

We may rewrite this function as



f ( x) = cos –1 (sin x)

✒

✔

✓

✕

✖

✑ 1

= cos

cos

✗

✘

x



2

✙

✚

✛

✜

✢

✣

✤

✥

=

✦

x

2

Thus

f ( x) = – 1.

✧

✁

sin x

(ii) Let f ( x) = tan –1

✂



. Observe that this function is defined for all real

✄

1 cos x ☎

✆

✝

✞

numbers, where cos x – 1; i.e., at all odd multiplies of . We may rewrite this

★

✩

function as

1 ✁

sin x ✂

f ( x) = tan ✄ 1 cos x ☎

✆

✝

✞

✫

x



x

2 sin

cos

✬

✭

✮

✭

✮

✯

✰

✯

✰

✱

✲

✳

✴

✳

✴

✪ 1

2



2

= tan

✱

✲

2 x

✱

2cos

✲

✱

2

✲

✵

✶

✒

✓

✕

✖

✑ 1

x

x



= tan

tan

✷

✘

2 ✙

✚

✛

✜

✢

✣

✤

2

✸

x ✹

Observe that we could cancel cos

in both numerator and denominator as it

✺

2 ✻

✼

✽



1

is not equal to zero. Thus f ( x) = .

✧

2

x ✾ 1

✕

2

(iii) Let f ( x) = sin–1

✖

. To find the domain of this function we need to find all

✘

1 4 x ✙

✿

✜

✢

x ❀1

2

x such that

. Since the quantity in the middle is always positive,



❁ 1 ❂

❂

1

1 ❃ 4 x
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x 1

2

we need to find all x such that

1, i.e., all x such that 2 x + 1 1 + 4 x. We

✏

1 4 x ✁

✂

1

may rewrite this as 2

+ 2 x which is true for all x. Hence the function

✏

2 x

is defined at every real number. By putting 2 x = tan , this function may be

✍



rewritten as

x ✄ 1

1 ✆

✝

☎

2

f ( x) = sin

✞

✡ 1

4 x ✟

✠

☛

x

✑

✒

✓

✎ 1

2



2

= sin

✔

2 ✕

✔ 1

2 x

☞

✌

✕

✖

✗

✘

1

✚

✛

✜

✙

2 tan

= sin

✢



2

✥ 1

tan

✣

✤

✚

✦

= sin –1 [sin 2 ]

✍

= 2 = 2 tan –1 (2 x)

✍

1

d

x

Thus

f ( x) = 2 ✪

✪

(2 )

✧

2



1 ✫ 2 x

dx

✩

★

2

x

=

(2 ) log 2

1 4 x ✬

✭

x ✮ 1

2

log 2

=

1 ✤ 4 x

Example 46 Find f ( x) if f ( x) = (sin x)sin x for all 0 < x < .

✧

✯

Solution The function y = (sin x)sin x is defined for all positive real
numbers. Taking logarithms, we have



log y = log (sin x)sin x = sin x log (sin x)

1 dy

d

Then

=

(sin x log (sin x))

y dx

dx

1

d

= cos x log (sin x) + sin x .

✰

(sin x)

sin x dx

= cos x log (sin x) + cos x

= (1 + log (sin x)) cos x
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dy

Thus



= y((1 + log (sin x)) cos x) = (1 + log (sin x)) ( sin x)sin x cos x dx

dy

Example 47 For a positive constant a find

, where

dx

1

a

t

✁

1

t

y

a

, and x

t

✂

✄

✄

☎

✆



t ✝

✞

✟

Solution Observe that both y and x are defined for all real t 0. Clearly

✠

1

dy

d

1

t

d ✁

1✂

=

t

t

☞

t



= a

✆

t

✌

☎

✝

log a

☛

dt

✡

a

dt

dt ✞

t ✟

1

t ✍

✎



1

=

t

a

1

✏

✑

✒

✓

log a

2

✔

t ✕

a 1

dx

1 ✖

✗

✘

d ✙

1



Similarly

= a t

✢

t

✚

✛

✜

✛

dt

t

dt

t ✣

✤

✥

✦

✧

★

✩

a 1



1 ✪

✫

✬

✭

1 ✮

= a t ✯

✰

1 ✱

✲

2

t

t ✳

✴

✵

✶

✷

✸

✹

dx 0 only if t ± 1. Thus for t ± 1,



dt ✠

✠

✠

1

dy

t ✻

✽

1

t

a

1

✾

✿

❀

❁

log a

dy

2



dt

❂

t ❃

=

✺

dx

dx

a 1

❄

1 ✼

❅

✽

1

a t ❆

❇

1

✾

dt

✿

❀



2

t

t ❁

❈

❉

❂

❃

❊

❋

1

t● t

a

log a

=

a 1

■

1 ❍



a t

❏

❑

▲

t ▼

◆

❖

Example 48 Differentiate sin2 x w.r.t. e cos x.

du

du dx

Solution

/

Let u ( x) = sin2 x and v ( x) = e cos x. We want to find

. Clearly

P

dv

dv / dx

du

dv

= 2 sin x cos x and



= e cos x (– sin x) = – (sin x) e cos x

dx

dx
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du

2sin x cos x

2cos x

Thus

=

✁

dv

cos

cos

✁

sin

x

x

x e

e



Miscellaneous Exercise on Chapter 5

Differentiate w.r.t. x the function in Exercises 1 to 11.

1. (3 x 2 – 9 x + 5)9

2. sin3 x + cos6 x

3. (5 x)3 cos 2 x

4. sin–1( x

x ), 0 x 1

✏

✏

✂ 1

x

cos

5.

2 , – 2 < x < 2



2 x ✄ 7

✆

✝

✞

✞

✟

✌

☎ 1

1 sin x

1 sin x

6. cot

, 0 < x <

✠

✡

1

2

✞



sin x ✟ 1 ✟

☛

sin x ☞

7. (log x)log x, x > 1

8. cos ( a cos x + b sin x), for some constant a and b.

✌

3

9. (sin x – cos x) (sin x – cos x),

x

✌

✍

✍

4

4

10. xx + xa + ax + aa, for some fixed a > 0 and x > 0

2

2

11.

✒ 3

x



x

x

, for x > 3

✓

x ✔ 3

✎

✑

dy

12. Find

, if y = 12 (1 – cos t), x = 10 ( t – sin t),

✌

✍

t

✌

✍

✕

dx

2

2

dy



13. Find

, if y = sin–1 x + sin–1

2

1

, – 1 x 1

✏

✏

✖

x

dx

14. If x 1

, for , – 1 < x < 1, prove that

✗

y ✗ y 1 ✗ x ✘ 0

dy

1

✛

✜

2

dx



1✢ x

✙

✚

15. If ( x – a)2 + ( y – b)2 = c 2, for some c > 0, prove that 3

2

2

✣

✥

dy

✤

1

✦

✧

★



dx

✩

✪

✫

✬

✭

✮

✯

2

d y

2

dx

is a constant independent of a and b.
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2

dy

cos ( a

y)

16. If cos y = x cos ( a + y), with cos a ± 1, prove that



.

✂

✁

dx

sin a

2

d y

17. If x = a (cos t + t sin t) and y = a (sin t – t cos t), find

.

2

dx

18. If f ( x) = | x |3, show that f ( x) exists for all real x and find it.

✎

d

19. Using mathematical induction prove that

n

n 1

x

for all positive

✝



nx ✆

✄

☎

dx

integers n.

20. Using the fact that sin (A + B) = sin A cos B + cos A sin B and the
differentiation,

obtain the sum formula for cosines.

21. Does there exist a function which is continuous everywhere but not
differentiable

at exactly two points? Justify your answer.

f ( x)

g( x)

h( x)

f ✟( x)

g✟( x)

h✟( x)

dy

22. If y



, prove that

✞

l

m

n

✞

l

m

n

dx

a

b

c

a

b

c

2

d y

dy



23. If y =

1

a cos✠ x

e

, – 1 x 1, show that

2

2

1

.

☞

x

☞

x

☞

a y ✌ 0

✏

✏

☛

✡



2

dx

dx

Summary

A real valued function is continuous at a point in its domain if the limit of
the

✍

function at that point equals the value of the function at that point. A
function

is continuous if it is continuous on the whole of its domain.

Sum, difference, product and quotient of continuous functions are
continuous.

✍

i.e., if f and g are continuous functions, then

( f ± g) ( x) = f ( x) ± g ( x) is continuous.

( f . g) ( x) = f ( x) . g ( x) is continuous.

✑

f ✒

f ( x)

( x) ✓



(wherever g ( x) 0) is continuous.

✂

✔

g ✕

g( x)

✖

✗

Every differentiable function is continuous, but the converse is not true.

✍

CONTINUITY AND DIFFERENTIABILITY

193

Chain rule is rule to differentiate composites of functions. If f = v o u, t = u (
x) dt

dv

and if both

and

exist then

dx

dt

df



dv dt

✁

✂

dx

dt dx

Following are some of the standard derivatives (in appropriate domains):

d

d

✆ 1

1

✆ 1

1

sin

x

cos



x

✄

☎

✟

✠

✝

✝

✞

2

dx

1

2

dx

1 ✞ x

✞

x

d



d

✎

☞ 1

1

☞

1

1

tan

x

cot

x

✡

☛

✡

☛

✌

2

✌

dx



1

2

dx

1 ✍ x

✍

x

d

d

✔

✒ 1

1

✒

1

1

sec

x

cosec



x

✏

✑

✕

✖

✓

✓

2

dx

x 1

2

dx

x 1✔ x

✔

x

d

x

x

d

1



e

log x

✙

e

✗

✘

✙

✚

✛

dx

dx

x

Logarithmic differentiation is a powerful technique to differentiate
functions

of the form f ( x) = [ u ( x)] v ( x). Here both f ( x) and u ( x) need to be
positive for this technique to make sense.

Rolle’s Theorem: If f : [ a, b]

R is continuous on [ a, b] and differentiable

✜



on ( a, b) such that f ( a) = f ( b), then there exists some c in ( a, b) such that
f ( c) = 0.

✢

Mean Value Theorem: If f : [ a, b]

R is continuous on [ a, b] and

✜

differentiable on ( a, b). Then there exists some c in ( a, b) such that f ( )

b ✣ f ( a)

f ✤( c) ✁

b ✣ a

—

—

✥

✥

✥

✥



Chapter 6

APPLICATION OF

DERIVATIVES

With the Calculus as a key, Mathematics can be successfully applied

to the explanation of the course of Nature.” — WHITEHEAD

6.1 Introduction

In Chapter 5, we have learnt how to find derivative of composite functions,
inverse

trigonometric functions, implicit functions, exponential functions and
logarithmic functions.

In this chapter, we will study applications of the derivative in various
disciplines, e.g., in

engineering, science, social science, and many other fields. For instance, we
will learn

how the derivative can be used (i) to determine rate of change of quantities,
(ii) to find

the equations of tangent and normal to a curve at a point, (iii) to find
turning points on

the graph of a function which in turn will help us to locate points at which
largest or

smallest value (locally) of a function occurs. We will also use derivative to
find intervals



on which a function is increasing or decreasing. Finally, we use the
derivative to find

approximate value of certain quantities.

6.2 Rate of Change of Quantities

ds

Recall that by the derivative

, we mean the rate of change of distance s with

dt

respect to the time t. In a similar fashion, whenever one quantity y varies
with another dy

quantity x, satisfying some rule y

, then

(or f ( x)) represents the rate of

✁

f ( x)

dx

✂

dy ☎

change of y with respect to x and dx



(or f ( x )) represents the rate of change

✆

✂

0

✝

x✄ 0

x

of y with respect to x at x

.

✞

x 0

Further, if two variables x and y are varying with respect to another variable
t, i.e., if x

and y

, then by Chain Rule

✁

g ( t)

✁

f ( t)

dy



dy

dx

dx

=

, if

✟

0

dx

dt

dt

dt
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Thus, the rate of change of y with respect to x can be calculated using the
rate of

change of y and that of x both with respect to t.

Let us consider some examples.

Example 1 Find the rate of change of the area of a circle per second with
respect to

its radius r when r = 5 cm.



Solution The area A of a circle with radius r is given by A = r 2. Therefore,
the rate

✄

A

d

d

2

of change of the area A with respect to its radius r is given by

(

.

✁

r )

2✁ r

dr

dr

d A

When r = 5 cm,

. Thus, the area of the circle is changing at the rate of

✂

10☎



dr

10 cm2/s.

✄

Example 2 The volume of a cube is increasing at a rate of 9 cubic
centimetres per

second. How fast is the surface area increasing when the length of an edge
is 10

centimetres ?

Solution Let x be the length of a side, V be the volume and S be the surface
area of

the cube. Then, V = x 3 and S = 6 x 2, where x is a function of time t.

V

d

Now

= 9cm3/s (Given)

dt

V

d

d

3

d



3

dx

Therefore

9 =

( x )

( x )

(By Chain Rule)

✆

dt

dt

dx

dt

2

dx

= 3 x ✆ dt

dx

3

or

=

... (1)



dt

2

x

dS

d

2

d

2

dx

Now

=

(6 x )

(By Chain Rule)

✂

(6 x ) ✝

dt

dt

dx



dt

✞

3 ✟

36

= 12 x ✠

2

✡

(Using (1))

☛

x ☞

✌

✍

x

dS

2

Hence, when

x = 10 cm,

3.6 cm /s



dt
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Example 3 A stone is dropped into a quiet lake and waves move in circles
at a speed

of 4cm per second. At the instant, when the radius of the circular wave is 10
cm, how

fast is the enclosed area increasing?

Solution The area A of a circle with radius r is given by A = r 2. Therefore,
the rate

✄

of change of area A with respect to time t is

A

d

d

2

d

2

dr

dr

=



( r )

= 2 r

(By Chain Rule)

✁

( r ) ✂

dt

dt

dr

dt

✄

dt

dr

It is given that

= 4cm/s

dt

A

d

Therefore, when r = 10 cm,



= 2 (10) (4) = 80

✄

✄

dt

Thus, the enclosed area is increasing at the rate of 80 cm2/s, when r = 10
cm.

✄

dy

Note

is positive if y increases as x increases and is negative if y decreases

dx

☎

as x increases.

Example 4 The length x of a rectangle is decreasing at the rate of 3
cm/minute and

the width y is increasing at the rate of 2cm/minute. When x =10cm and y =
6cm, find the rates of change of (a) the perimeter and (b) the area of the
rectangle.

Solution Since the length x is decreasing and the width y is increasing with
respect to time, we have

dx

dy



and

✁

2 cm/min

✆

✁

3 cm/min

dt

dt

(a) The perimeter P of a rectangle is given by

P = 2 ( x + y)

d P

✝

dx

dy

Therefore



= 2

✞

✟

✠

2 (✡3 ✟ 2) ✠ ✡2 cm/min

dt

☛

dt

dt ☞

✌

✍

(b) The area A of the rectangle is given by

A = x . y

A

d

dx

dy



Therefore

=

✎

✂

y

x ✂

dt

dt

dt

= – 3(6) + 10(2)

(as x = 10 cm and y = 6 cm)

= 2 cm2/min
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Example 5 The total cost C( x) in Rupees, associated with the production of
x units of an item is given by

C ( x) = 0.005 x 3 – 0.02 x 2 + 30 x + 5000

Find the marginal cost when 3 units are produced, where by marginal cost
we

mean the instantaneous rate of change of total cost at any level of output.



Solution Since marginal cost is the rate of change of total cost with respect
to the

output, we have

dC

2

Marginal

cost (MC) =

0.005(3 x ) ✁ 0.02(2 x) ✂ 30

dx

2

When

x = 3, MC = 0.015(3 ) ✄ 0.04(3) ☎ 30

= 0.135 – 0.12 + 30 = 30.015

Hence, the required marginal cost is Rs 30.02 (nearly).

Example 6 The total revenue in Rupees received from the sale of x units of
a product

is given by R( x) = 3 x 2 + 36 x + 5. Find the marginal revenue, when x = 5,
where by marginal revenue we mean the rate of change of total revenue
with respect to the

number of items sold at an instant.

Solution Since marginal revenue is the rate of change of total revenue with
respect to



the number of units sold, we have

R

d

Marginal Revenue

(MR) =

6 x ✂ 36

dx

When

x = 5, MR = 6(5) + 36 = 66

Hence, the required marginal revenue is Rs 66.

EXERCISE 6.1

1. Find the rate of change of the area of a circle with respect to its radius r
when

(a) r = 3 cm

(b) r = 4 cm

2. The volume of a cube is increasing at the rate of 8 cm3/s. How fast is the

surface area increasing when the length of an edge is 12 cm?

3. The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find
the rate

at which the area of the circle is increasing when the radius is 10 cm.



4. An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is
the

volume of the cube increasing when the edge is 10 cm long?

5. A stone is dropped into a quiet lake and waves move in circles at the
speed of

5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast
is

the enclosed area increasing?
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6. The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate
of

increase of its circumference?

7. The length x of a rectangle is decreasing at the rate of 5 cm/minute and
the

width y is increasing at the rate of 4 cm/minute. When x = 8cm and y =
6cm, find the rates of change of (a) the perimeter, and (b) the area of the
rectangle.

8. A balloon, which always remains spherical on inflation, is being inflated
by pumping

in 900 cubic centimetres of gas per second. Find the rate at which the radius
of

the balloon increases when the radius is 15 cm.

9. A balloon, which always remains spherical has a variable radius. Find the
rate at



which its volume is increasing with the radius when the later is 10 cm.

10. A ladder 5 m long is leaning against a wall. The bottom of the ladder is
pulled

along the ground, away from the wall, at the rate of 2cm/s. How fast is its
height

on the wall decreasing when the foot of the ladder is 4 m away from the
wall ?

11. A particle moves along the curve 6 y = x 3 +2. Find the points on the
curve at which the y-coordinate is changing 8 times as fast as the x-
coordinate.

1

12. The radius of an air bubble is increasing at the rate of

cm/s. At what rate is the

2

volume of the bubble increasing when the radius is 1 cm?

3

13. A balloon, which always remains spherical, has a variable diameter

(2 x 1) .

2

Find the rate of change of its volume with respect to x.

14. Sand is pouring from a pipe at the rate of 12 cm3/s. The falling sand
forms a cone



on the ground in such a way that the height of the cone is always one-sixth
of the

radius of the base. How fast is the height of the sand cone increasing when
the

height is 4 cm?

15. The total cost C ( x) in Rupees associated with the production of x units
of an item is given by

C ( x) = 0.007 x 3 – 0.003 x 2 + 15 x + 4000.

Find the marginal cost when 17 units are produced.

16. The total revenue in Rupees received from the sale of x units of a
product is

given by

R ( x) = 13 x 2 + 26 x + 15.

Find the marginal revenue when x = 7.

Choose the correct answer in the Exercises 17 and 18.

17. The rate of change of the area of a circle with respect to its radius r at r
= 6 cm is (A) 10

(B) 12

(C) 8



(D) 11

✄

✄

✄

✄
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18. The total revenue in Rupees received from the sale of x units of a
product is

given by

R( x) = 3 x 2 + 36 x + 5. The marginal revenue, when x = 15 is

(A) 116

(B) 96

(C) 90

(D) 126

6.3 Increasing and Decreasing Functions

In this section, we will use differentiation to find out whether a function is
increasing or

decreasing or none.



Consider the function f given by f ( x) = x 2, x R. The graph of this function
is a

☎

parabola as given in Fig 6.1.

Values left to origin

Values right to origin

x

f ( x) = x 2

x

f ( x) = x 2

–2

4

0

0

3

9

1

1

2

4

2



4

–1

1

 

1

1

1

1

3

9

2

4

2

4

0

0

 

2

4

as we move from left to right, the



as we move from left to right, the

height of the graph decreases

height of the graph increases

Fig 6.1

First consider the graph (Fig 6.1) to the right of the origin. Observe that as
we

move from left to right along the graph, the height of the graph
continuously increases.

For this reason, the function is said to be increasing for the real numbers x >
0.

Now consider the graph to the left of the origin and observe here that as we
move

from left to right along the graph, the height of the graph continuously
decreases.

Consequently, the function is said to be decreasing for the real numbers x <
0.

We shall now give the following analytical definitions for a function which
is

increasing or decreasing on an interval.

Definition 1 Let I be an open interval contained in the domain of a real
valued function

f. Then f is said to be

(i) increasing on I if x < x in I

f ( x ) f ( x ) for all x , x I.



1

2

☎

✆

1

✝

2

1

2

(ii) strictly increasing on I if x < x in I

f ( x ) < f ( x ) for all x , x I.

1

2

☎

✆

1

2

1

2
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(iii) decreasing on I if x < x in I

f ( x ) f ( x ) for all x , x I.

1

2

✆

1

✞

2

1

2 ☎

(iv) strictly decreasing on I if x < x in I

f ( x ) > f ( x ) for all x , x I.

1

2

✆

1

2

1

2 ☎



For graphical representation of such functions see Fig 6.2.

Fig 6.2

We shall now define when a function is increasing or decreasing at a point.

Definition 2 Let x be a point in the domain of definition of a real valued
function f.

0

Then f is said to be increasing, strictly increasing, decreasing or strictly
decreasing at

x if there exists an open interval I containing x such that f is increasing,
strictly 0

0

increasing, decreasing or strictly decreasing, respectively, in I.

Let us clarify this definition for the case of increasing function.

A function f is said to be increasing at x if there exists an interval I = ( x – h,
x + h), 0

0

0

h > 0 such that for x , x I

1

2 ☎

x < x in I

f ( x ) f ( x )



1

2

✆

1

✝

2

Similarly, the other cases can be clarified.

Example 7 Show that the function given by f ( x) = 7 x – 3 is strictly
increasing on R.

Solution Let x and x be any two numbers in R. Then

1

2

x < x

7 x < 7 x

7 x – 3 < 7 x – 3

f ( x ) < f ( x )

1

2 ✆

1

2 ✆



1

2

✆

1

2
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Thus, by Definition 1, it follows that f is strictly increasing on R.

We shall now give the first derivative test for increasing and decreasing
functions.

The proof of this test requires the Mean Value Theorem studied in Chapter
5.

Theorem 1 Let f be continuous on [ a, b] and differentiable on the open
interval ( a,b). Then

(a) f is increasing in [ a,b] if f ( x) > 0 for each x ( a, b)

✂

☎

(b) f is decreasing in [ a,b] if f ( x) < 0 for each x ( a, b)

✂

☎



(c) f is a constant function in [ a,b] if f ( x) = 0 for each x ( a, b)

✂

☎

Proof (a) Let x , x [ a, b] be such that x < x .

1

2 ☎

1

2

Then, by Mean Value Theorem (Theorem 8 in Chapter 5), there exists a
point c

between x and x such that

1

2

f ( x ) – f ( x ) = f ( c) ( x – x )

2

1

✂

2

1

i.e.



f ( x ) – f ( x ) > 0

(as f ( c) > 0 (given))

2

1

✂

i.e.

f ( x ) > f ( x )

2

1

Thus, we have

x

x ✁ f ( x )

f ( x ), for all x , x ✄[ a, b]

1

2

1

2

1

2

Hence, f is an increasing function in [ a,b].



The proofs of part (b) and (c) are similar. It is left as an exercise to the
reader.

Remarks

(i) f is strictly increasing in ( a, b) if f ( x) > 0 for each x ( a, b)

✂

☎

(ii) f is strictly decreasing in ( a, b) if f ( x) < 0 for each x ( a, b)

✂

☎

(iii) A function will be increasing (decreasing) in R if it is so in every
interval of R.

Example 8 Show that the function f given by

f ( x) = x 3 – 3 x 2 + 4 x, x R

☎

is strictly increasing on R.

Solution Note that

f ( x) = 3 x 2 – 6 x + 4

✂

= 3( x 2 – 2 x + 1) + 1

= 3( x – 1)2 + 1 > 0, in every interval of R

Therefore, the function f is strictly increasing on R.
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Example 9 Prove that the function given by f ( x) = cos x is

(a) strictly decreasing in (0, )

✄

(b) strictly increasing in ( , 2 ), and

✄

✄

(c) neither increasing nor decreasing in (0, 2 ).

✄

Solution Note that f ( x) = – sin x

✂

(a) Since for each x (0, ), sin x > 0, we have f ( x) < 0 and so f is strictly

☎

✄

✂

decreasing in (0, ).

✄



(b) Since for each x ( , 2 ), sin x < 0, we have f ( x) > 0 and so f is strictly

☎

✄

✄

✂

increasing in ( , 2 ).

✄

✄

(c) Clearly by (a) and (b) above, f is neither increasing nor decreasing in (0,
2 ).

✄

Note One may note that the function in Example 9 is neither strictly
increasing in

[ , 2 ] nor strictly decreasing in [0, ]. However, since the function is
continuous at

✄

✄

✄



the end points 0 and , by Theorem 1, f is increasing in [ , 2 ] and decreasing
in [0, ].

✄

✄

✄

✄

Example 10 Find the intervals in which the function f given by f ( x) = x 2 –
4 x + 6 is (a) strictly increasing

(b) strictly decreasing

Solution We have

f ( x) = x 2 – 4 x + 6

or

f ( x) = 2 x – 4

✂

Therefore, f ( x) = 0 gives x = 2. Now the point x = 2 divides the real line
into two

✂



disjoint intervals namely, (– , 2) and (2, ) (Fig 6.3). In the interval (– , 2),

✟

✟

✟

f ( x) = 2 x – 4 < 0.

✂

Therefore, f is strictly decreasing in this

interval. Also, in the interval (2,

, f ( x) ✆

✝

0

✁

)

and so the function f is strictly increasing in this

Fig 6.3

interval.

Note Note that the given function is continuous at 2 which is the point
joining



the two intervals. So, by Theorem 1, we conclude that the given function is
decreasing

in (– , 2] and increasing in [2, ).

✟

✟

Example 11 Find the intervals in which the function f given by f ( x) = 4 x 3
– 6 x 2 – 72 x + 30

is (a) strictly increasing (b) strictly decreasing.

Solution We have

f ( x) = 4 x 3 – 6 x 2 – 72 x + 30
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or

f ( x) = 12 x 2 – 12 x – 72

✂

= 12( x 2 – x – 6)

= 12( x – 3) ( x + 2)

Therefore, f ( x) = 0 gives x = – 2, 3. The

✂

points x = – 2 and x = 3 divides the real line into



three disjoint intervals, namely, (– , – 2), (– 2, 3)

✟

Fig 6.4

and (3, ).

✟

In the intervals (– , – 2) and (3, ), f ( x) is positive while in the interval (– 2,
3),

✂

✟

✟

f ( x) is negative. Consequently, the function f is strictly increasing in the
intervals

✂

(– , – 2) and (3, ) while the function is strictly decreasing in the interval (–
2, 3).

✟

✟

However, f is neither increasing nor decreasing in R.

Interval



Sign of f ( x)

Nature of function f

✂

(– , – 2)

(–) (–) > 0

f is strictly increasing

✟

(– 2, 3)

(–) (+) < 0

f is strictly decreasing

(3, )

(+) (+) > 0

f is strictly increasing

✟

Example 12 Find intervals in which the function given by f ( x) = sin 3 x, x

✁

0, ✄ is

☎

✆



2 ✝

✞

✠

(a) increasing (b) decreasing.

Solution We have

f ( x) = sin 3 x

or

f ( x) = 3cos 3 x

✂

3✡

Therefore, f ( x) = 0 gives cos 3 x = 0 which in turn gives 3 x

✡

(as x

✁

☎

0, ✄

☛



,

✂

2

2

✆

2 ✝

✞

✠

3

✍

☞

✎

✏

implies 3 x

✁

0,

✄

). So x

☞



and

. The point x

☞

divides the interval 0,

✌

✌

☎

✑

✓

2 ✒

✆

2 ✝

6

2



6

✔

✞

✠

✁

✕

✍

✍

into two disjoint intervals 0,

and

✏

✘

,

.

6 ✖

✙

✆



6 2 ✒

✚

✞

✗

✔

Fig 6.5

✕

Now, f

for all x

✁

as

✡

✡

and f

for

✜

( x) ✥ 0

☎

0,



0 ✢ x ✣

✤

0 ✢ 3 x

✜

( x) ✛ 0

6 ✖

✣

✆

6

2

✞

✗

✡

✡

✡



3

✦

✧

★

all x

✦

as

.

✣

x ✣

✤

✣

3 x

✡

✩

✪

,

6 2 ✫

✣



6

2

2

2

✬

✭
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✁

✂

✞

✞

Therefore,

✟

✠

f is strictly increasing in 0,

and strictly decreasing in



.

✡

,

6

☛

✄

☎

☞

6 2 ✌

✆

✝

Also, the given function is continuous at x = 0 and x

✍

. Therefore, by Theorem 1,

✎



6

✏

✏

✏

✑

✒

✑

✒

f is increasing on 0,

and decreasing on

,

.

✓

6 ✔

✓

✕

6 2 ✔

✕

✖

✖



Example 13 Find the intervals in which the function f given by

f ( x) = sin x + cos x, 0 x 2

✗

✗

✘

is strictly increasing or strictly decreasing.

Solution We have

f( x) = sin x + cos x,

or

f ( x) = cos x – sin x

✙

5✍

Now f

gives sin x = cos x which gives that x

✍

,

as

✎

0 ✜ x ✜ 2

✛



( x) ✚ 0

4

4

✢

5

The points x

✣

and x

✣

divide the interval [0, 2 ] into three disjoint intervals,

✤

✤

4

4

✘

✒

★

5

✥



5

✁

✂

✂

✏

namely, 0,

,

,

and

, 2

.

4

✏

✦

✄

✄

☎

✩

✔

✧



4 4 ✝

✖

✪

4

✆

✝

Fig 6.6

✥

✂

5

Note that

f ( x)

0 if x

✁ 0,



, 2 ✫

✬

✭

✮

✯

☎

4

✦

✄

4

✰

✆

✝

✧

✱

✥



5

✁

✂

✫

or

f is strictly increasing in the intervals 0,

and

, 2

4

✦

✄

☎

✧

4

✰

✆

✝

✱

5



Also

f ( x)

0 if x ✥

✮

✬

,

✂

✲

✦

4 4 ✄

✧

✝

✥

5 ✂

or

f is strictly decreasing in

,

✦



4 4 ✄

✧

✝
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Interval

Sign of f ( x)

Nature of function

0, ✁

✂

✄

> 0

f is strictly increasing

4 ☎

✆

✝

✞

✟



5

, ✟

✠

✡

< 0

f is strictly decreasing

☛

4 4 ☞

✌

✍

5✁

✎

, 2 ✏

✁

> 0

f is strictly increasing

✑



4

✒

✓

✔

EXERCISE 6.2

1. Show that the function given by f ( x) = 3 x + 17 is strictly increasing on
R.

2. Show that the function given by f ( x) = e 2 x is strictly increasing on R.

3. Show that the function given by f ( x) = sin x is

✟

✟

✠

✡

✠

✡

(a) strictly increasing in 0,



(b) strictly decreasing in

,✟

☛

2 ☞

☛

✌

2

☞

✌

✍

✍

(c) neither increasing nor decreasing in (0, )

✕

4. Find the intervals in which the function f given by f ( x) = 2 x 2 – 3 x is
(a) strictly increasing

(b) strictly decreasing

5. Find the intervals in which the function f given by f ( x) = 2 x 3 – 3 x 2 –
36 x + 7 is (a) strictly increasing

(b) strictly decreasing

6. Find the intervals in which the following functions are strictly increasing
or



decreasing:

(a) x 2 + 2 x – 5

(b) 10 – 6 x – 2 x 2

(c) –2 x 3 – 9 x 2 – 12 x + 1

(d) 6 – 9 x – x 2

(e) ( x + 1)3 ( x – 3)3

2 x

7. Show that y

, x > – 1, is an increasing function of x

✖

log(1✗ x) ✘ 2✗ x

throughout its domain.

8. Find the values of x for which y = [ x( x – 2)]2 is an increasing function.

4 sin

9. Prove that y

✙

is an increasing function of in 0, ✁

✂

✏



.

✚

✛

✙

(2

✢

✆

✝

2 ✒

✜

cos ✙)

✔
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10. Prove that the logarithmic function is strictly increasing on (0, ).

✟

11. Prove that the function f given by f ( x) = x 2 – x + 1 is neither strictly
increasing nor strictly decreasing on (– 1, 1).

12. Which of the following functions are strictly decreasing on ✁ 0, ✂ ?

✄



2☎

✆

✝

(A) cos x

(B) cos 2 x

(C) cos 3 x

(D) tan x

13. On which of the following intervals is the function f given by f ( x) = x
100 + sin x –1

strictly decreasing ?

✞

(A) (0,1)

(B)

✞

✠

✡

✠

, ✡



(C)

0,

(D) None of these

✞

☛

☞

☛

2

☞

✌

2✍

✌

✍

14. Find the least value of a such that the function f given by f ( x) = x 2 +
ax + 1 is strictly increasing on (1, 2).

15. Let I be any interval disjoint from (–1, 1). Prove that the function f
given by

1

f ( x)



is strictly increasing on I.

✎

x ✏ x

16. Prove that the function f given by f ( x) = log sin x is strictly increasing

on 0, ✞

✠

✡

☛

2☞

✌

✍

and strictly decreasing on ✁

, ✂ .

✄

2

☎

✆

✝



17. Prove that the function f given by f ( x) = log cos x is strictly decreasing

on 0, ✞

✞

✠

✡

and strictly increasing on ✠

, ✡ .

✞

☛

2 ☞

☛

✌

2

☞

✌

✍

✍



18. Prove that the function given by f ( x) = x 3 – 3 x 2 + 3 x – 100 is
increasing in R.

19. The interval in which y = x 2 e–x is increasing is

(A) (– , )

(B) (– 2, 0)

(C) (2, )

(D) (0, 2)

✟

✟

✟

6.4 Tangents and Normals

In this section, we shall use differentiation to find the equation of the
tangent line and

the normal line to a curve at a given point.

Recall that the equation of a straight line passing through a given point ( x ,
y )

0

0

having finite slope m is given by

y – y = m ( x – x )



0

0
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Note that the slope of the tangent to the curve y = f ( x)

dy

at the point ( x , y ) is given by

(

f (

. So

✁

✂

x ))

0

0

✄

0

dx ☎( x , y )

0

0



the equation of the tangent at ( x , y ) to the curve y = f ( x) 0

0

is given by

y – y = f ( x )( x – x )

0

✆

0

0

Also, since the normal is perpendicular to the tangent,

the slope of the normal to the curve y = f ( x) at ( x , y ) is 0

0

1

Fig 6.7

✝

, if f ( x )

. Therefore, the equation of the

✟

✠

0



f

0

✞

( x )

0

normal to the curve y = f ( x) at ( x , y ) is given by

0

0

1

✝

y – y =

( x ✝ x )

0

0

f (

✞

x )

0



i.e.

( y

y ) f

= 0

✠

✡

( x ) ☛ ( x ✡ x )

0

0

0

Note If a tangent line to the curve y = f ( x) makes an angle with x-axis in
the

✌

☞

dy

positive direction, then

.

✍

slope of the tangent ✍ tan ✎



dx

Particular cases

(i) If slope of the tangent line is zero, then tan = 0 and so = 0 which means
the

✌

✌

tangent line is parallel to the x-axis. In this case, the equation of the tangent
at

the point ( x , y ) is given by y = y .

0

0

0

(ii) If

✏

, then tan

, which means the tangent line is perpendicular to the

✒

✓

✎

✑

✌



2

x-axis, i.e., parallel to the y-axis. In this case, the equation of the tangent at

( x , y ) is given by x = x (Why?).

0

0

0

Example 14 Find the slope of the tangent to the curve y = x 3 – x at x = 2.

Solution The slope of the tangent at x = 2 is given by

dy ✕

2

= 3 x

1✙

✚

✛

11.

dx ✖

✜

x✘2

✗

x✔2
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Example 15 Find the point at which the tangent to the curve y

4 x

has its

✁

3 ✁ 1

2

slope

.

3

Solution Slope of tangent to the given curve at ( x, y) is

dy

✂ 1

1

2

=

2

(4 x ✄ 3) 4



dx

☎

2

4 x ✄ 3

2

The slope is given to be

.

3

2

2

So

=

4 x

3

✆

3

or

4 x – 3 = 9

or

x = 3



Now y

4 x

. So when x = 3, y

.

✝

4(3) ✞ 3 ✞ 1 ✝ 2

✁

3 ✁ 1

Therefore, the required point is (3, 2).

Example 16 Find the equation of all lines having slope 2 and being tangent
to the curve

2

y

.

✟

✠

0

x ✡ 3



Solution Slope of the tangent to the given curve at any point ( x,y) is given
by

dy

2

=

dx

2

( x ☛ 3)

But the slope is given to be 2. Therefore

2

= 2

2

( x ☞ 3)

or

( x – 3)2 = 1

or

x – 3 = ± 1

or

x = 2, 4

Now x = 2 gives y = 2 and x = 4 gives y = – 2. Thus, there are two tangents
to the given curve with slope 2 and passing through the points (2, 2) and (4,



– 2). The equation

of tangent through (2, 2) is given by

y – 2 = 2( x – 2)

or

y – 2 x + 2 = 0

and the equation of the tangent through (4, – 2) is given by

y – (– 2) = 2( x – 4)

or

y – 2 x + 10 = 0

APPLICATION OF DERIVATIVES
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2

2

x

y

Example 17 Find points on the curve

at which the tangents are (i) parallel

✁

1

4



25

to x-axis (ii) parallel to y-axis.

2

2

x

y

Solution Differentiating

with respect to x, we get

✂

✄

1

4

25

x

2 y dy = 0

☎

2

25 dx

dy

✆ 25



x

or

=

dx

4

y

(i) Now, the tangent is parallel to the x-axis if the slope of the tangent is
zero which

2

2

x

y

✝ 25

x

gives

. This is possible if x = 0. Then

for x = 0 gives

✂

✄



1

✄

0

4

y

4

25

y 2 = 25, i.e., y = ± 5.

Thus, the points at which the tangents are parallel to the x-axis are (0, 5)
and

(0, – 5).

(ii) The tangent line is parallel to y-axis if the slope of the normal is 0 which
gives

2

2

4 y

x

y

, i.e., y = 0. Therefore,



for y = 0 gives x = ± 2. Hence, the

✂

✄

1

✞

0

25 x

4

25

points at which the tangents are parallel to the y-axis are (2, 0) and (–2, 0).

x ✝ 7

Example 18 Find the equation of the tangent to the curve y

at the

✄

( x ✝ 2)( x ✝ 3)

point where it cuts the x-axis.

Solution Note that on x-axis, y = 0. So the equation of the curve, when y =
0, gives x = 7. Thus, the curve cuts the x-axis at (7, 0). Now differentiating
the equation of the curve with respect to x, we obtain

dy



1✟ y(2 x ✟ 5)

=

(Why?)

dx

( x ✟ 2)( x ✟ 3)

dy

1 ✆ 0

1

✠

or

=

☞

dx ✡

(5) (4)

20

☛

(7,0)

210
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1

Therefore, the slope of the tangent at (7, 0) is

. Hence, the equation of the

20

tangent at (7, 0) is

1

y

0

or

20 y ✂ x ✄ 7 ☎ 0

✁

( x

7)

20

2

2

Example 19 Find the equations of the tangent and normal to the curve 3

3

x ✆ y ✝ 2



at (1, 1).

2

2

Solution Differentiating 3

3

x

with respect to x, we get

✆

y ✝ 2

✞ 1

✞

1

2

2

dy

3

3

x



= 0

✟

y

3

3

dx

1

dy

✠

y 3

or

=

✡

☛

dx

☞

x ✌

✍

✎



dy

Therefore, the slope of the tangent at (1, 1) is

✏

.

☎

1

✂

dx ✑✒(1,1)

So the equation of the tangent at (1, 1) is

y – 1 = – 1 ( x – 1) or y + x – 2 = 0

Also, the slope of the normal at (1, 1) is given by

✓ 1

= 1

slope of the tangent at (1,1)

Therefore, the equation of the normal at (1, 1) is

y – 1 = 1 ( x – 1) or y – x = 0

Example 20 Find the equation of tangent to the curve given by

x = a sin3 t ,

y = b cos3 t

... (1)



at a point where t

✔

.

✁

2

Solution Differentiating (1) with respect to t, we get

dx

dy

2

2

and

✕

3

✖

b cos t sin t

✕

3 a sin t cos t

dt

dt

APPLICATION OF DERIVATIVES
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dy

dy

2

dt

✁ 3 b cos

t sin t

b

✁

cos t

or

=

✂

dx

dx

2

3 a sin t cos t

a sin t

dt



Therefore, slope of the tangent at t

✄

is

☎

2

✡

dy

☛ b cos

✞

2

☞

0

dx

=

✟

✡

✠



t ✆

✝

2

a sin 2

Also, when t

✄

, x = a and y = 0. Hence, the equation of tangent to the given

☎

2

curve at t

✄

, i.e., at ( a, 0) is

☎

2

y – 0 = 0 ( x – a), i.e., y = 0.

EXERCISE 6.3

1. Find the slope of the tangent to the curve y = 3 x 4 – 4 x at x = 4.

x ✌ 1

2. Find the slope of the tangent to the curve y



at x = 10.

☎

, x ✍ 2

x ✌ 2

3. Find the slope of the tangent to curve y = x 3 – x + 1 at the point whose x-
coordinate is 2.

4. Find the slope of the tangent to the curve y = x 3 –3 x + 2 at the point
whose x-coordinate is 3.

5. Find the slope of the normal to the curve

3

3

x

at

✄

☎

✑

.

✎

a cos ✏, y ✎ a sin ✏

4

6. Find the slope of the normal to the curve



2

x

at

✄

☎

✑

.

✎

1 ✒ a sin ✏, y ✎ b cos ✏

2

7. Find points at which the tangent to the curve y = x 3 – 3 x 2 – 9 x + 7 is
parallel to the x-axis.

8. Find a point on the curve y = ( x – 2)2 at which the tangent is parallel to
the chord joining the points (2, 0) and (4, 4).
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9. Find the point on the curve y = x 3 – 11 x + 5 at which the tangent is y = x
– 11.

10. Find the equation of all lines having slope – 1 that are tangents to the
curve

1

y



, x 1.

☛

x ✁1

11. Find the equation of all lines having slope 2 which are tangents to the
curve

1

y

, x 3.

☛

x ✁ 3

12. Find the equations of all lines having slope 0 which are tangent to the
curve

1

y ✂

.

2

x ✄ 2 x ☎ 3

2

2

x

y



13. Find points on the curve

at which the tangents are

✆

✝

1

9

16

(i) parallel to x-axis

(ii) parallel to y-axis.

14. Find the equations of the tangent and normal to the given curves at the
indicated

points:

(i) y = x 4 – 6 x 3 + 13 x 2 – 10 x + 5 at (0, 5)

(ii) y = x 4 – 6 x 3 + 13 x 2 – 10 x + 5 at (1, 3)

(iii) y = x 3 at (1, 1)

(iv) y = x 2 at (0, 0)

(v) x = cos t, y = sin t at t

✞

4



15. Find the equation of the tangent line to the curve y = x 2 – 2 x +7 which
is (a) parallel to the line 2 x – y + 9 = 0

(b) perpendicular to the line 5 y – 15 x = 13.

16. Show that the tangents to the curve y = 7 x 3 + 11 at the points where x
= 2 and x = – 2 are parallel.

17. Find the points on the curve y = x 3 at which the slope of the tangent is
equal to the y-coordinate of the point.

18. For the curve y = 4 x 3 – 2 x 5, find all the points at which the tangent
passes through the origin.

19. Find the points on the curve x 2 + y 2 – 2 x – 3 = 0 at which the tangents
are parallel to the x-axis.

20. Find the equation of the normal at the point ( am 2, am 3) for the curve
ay 2 = x 3.
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21. Find the equation of the normals to the curve y = x 3 + 2 x + 6 which are
parallel to the line x + 14 y + 4 = 0.

22. Find the equations of the tangent and normal to the parabola y 2 = 4 ax
at the point ( at 2, 2 at).

23. Prove that the curves x = y 2 and xy = k cut at right angles* if 8 k 2 = 1.

2

2

x

y



24. Find the equations of the tangent and normal to the hyperbola

at the

✁

1

2

2

a

b

point ( x , y ).

0

0

25. Find the equation of the tangent to the curve y

which is parallel to the

✂

3 x ✄ 2

line 4 x

.

☎

2 y ✆ 5 ✝ 0

Choose the correct answer in Exercises 26 and 27.



26. The slope of the normal to the curve y = 2 x 2 + 3 sin x at x = 0 is 1

1

(A) 3

(B)

(C) –3

(D) ✞

3

3

27. The line y = x + 1 is a tangent to the curve y 2 = 4 x at the point (A) (1,
2)

(B) (2, 1)

(C) (1, – 2)

(D) (– 1, 2)

6.5 Approximations

In this section, we will use differentials to approximate values of certain
quantities.

Let f : D

R, D R, be a given function

✡

☞



and let y = f ( x). Let x denote a small

✌

increment in x. Recall that the increment in y

corresponding to the increment in x, denoted

by y, is given by y = f ( x + x) – f ( x). We

✌

✌

✌

define the following

(i) The differential of x, denoted by dx, is

defined by dx = x.

✌

(ii) The differential of y, denoted by dy,

is defined by dy = f ( x) dx or

✟

Fig 6.8

✠

dy



dy

☛

✍

✎

.

x

✏

dx ✑

✒

✓

*

Two curves intersect at right angle if the tangents to the curves at the point
of intersection

are perpendicular to each other.
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In case dx = x is relatively small when compared with x, dy is a good
approximation

✌

of y and we denote it by dy



y.

✌

✌

✍

For geometrical meaning of x, y, dx and dy, one may refer to Fig 6.8.

✌

✌

Note In view of the above discussion and Fig 6.8, we may note that the

differential of the dependent variable is not equal to the increment of the
variable

where as the differential of independent variable is equal to the increment of
the

variable.

Example 21 Use differential to approximate 36.6 .

Solution Take y

. Let x = 36 and let x = 0.6. Then

✌

✁

x

y =

x ✂ ✄ x ☎



x ✆ 36.6 ☎ 36 ✆ 36.6 ☎ 6

✌

or

36.6 = 6 + y

✌

Now dy is approximately equal to y and is given by

✌

1

✝

dy ✞

1

dy =

x

=

(0.6) = 0.05

(as y ✁



x )

✟

✠

(0.6)

✡

dx☛

2 36

☞

✎

2 x

Thus, the approximate value of 36.6 is 6 + 0.05 = 6.05.

1

Example 22 Use differential to approximate

3

(25) .

1

Solution Let

3

y



. Let x = 27 and let x = – 2. Then

✌

✏

x

1

1

1

1

1

y =

3

3

( x

=

3

3

3

(25) ✔ (27) ✏ (25) ✔ 3

✑



✒ x)

✓

x

✌

1

or

3

(25) = 3 + y

✌

Now dy is approximately equal to y and is given by

✌

1

1

✝

dy

dy =

✞

x =

(



3

(as y ✖ x )

✕ 2)

✟

2

✡

dx ☛

☞

✎

3

3 x

1

✗ 2

=

(✗2) ✘

✘

✗

0.074

1



27

2

3

3((27) )

1

Thus, the approximate value of

3

(25) is given by

3 + (– 0. 074) = 2.926
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Example 23 Find the approximate value of f (3.02), where f ( x) = 3 x 2 + 5
x + 3.

Solution Let x = 3 and x = 0.02. Then

✌

f (3. 02) = f ( x + x) = 3 ( x + x)2 + 5( x + x) + 3

✌

✌

✌



Note that y = f ( x + x) – f ( x). Therefore

✌

✌

f ( x + x) = f ( x) + y

✌

✌

f ( x) + f ( x) x

(as dx = x)

✌

✌

✍

✂

or

f (3.02)

(3 x 2 + 5 x + 3) + (6 x + 5) x

✌

✍

= (3(3)2 + 5(3) + 3) + (6(3) + 5) (0.02) (as x = 3, x = 0.02)

✌

= (27 + 15 + 3) + (18 + 5) (0.02)



= 45 + 0.46 = 45.46

Hence, approximate value of f (3.02) is 45.46.

Example 24 Find the approximate change in the volume V of a cube of side
x meters

caused by increasing the side by 2%.

Solution Note that

V = x 3

V

d

✁

or

d V =

= (3 x 2) x

✄ x

✌

☎

dx ✆

✝

✞

= (3 x 2) (0.02 x) = 0.06 x 3 m3



(as 2% of x is 0.02 x)

Thus, the approximate change in volume is 0.06 x 3 m3.

Example 25 If the radius of a sphere is measured as 9 cm with an error of
0.03 cm,

then find the approximate error in calculating its volume.

Solution Let r be the radius of the sphere and r be the error in measuring
the radius.

✌

Then r = 9 cm and r = 0.03 cm. Now, the volume V of the sphere is given
by

✌

4

3

V =

r

✟

3

V

d

or

= 4 r 2



dr

✠

V

d

✁

2

Therefore

d V =

r

✄

✄

✡

(4☛ r ) r

☎

dr ✆

✝

✞



= 4 (9)2 (0.03) = 9.72 cm3

✠

✠

Thus, the approximate error in calculating the volume is 9.72 cm3.

✠
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EXERCISE 6.4

1. Using differentials, find the approximate value of each of the following
up to 3

places of decimal.

(i)

25.3

(ii)

49.5

(iii)

0.6

1

1



1

(iv)

3

(0.009)

(v)

10

(0.999)

(vi)

4

(15)

1

1

1

(vii)

3

(26)

(viii)

4

(255)

(ix)



4

(82)

1

1

1

(x)

2

(401)

(xi)

2

(0.0037)

(xii)

3

(26.57)

1

3

1

(xiii)

4

(81.5)



(xiv)

2

(3.968)

(xv)

5

(32.15)

2. Find the approximate value of f (2.01), where f ( x) = 4 x 2 + 5 x + 2.

3. Find the approximate value of f (5.001), where f ( x) = x 3 – 7 x 2 + 15.

4. Find the approximate change in the volume V of a cube of side x metres
caused

by increasing the side by 1%.

5. Find the approximate change in the surface area of a cube of side x
metres

caused by decreasing the side by 1%.

6. If the radius of a sphere is measured as 7 m with an error of 0.02 m, then
find the

approximate error in calculating its volume.

7. If the radius of a sphere is measured as 9 m with an error of 0.03 m, then
find the

approximate error in calculating its surface area.

8. If f( x) = 3 x 2 + 15 x + 5, then the approximate value of f (3.02) is (A)
47.66



(B) 57.66

(C) 67.66

(D) 77.66

9. The approximate change in the volume of a cube of side x metres caused
by

increasing the side by 3% is

(A) 0.06 x 3 m3

(B) 0.6 x 3 m3 (C) 0.09 x 3 m3 (D) 0.9 x 3 m3

6.6 Maxima and Minima

In this section, we will use the concept of derivatives to calculate the
maximum or

minimum values of various functions. In fact, we will find the ‘turning
points’ of the

graph of a function and thus find points at which the graph reaches its
highest (or
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lowest) locally. The knowledge of such points is very useful in sketching
the graph of

a given function. Further, we will also find the absolute maximum and
absolute minimum

of a function that are necessary for the solution of many applied problems.

Let us consider the following problems that arise in day to day life.



(i) The profit from a grove of orange trees is given by P( x) = ax + bx 2,
where a,b are constants and x is the number of orange trees per acre. How
many trees per

acre will maximise the profit?

(ii) A ball, thrown into the air from a building 60 metres high, travels along
a path

2

x

given by h( x)

60

, where x is the horizontal distance from the building

✁

x ✂ 60

and h( x) is the height of the ball . What is the maximum height the ball will

reach?

(iii) An Apache helicopter of enemy is flying along the path given by the
curve

f ( x) = x 2 + 7. A soldier, placed at the point (1, 2), wants to shoot the
helicopter when it is nearest to him. What is the nearest distance?

In each of the above problem, there is something common, i.e., we wish to
find out

the maximum or minimum values of the given functions. In order to tackle
such problems,



we first formally define maximum or minimum values of a function, points
of local

maxima and minima and test for determining such points.

Definition 3 Let f be a function defined on an interval I. Then

(a) f is said to have a maximum value in I, if there exists a point c in I such
that f ( c)

, for all x I.

✄

f ( x)

☎

The number f ( c) is called the maximum value of f in I and the point c is
called a point of maximum value of f in I.

(b) f is said to have a minimum value in I, if there exists a point c in I such
that f ( c) f ( x), for all x I.

✝

☎

The number f ( c), in this case, is called the minimum value of f in I and the
point c, in this case, is called a point of minimum value of f in I.

(c) f is said to have an extreme value in I if there exists a point c in I such
that f ( c) is either a maximum value or a minimum value of f in I.

The number f ( c), in this case, is called an extreme value of f in I and the
point c is called an extreme point.



Remark In Fig 6.9(a), (b) and (c), we have exhibited that graphs of certain
particular functions help us to find maximum value and minimum value at a
point. Infact, through

graphs, we can even find maximum/minimum value of a function at a point
at which it

is not even differentiable (Example 27).
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Fig 6.9

Example 26 Find the maximum and the minimum values,

if any, of the function f given by

f ( x) = x 2, x R.

☎

Solution From the graph of the given function (Fig 6.10),

we have f ( x) = 0 if x = 0. Also

f ( x)

0, for all x R.

✞

☎

Therefore, the minimum value of f is 0 and the point

of minimum value of f is x = 0. Further, it may be observed



from the graph of the function that f has no maximum

value and hence no point of maximum value of f in R.

Fig 6.10

Note If we restrict the domain of f to [– 2, 1] only,

then f will have maximum value(– 2)2 = 4 at x = – 2.

Example 27 Find the maximum and minimum values

of f , if any, of the function given by f ( x) = | x |, x R.

☎

Solution From the graph of the given function

(Fig 6.11) , note that

f ( x) 0, for all x R and f ( x) = 0 if x = 0.

✞

☎

Therefore, the function f has a minimum value 0

and the point of minimum value of f is x = 0. Also, the

graph clearly shows that f has no maximum value in

R and hence no point of maximum value in R.

Fig 6.11

Note



(i) If we restrict the domain of f to [– 2, 1] only, then f will have maximum
value

| – 2| = 2.
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(ii) One may note that the function f in Example 27 is not differentiable at

x = 0.

Example 28 Find the maximum and the minimum values, if any, of the
function

given by

f ( x) = x, x (0, 1).

☎

Solution The given function is an increasing (strictly) function in the given
interval

(0, 1). From the graph (Fig 6.12) of the function f , it

seems that, it should have the minimum value at a

point closest to 0 on its right and the maximum value

at a point closest to 1 on its left. Are such points

available? Of course, not. It is not possible to locate

such points. Infact, if a point x is closest to 0, then

0



x 0

we find

x 0 for all x

. Also, if x is

✁

(0,1)

2

0

1

x ✂ 1

closest to 1, then 1

for all x

.

✆

(0,1)

✄

x 1

2

1

Fig 6.12



Therefore, the given function has neither the maximum value nor the
minimum

value in the interval (0,1).

Remark The reader may observe that in Example 28, if we include the
points 0 and 1

in the domain of f , i.e., if we extend the domain of f to [0,1], then the
function f has minimum value 0 at x = 0 and maximum value 1 at x = 1.
Infact, we have the following

results (The proof of these results are beyond the scope of the present text)

Every monotonic function assumes its maximum/minimum value at the end

points of the domain of definition of the function.

A more general result is

Every continuous function on a closed interval has a maximum and a
minimum

value.

Note By a monotonic function f in an interval I, we mean that f is either

✝

increasing in I or decreasing in I.

Maximum and minimum values of a function defined on a closed interval
will be

discussed later in this section.

Let us now examine the graph of a function as shown in Fig 6.13. Observe
that at



points A, B, C and D on the graph, the function changes its nature from
decreasing to

increasing or vice-versa. These points may be called turning points of the
given

function. Further, observe that at turning points, the graph has either a little
hill or a little

valley. Roughly speaking, the function has minimum value in some
neighbourhood

(interval) of each of the points A and C which are at the bottom of their
respective
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Fig 6.13

valleys. Similarly, the function has maximum value in some neighbourhood
of points B

and D which are at the top of their respective hills. For this reason, the
points A and C

may be regarded as points of local minimum value (or relative minimum
value) and

points B and D may be regarded as points of local maximum value (or
relative maximum

value) for the function. The local maximum value and local minimum value
of the function are referred to as local maxima and local minima,
respectively, of the function.

We now formally give the following definition



Definition 4 Let f be a real valued function and let c be an interior point in
the domain of f. Then

(a) c is called a point of local maxima if there is an h > 0 such that

f ( c) f ( x), for all x in ( c – h, c + h)

✞

The value f ( c) is called the local maximum value of f.

(b) c is called a point of local minima if there is an h > 0 such that

f ( c) f ( x), for all x in ( c – h, c + h)

✝

The value f (c) is called the local minimum value of f .

Geometrically, the above definition states that if x = c is a point of local
maxima of f, then the graph of f around c will be as shown in Fig 6.14(a).
Note that the function f is increasing (i.e., f ( x) > 0) in the interval ( c – h, c)
and decreasing (i.e., f ( x) < 0) in the

✂

✂

interval ( c, c + h).

This suggests that f ( c) must be zero.

✂

Fig 6.14
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Similarly, if c is a point of local minima of f , then the graph of f around c
will be as shown in Fig 6.14(b). Here f is decreasing (i.e., f ( x) < 0) in the
interval ( c – h, c) and

✂

increasing (i.e., f ( x) > 0) in the interval ( c, c + h). This again suggest that f
( c) must

✂

✂

be zero.

The above discussion lead us to the following theorem (without proof).

Theorem 2 Let f be a function defined on an open interval I. Suppose c I be
any

☎

point. If f has a local maxima or a local minima at x = c, then either f ( c) =
0 or f is not

✂

differentiable at c.

Remark The converse of above theorem need

not be true, that is, a point at which the derivative

vanishes need not be a point of local maxima or



local minima. For example, if f ( x) = x 3, then f ( x)

✂

= 3 x 2 and so f (0) = 0. But 0 is neither a point of

✂

local maxima nor a point of local minima (Fig 6.15).

Note A point c in the domain of a function

f at which either f ( c) = 0 or f is not differentiable

✂

is called a critical point of f. Note that if f is

continuous at c and f ( c) = 0, then there exists

✂

an h > 0 such that f is differentiable in the interval

Fig 6.15

( c – h, c + h).

We shall now give a working rule for finding points of local maxima or
points of

local minima using only the first order derivatives.

Theorem 3 (First Derivative Test) Let f be a function defined on an open
interval I.

Let f be continuous at a critical point c in I. Then



(i) If f ( x) changes sign from positive to negative as x increases through c,
i.e., if

✂

f ( x) > 0 at every point sufficiently close to and to the left of c, and f ( x) < 0
at

✂

✂

every point sufficiently close to and to the right of c, then c is a point of
local maxima.

(ii) If f ( x) changes sign from negative to positive as x increases through c,
i.e., if

✂

f ( x) < 0 at every point sufficiently close to and to the left of c, and f ( x) > 0
at

✂

✂

every point sufficiently close to and to the right of c, then c is a point of
local minima.

(iii) If f ( x) does not change sign as x increases through c, then c is neither a
point of

✂

local maxima nor a point of local minima. Infact, such a point is called
point of

inflection (Fig 6.15).
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Note If c is a point of local maxima of f , then f ( c) is a local maximum
value of f. Similarly, if c is a point of local minima of f , then f( c) is a local
minimum value of f.

Figures 6.15 and 6.16, geometrically explain Theorem 3.

Fig 6.16

Example 29 Find all points of local maxima and local minima of the
function f

given by

f ( x) = x 3 – 3 x + 3.

Solution We have

f ( x) = x 3 – 3 x + 3

or

f ( x) = 3 x 2 – 3 = 3 ( x – 1) ( x + 1)

✂

or

f ( x) = 0 at x = 1 and x = – 1

✂

Thus, x = ± 1 are the only critical points which could possibly be the points
of local

maxima and/or local minima of f . Let us first examine the point x = 1.



Note that for values close to 1 and to the right of 1, f ( x) > 0 and for values
close

✂

to 1 and to the left of 1, f ( x) < 0. Therefore, by first derivative test, x = 1 is
a point

✂

of local minima and local minimum value is f (1) = 1. In the case of x = –1,
note that f ( x) > 0, for values close to and to the left of –1 and f ( x) < 0, for
values close to and

✂

✂

to the right of – 1. Therefore, by first derivative test, x = – 1 is a point of
local maxima

and local maximum value is f (–1) = 5.

Values of x

Sign of f ( x) = 3( x – 1) ( x + 1)

✁



to the right (say 1.1 etc.)

> 0

Close to 1 to the left (say 0.9 etc.)

< 0

to the right (say ✄ 0.9 etc.)

☎

0

Close to –1 to the left (say ✄1.1 etc.)

✆

0
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Example 30 Find all the points of local maxima and local minima of the
function f

given by

f ( x) = 2 x 3 – 6 x 2 + 6 x +5.

Solution We have

f ( x) = 2 x 3 – 6 x 2 + 6 x + 5

or



f ( x) = 6 x 2 – 12 x + 6 = 6 ( x – 1)2

✂

or

f ( x) = 0 at x = 1

✂

Thus, x = 1 is the only critical point of f . We shall now examine this point
for local maxima and/or local minima of f. Observe that f ( x) 0, for all x R
and in particular

✂

✞

☎

f ( x) > 0, for values close to 1 and to the left and to the right of 1.
Therefore, by first

✂

derivative test, the point x = 1 is neither a point of local maxima nor a point
of local

minima. Hence x = 1 is a point of inflexion.

Remark One may note that since f ( x), in Example 30, never changes its
sign on R,

✂

graph of f has no turning points and hence no point of local maxima or local
minima.



We shall now give another test to examine local maxima and local minima
of a

given function. This test is often easier to apply than the first derivative test.

Theorem 4 (Second Derivative Test) Let f be a function defined on an
interval I and c I. Let f be twice differentiable at c. Then

☎

(i) x = c is a point of local maxima if f ( c) = 0 and f ( c) < 0

✂

✎

The value f ( c) is local maximum value of f .

(ii) x = c is a point of local minima if f

and f ( c) > 0

✎

✁

( c)

0

In this case, f ( c) is local minimum value of f .

(iii) The test fails if f ( c) = 0 and f ( c) = 0.

✂

✎



In this case, we go back to the first derivative test and find whether c is a
point of

local maxima, local minima or a point of inflexion.

Note As f is twice differentiable at c, we mean

✄

second order derivative of f exists at c.

Example 31 Find local minimum value of the function f

given by f ( x) = 3 + | x |, x R.

☎

Solution Note that the given function is not differentiable

at x = 0. So, second derivative test fails. Let us try first

derivative test. Note that 0 is a critical point of f . Now

to the left of 0, f ( x) = 3 – x and so f ( x) = – 1 < 0. Also Fig 6.17

✂
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to the right of 0, f ( x) = 3 + x and so f ( x) = 1 > 0. Therefore, by first
derivative test,

✂

x = 0 is a point of local minima of f and local minimum value of f is f (0) =
3.



Example 32 Find local maximum and local minimum values of the
function f given by

f ( x) = 3 x 4 + 4 x 3 – 12 x 2 + 12

Solution We have

f ( x) = 3 x 4 + 4 x 3 – 12 x 2 + 12

or

f ( x) = 12 x 3 + 12 x 2 – 24 x = 12 x ( x – 1) ( x + 2)

✂

or

f ( x) = 0 at x = 0, x = 1 and x = – 2.

✂

Now

f ( x) = 36 x 2 + 24 x – 24 = 12 (3 x 2 + 2 x – 1)

✎

f (0)

✁ 12 ✄

☎

☎

✆



0

✝

or

f ☎☎

✟

(1)

48 ✞ 0

✝

f ☎☎(✁2)

84 ✞ 0

✠

Therefore, by second derivative test, x = 0 is a point of local maxima and
local

maximum value of f at x = 0 is f (0) = 12 while x = 1 and x = – 2 are the
points of local minima and local minimum values of f at x = – 1 and – 2 are
f (1) = 7 and f (–2) = –20, respectively.

Example 33 Find all the points of local maxima and local minima of the
function f

given by



f ( x) = 2 x 3 – 6 x 2 + 6 x +5.

Solution We have

f ( x) = 2 x 3 – 6 x 2 + 6 x +5

2

2

✡

f ☛( x) ☞ 6 x ✌ 12 x ✍ 6 ☞ 6( x ✌

✏

1)

or

✑

f ☛☛( x) ☞ 12( x ✌

✏

1)

✒

Now f ( x) = 0 gives x =1. Also f (1) = 0. Therefore, the second derivative
test

✂

✎

fails in this case. So, we shall go back to the first derivative test.



We have already seen (Example 30) that, using first derivative test, x =1 is
neither

a point of local maxima nor a point of local minima and so it is a point of
inflexion.

Example 34 Find two positive numbers whose sum is 15 and the sum of
whose

squares is minimum.

Solution Let one of the numbers be x. Then the other number is (15 – x).
Let S( x) denote the sum of the squares of these numbers. Then
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S( x) = x 2 + (15 – x)2 = 2 x 2 – 30 x + 225

S ( x) ✁ 4 x ✂

✄

30

or

☎S ( x) ✁ 4

✆

15

✟

15



Now S ( x) = 0 gives x

. Also S

✠

. Therefore, by second derivative

✡

✡

☛

4 ☞ 0

✝

✞

2

✌

2 ✍

✎

✏

15

test, x



is the point of local minima of S. Hence the sum of squares of numbers is

✞

2

15

15

15

minimum when the numbers are

and 15

.

✑

✞

2

2

2

Remark Proceeding as in Example 34 one may prove that the two positive
numbers,

k

k

whose sum is k and the sum of whose squares is minimum, are

and



.

2

2

Example 35 Find the shortest distance of the point (0, c) from the parabola
y = x 2, where 0 c 5.

✒

✒

Solution Let ( h, k) be any point on the parabola y = x 2. Let D be the
required distance between ( h, k) and (0, c). Then

 

2

2

2

2

D

... (1)

✓

( h ✔ 0) ✕ ( k ✔ c) ✓

h ✕ ( k ✔ c)

Since ( h, k) lies on the parabola y = x 2, we have k = h 2. So (1) gives D D(
k) =



2

k ✕ ( k ✔ c)

✖

1 ✗ 2( k ✘ c)

or

D ( k) =

✝

2

2 k ✗ ( k ✘ c)

2 c 1

Now

D ( k) = 0 gives k

✑

✞

✝

2

2 c 1

Observe that when k

✑



, then 2( k

, i.e., D

. Also when

✛ ( k ) ✚ 0

✚

✘

c) ✗ 1 0

✙

2

2 c 1

2 c 1

k

✑

, then D

. So, by first derivative test, D ( k) is minimum at k

✑

.

✢ ( k )

✣



0

✜

2

✞

2

Hence, the required shortest distance is given by
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2

✁

2 c 1 ✂

2 c 1 ✁ 2 c 1

✂

4 c 1

D

✄

☎



c

✄

✆

2

✝

2

✆

2

✝

✞

✟

✞

✟

2

Note The reader may note that in Example 35, we have used first derivative

✠

test instead of the second derivative test as the former is easy and short.



Example 36 Let AP and BQ be two vertical poles at

points A and B, respectively. If AP = 16 m, BQ = 22 m

and AB = 20 m, then find the distance of a point R on

AB from the point A such that RP2 + RQ2 is minimum.

Solution Let R be a point on AB such that AR = x m.

Then RB = (20 – x) m (as AB = 20 m). From Fig 6.18,

we have

RP2 = AR2 + AP2

and

RQ2 = RB2 + BQ 2

Fig 6.18

Therefore

RP2 + RQ2 = AR2 + AP2 + RB2 + BQ2

= x 2 + (16)2 + (20 – x)2 + (22)2

= 2 x 2 – 40 x + 1140

Let

S S( x) = RP2 + RQ2 = 2 x 2 – 40 x + 1140.

✏

Therefore



S ( x) = 4 x – 40.

✡

Now S ( x) = 0 gives x = 10. Also S ( x) = 4 > 0, for all x and so S (10) > 0.

✡

✎

✎

Therefore, by second derivative test, x = 10 is the point of local minima of
S. Thus, the

distance of R from A on AB is AR = x =10 m.

Example 37 If length of three sides of a trapezium other than base are equal
to 10cm,

then find the area of the trapezium when it is maximum.

Solution The required trapezium is as given in Fig 6.19. Draw
perpendiculars DP and

Fig 6.19
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CQ on AB. Let AP = x cm. Note that APD ~ BQC. Therefore, QB = x cm.
Also, by

✌

✌



Pythagoras theorem, DP = QC =

2

100

x . Let A be the area of the trapezium. Then

1

A A( x) =

(sum of parallel sides) (height)

✏

2

1

2

=

(2 x ✄ 10 ✄ 10)

100 ☎ x

✁

✂

2

=

2

( x ✞ 10)



100 ✟ x

✆

✝

(☞2 x)

2

or

A ( x) = ( x

☞

✍

10)

✍

100

x

✡

☛

✠

2

2 100 ☞ x



2

✎2 x

✎

10 x ✑ 100

=

2

100 ✎ x

Now

A ( x) = 0 gives 2 x 2 + 10 x – 100 = 0, i.e., x = 5 and x = –10.

✠

Since x represents distance, it can not be negative.

So,

x = 5. Now

2

2

(✓2 x)

100

✔

✓

x (✓4 x ✓ 10) ✓ (✓2 x ✓ 10 x 100)



2

2 100 ✓ x

A ( x) =

✒

2

100 ✓ x

3

2 x ✕ 300 x ✕ 1000

=

(on simplification)

3

2 2

(100 ✕ x )

3

2(5) ✕ 300(5) ✕ 1000

✕

2250

✕ 30

or



A (5) =

✖

✖

✗

0

✒

3

75 75

75

2 2

(100 ✕ (5) )

Thus, area of trapezium is maximum at x = 5 and the area is given by

A (5) =

2

2

(5 ✘ 10) 100 ✙ (5) ✚ 15 75 ✚ 75 3 cm

Example 38 Prove that the radius of the right circular cylinder of greatest
curved

surface area which can be inscribed in a given cone is half of that of the
cone.



Solution Let OC = r be the radius of the cone and OA = h be its height. Let
a cylinder with radius OE = x inscribed in the given cone (Fig 6.20). The
height QE of the cylinder

is given by
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QE

EC

=

(since QEC ~ AOC)

OA

OC

✌

✌

QE

r

x

or

=

h

r



h( r

x)

or

QE =

r

Let S be the curved surface area of the given

cylinder. Then

2

2 h

✁ x h ( r

✂

x)

✁

2

S S ( x) =

=

( rx ✂ x )

✏

r

r



Fig 6.20

2✄

☎

h

S✆( x) ✝

( r ✞ 2 x)

✟

✟

r

or

✠

✞

4 h



S ( x)

✄

✟

✆

✆

✝

✟

✡

r

r

r

✍

r

Now S ( x) = 0 gives x

. Since S ( x) < 0 for all x, S

✑

. So x



is a

☞

✒

✒

✓

0

☞

☛

2

✎

✔

2 ✕

2

✖

✗

point of maxima of S. Hence, the radius of the cylinder of greatest curved
surface area

which can be inscribed in a given cone is half of that of the cone.

6.6.1 Maximum and Minimum Values of a Function in a Closed Interval

Let us consider a function f given by



f ( x) = x + 2, x (0, 1)

✘

Observe that the function is continuous on (0, 1) and neither has a
maximum value

nor has a minimum value. Further, we may note that the function even has
neither a

local maximum value nor a local minimum value.

However, if we extend the domain of f to the closed interval [0, 1], then f
still may not have a local maximum (minimum) values but it certainly does
have maximum value

3 = f (1) and minimum value 2 = f (0). The maximum value 3 of f at x = 1 is
called absolute maximum value ( global maximum or greatest value) of f on
the interval

[0, 1]. Similarly, the minimum value 2 of f at x = 0 is called the absolute
minimum value ( global minimum or least value) of f on [0, 1].

Consider the graph given in Fig 6.21 of a continuous function defined on a
closed

interval [ a, d]. Observe that the function f has a local minima at x = b and
local
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229

Fig 6.21

minimum value is f ( b). The function also has a local maxima at x = c and
local maximum value is f ( c).



Also from the graph, it is evident that f has absolute maximum value f ( a)
and absolute minimum value f ( d). Further note that the absolute maximum
(minimum)

value of f is different from local maximum (minimum) value of f .

We will now state two results (without proof) regarding absolute maximum
and

absolute minimum values of a function on a closed interval I.

Theorem 5 Let f be a continuous function on an interval I = [ a, b]. Then f
has the absolute maximum value and f attains it at least once in I. Also, f has
the absolute minimum value and attains it at least once in I.

Theorem 6 Let f be a differentiable function on a closed interval I and let c
be any interior point of I. Then

(i) f ( c) = 0 if f attains its absolute maximum value at c.

✂

(ii) f ( c) = 0 if f attains its absolute minimum value at c.

✂

In view of the above results, we have the following working rule for finding
absolute

maximum and/or absolute minimum values of a function in a given closed
interval

[ a, b].

Working Rule

Step 1: Find all critical points of f in the interval, i.e., find points x where
either f



or f is not differentiable.

✁

( x)

0

Step 2: Take the end points of the interval.

Step 3: At all these points (listed in Step 1 and 2), calculate the values of f .

Step 4: Identify the maximum and minimum values of f out of the values
calculated in Step 3. This maximum value will be the absolute maximum
(greatest) value of

f and the minimum value will be the absolute minimum (least) value of f .
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Example 39 Find the absolute maximum and minimum values of a function
f given by

f ( x) = 2 x 3 – 15 x 2 + 36 x +1 on the interval [1, 5].

Solution We have

f ( x) = 2 x 3 – 15 x 2 + 36 x + 1

or

f ( x) = 6 x 2 – 30 x + 36 = 6 ( x – 3) ( x – 2)

✂



Note that f ( x) = 0 gives x = 2 and x = 3.

✂

We shall now evaluate the value of f at these points and at the end points of
the

interval [1, 5], i.e., at x = 1, x = 2, x = 3 and at x = 5. So

f (1) = 2 (13) – 15 (12) + 36 (1) + 1 = 24

f (2) = 2 (23) – 15 (22) + 36 (2) + 1 = 29

f (3) = 2 (33) – 15 (32) + 36 (3) + 1 = 28

f (5) = 2 (53) – 15 (52) + 36 (5) + 1 = 56

Thus, we conclude that absolute maximum value of f on [1, 5] is 56,
occurring at

x =5, and absolute minimum value of f on [1, 5] is 24 which occurs at x = 1.

Example 40 Find absolute maximum and minimum values of a function f
given by

4

1

3

3

f ( x) 12 x ✁ 6 x , x ✄[ 1

✁

, 1]



Solution We have

4

1

f ( x) =

3

3

12 x ☎ 6 x

1

2

2(8 x ✆ 1)

or

f ( x) =

3

16 x ✆

✝

✂

2

2

3

3



x

x

1

Thus, f ( x) = 0 gives x

. Further note that f ( x) is not defined at x = 0. So the

✞

✂

✂

8

1

critical points are x = 0 and x

. Now evaluating the value of f at critical points

✞

8

1

x = 0, and at end points of the interval x = –1 and x = 1, we have

8

4

1



f (–1) =

3

3

12( 1

✁

) ✁ 6( 1

✁

)

18

f (0) = 12 (0) – 6 (0) = 0
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4

1

1

1 3



1 3

✝

✞

✟

✞

✟

9

f

✁

= 12

✝

6

✠

✂

8 ✄

✡



8 ☛

✡

8 ☛

☞

✌

☞

✌

4

☎

✆

4

1

f (1) =

3

3

12(1) ✍ 6(1) ✎ 6

Hence, we conclude that absolute maximum value of f is 18 that occurs at x
= – 1

1

✏ 9



and absolute minimum value of f is

that occurs at x

.

✑

4

8

Example 41 An Apache helicopter of enemy is flying along the curve given
by

y = x 2 + 7. A soldier, placed at (3, 7), wants to shoot down the helicopter
when it is nearest to him. Find the nearest distance.

Solution For each value of x, the helicopter’s position is at point ( x, x 2 +
7).

Therefore, the distance between the helicopter and the soldier placed at
(3,7) is

2

2

2

( x

, i.e.,

2

4

( x



.

✒

3) ✓ x

✒

3) ✓ ( x ✓ 7 ✒ 7)

Let

f ( x) = ( x – 3)2 + x 4

or

f ( x) = 2( x – 3) + 4 x 3 = 2 ( x – 1) (2 x 2 + 2 x + 3)

✔

Thus, f ( x) = 0 gives x = 1 or 2 x 2 + 2 x + 3 = 0 for which there are no real
roots.

✔

Also, there are no end points of the interval to be added to the set for which
f is zero,

✔

i.e., there is only one point, namely, x = 1. The value of f at this point is
given by f (1) = (1 – 3)2 + (1)4 = 5. Thus, the distance between the solider
and the helicopter is

f (1)

.

✕



5

Note that 5 is either a maximum value or a minimum value. Since

f (0) =

2

4

(0

,

✒

3) ✓ (0) ✖ 3 ✗ 5

it follows that 5 is the minimum value of f ( x) . Hence, 5 is the minimum

distance between the soldier and the helicopter.

EXERCISE 6.5

1. Find the maximum and minimum values, if any, of the following
functions

given by

(i) f ( x) = (2 x – 1)2 + 3

(ii) f ( x) = 9 x 2 + 12 x + 2

(iii) f ( x) = – ( x – 1)2 + 10

(iv) g ( x) = x 3 + 1
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2. Find the maximum and minimum values, if any, of the following
functions

given by

(i) f ( x) = | x + 2 | – 1

(ii) g ( x) = – | x + 1| + 3

(iii) h ( x) = sin (2 x) + 5

(iv) f ( x) = | sin 4 x + 3|

(v) h ( x) = x + 1, x (– 1, 1)

☎

3. Find the local maxima and local minima, if any, of the following
functions. Find

also the local maximum and the local minimum values, as the case may be:

(i) f ( x) = x 2

(ii) g ( x) = x 3 – 3 x

(iii) h ( x) = sin x + cos x, 0 ✁ x ✁ 2

(iv) f ( x) = sin x – cos x, 0 ✂ x ✂ 2✄

x

2

(v) f ( x) = x 3 – 6 x 2 + 9 x + 15

(vi) g( x) ✆

✝



, x ✞ 0

2

x

1

(vii) g( x)

(viii) f ( x)

✡

☛

✟

x 1

x , x

0

✟

2

x ✠ 2

4. Prove that the following functions do not have maxima or minima:

(i) f ( x) = ex

(ii) g ( x) = log x



(iii) h ( x) = x 3 + x 2 + x +1

5. Find the absolute maximum value and the absolute minimum value of the
following

functions in the given intervals:

(i) f ( x) = x 3, x [– 2, 2]

(ii) f ( x) = sin x + cos x , x [0, ]

☞

☎

☎

1

9

(iii) f ( x) =

2

4 x

x , x

✌

2, ✍ (iv)

2



f ( x)

✡

✡

✟

( x 1) ✠ 3, x [

✕

3,1]

✎

✏

✎

2

✑

2 ✒

✓

✔

6. Find the maximum profit that a company can make, if the profit function
is

given by

p ( x) = 41 – 24 x – 18 x 2



7. Find both the maximum value and the minimum value of

3 x 4 – 8 x 3 + 12 x 2 – 48 x + 25 on the interval [0, 3].

8. At what points in the interval [0, 2 ], does the function sin 2 x attain its
maximum

☞

value?

9. What is the maximum value of the function sin x + cos x?

10. Find the maximum value of 2 x 3 – 24 x + 107 in the interval [1, 3].
Find the maximum value of the same function in [–3, –1].
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11. It is given that at x = 1, the function x 4 – 62 x 2 + ax + 9 attains its
maximum value, on the interval [0, 2]. Find the value of a.

12. Find the maximum and minimum values of x + sin 2 x on [0, 2 ].

✄

13. Find two numbers whose sum is 24 and whose product is as large as
possible.

14. Find two positive numbers x and y such that x + y = 60 and xy 3 is
maximum.

15. Find two positive numbers x and y such that their sum is 35 and the
product x 2 y 5

is a maximum.



16. Find two positive numbers whose sum is 16 and the sum of whose
cubes is

minimum.

17. A square piece of tin of side 18 cm is to be made into a box without top,
by

cutting a square from each corner and folding up the flaps to form the box.
What

should be the side of the square to be cut off so that the volume of the box is
the

maximum possible.

18. A rectangular sheet of tin 45 cm by 24 cm is to be made into a box
without top,

by cutting off square from each corner and folding up the flaps. What
should be

the side of the square to be cut off so that the volume of the box is
maximum ?

19. Show that of all the rectangles inscribed in a given fixed circle, the
square has

the maximum area.

20. Show that the right circular cylinder of given surface and maximum
volume is

such that its height is equal to the diameter of the base.

21. Of all the closed cylindrical cans (right circular), of a given volume of
100 cubic

centimetres, find the dimensions of the can which has the minimum surface



area?

22. A wire of length 28 m is to be cut into two pieces. One of the pieces is
to be

made into a square and the other into a circle. What should be the length of
the

two pieces so that the combined area of the square and the circle is
minimum?

23. Prove that the volume of the largest cone that can be inscribed in a
sphere of

8

radius R is

of the volume of the sphere.

27

24. Show that the right circular cone of least curved surface and given
volume has

an altitude equal to 2 time the radius of the base.

25. Show that the semi-vertical angle of the cone of the maximum volume
and of

given slant height is

1

tan

2 .



26. Show that semi-vertical angle of right circular cone of given surface
area and

maximum volume is

1 ✂

☎

✁

1

sin

.

✆

3✝

✞

✟
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Choose the correct answer in the Exercises 27 and 29.

27. The point on the curve x 2 = 2 y which is nearest to the point (0, 5) is

(A) (2 2, 4)

(B) (2 2,0)



(C) (0, 0)

(D) (2, 2)

2

1 x ✁ x

28. For all real values of x, the minimum value of

is

2

1✁ x ✁ x

1

(A) 0

(B) 1

(C) 3

(D) 3

1

29. The maximum value of

3

[ x( x

, 0

is

☎



x ☎ 1

✂

1) ✄ 1]

1

1

✆

1 3

(A)

✝

(B)

(C) 1

(D) 0

✞

3✟

2

✠

✡

Miscellaneous Examples



Example 42 A car starts from a point P at time t = 0 seconds and stops at
point Q. The

distance x, in metres, covered by it, in t seconds is given by

2

t

x

t ☛ 2

☞

✌

✍

✎

3✏

✑

✒

Find the time taken by it to reach Q and also find distance between P and Q.

Solution Let v be the velocity of the car at t seconds.

t

Now

x = 2



t ☛ 2

☞

✍

✎

3 ✏

✑

✒

dx

Therefore

v =

= 4 t – t 2 = t (4 – t)

dt

Thus, v = 0 gives t = 0 and/or t = 4.

Now v = 0 at P as well as at Q and at P, t = 0. So, at Q, t = 4. Thus, the car
will reach the point Q after 4 seconds. Also the distance travelled in 4
seconds is given by

2 ✓

4 ✔

✓

2 ✔

32



x]

= 4

2

✕

16

✕

m

t = 4

✖

3 ✗

✖

3 ✗

✘

✙

✘

✙

3
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Example 43 A water tank has the shape of an inverted right circular cone
with its axis

vertical and vertex lowermost. Its semi-vertical angle is tan–1 (0.5). Water
is poured

into it at a constant rate of 5 cubic metre per hour. Find the rate at which the
level of

the water is rising at the instant when the depth of water in the tank is 4 m.

r

Solution Let r, h and be as in Fig 6.22. Then tan

✁

.

✑

h

✄

☎

✂ 1

r

So

= tan



.

✑

✆

h ✝

✞

✟

But

= tan–1(0.5) (given)

✑

r

or

= 0.5

h

h

or

r = 2

Let V be the volume of the cone. Then

Fig 6.22

2



3

1

2

1

h

h

V =

r h

h

✠

✡

☛

✠

☞

✠

☞

3



3 ✌ 2 ✍

✎

✏

12

V

d

3

d ✒ h ✓

✔

dh

Therefore

=

(by Chain Rule)

✕

dt

dh ✖ 12 ✗ dt

✘

✙

✚



2 dh

=

h

4

dt

d V

Now rate of change of volume, i.e.,

m3/h and h = 4 m.

✛

5

dt

✚

2

dh

Therefore

5 =

(4) ✜

4

dt

dh



5

35

✢

22 ✣

or

=

✤

m/h ✥ ✤

dt

4

88

✦

7 ✧

✥

★

✩

35

Thus, the rate of change of water level is

m/h .

88



Example 44 A man of height 2 metres walks at a uniform speed of 5 km/h
away from

a lamp post which is 6 metres high. Find the rate at which the length of his
shadow

increases.
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Solution In Fig 6.23, Let AB be the lamp-post, the

lamp being at the position B and let MN be the man

at a particular time t and let AM = l metres. Then,

MS is the shadow of the man. Let MS = s metres.

Note that

MSN ~

ASB

✌

✌

MS

MN

or

=

AS



AB

Fig 6.23

or

AS = 3 s (as MN = 2 and AB = 6 (given))

Thus

AM = 3 s – s = 2 s. But AM = l

So

l = 2 s

dl

ds

Therefore

= 2

dt

dt

dl

5

Since

5 km/h. Hence, the length of the shadow increases at the rate

km/h.

dt



2

Example 45 Find the equation of the normal to the curve x 2 = 4 y which
passes through the point (1, 2).

Solution Differentiating x 2 = 4 y with respect to x, we get

dy

x

=

dx

2

Let ( h, k) be the coordinates of the point of contact of the normal to the
curve

x 2 = 4 y. Now, slope of the tangent at ( h, k) is given by

dy

h

✁

dx

=

✂

2

✄

( h, k )



☎ 2

Hence, slope of the normal at ( h, k) = h

Therefore, the equation of normal at ( h, k) is

✆ 2

y – k =

( x

... (1)

✆

h)

h

Since it passes through the point (1, 2), we have

2

2

2

k

☎

or k

2

... (2)

✝



(1 ☎ h)

☎

(1 ☎ h)

h

h
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Since ( h, k) lies on the curve x 2 = 4 y, we have

h 2 = 4 k

... (3)

From (2) and (3), we have h = 2 and k = 1. Substituting the values of h and
k in (1), we get the required equation of normal as

2

y 1

or x + y = 3

✁

( x

2)

2

Example 46 Find the equation of tangents to the curve



y = cos ( x + y), – 2 x 2

✄

✝

✝

✄

that are parallel to the line x + 2 y = 0.

Solution Differentiating y = cos( x + y) with respect to x, we have dy

✂

sin ( x ☎ y)

=

dx

1 ☎ sin ( x ☎ y)

✂

sin ( x ☎ y)

or

slope of tangent at ( x, y) = 1☎ sin( x ☎ y)

Since the tangents to the given curve are parallel to the line x + 2 y = 0,
whose slope 1

is

, we have



2

1

✂

sin( x ☎ y)

=

1

2

☎

sin( x ☎ y)

or

sin ( x + y) = 1

✆

or

x + y = n + (– 1) n

, n Z

✄

2

✞

✠



n ✟

Then

y = cos( x + y) = cos n

n Z

☛

(☞1)

✡

✟

,

✞

✌

2 ✍

✎

✏

= 0, for all n Z

✞

3

Also, since



, we get x

✆

and x

✆

. Thus, tangents to the

✑ 2✒

✓

x ✓ 2✒

✁

✁

2

2

✔

☞ 3

given curve are parallel to the line x + 2 y = 0 only at points

✕

✖

✟

✠



, 0✡ and

, 0 .

✗

✘

✌

2

✍

✙

2

✚

✎

✏

Therefore, the required equation of tangents are
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1

3

y – 0 =



x

✁

✂

✄

or 2 x ✠ 4 y ✠ 3✡ ☛ 0

☎

2 ✆

2 ✝

✞

✟

1

☞

✌

✍

✎

and

y – 0 =

x



or 2 x ✔ 4 y ✕ ✖ ✗ 0

☞

2 ✏

2 ✑

✒

✓

Example 47 Find intervals in which the function given by

3 4

4 3

2

36

f ( x) =

x ✘

x ✘ 3 x ✙

x ✙ 11

10

5

5

is (a) strictly increasing (b) strictly decreasing.

Solution We have



3

4

4 3

2

36

f ( x) =

x ✚

x ✚ 3 x ✛

x ✛ 11

10

5

5

3

3

4

2

36

Therefore

f ( x) =

(4 x ) ✘



(3 x ) ✘ 3(2 x) ✙

✜

10

5

5

6

=

( x

(on simplification)

✘

1) ( x ✙ 2) ( x ✘ 3)

5

Now f ( x) = 0 gives x = 1, x = – 2, or x = 3. The

✜

points x = 1, – 2, and 3 divide the real line into four

disjoint intervals namely, (– , – 2), (– 2, 1), (1, 3)

Fig 6.24

✢

and (3, ) (Fig 6.24).

✢



Consider the interval (– , – 2), i.e., when – < x < – 2.

✢

✢

In this case, we have x – 1 < 0, x + 2 < 0 and x – 3 < 0.

(In particular, observe that for x = –3, f ( x) = ( x – 1) ( x + 2) ( x – 3) = (– 4)
(– 1)

✜

(– 6) < 0)

Therefore,

f ( x) < 0 when – < x < – 2.

✢

✜

Thus, the function f is strictly decreasing in (– , – 2).

✢

Consider the interval (– 2, 1), i.e., when – 2 < x < 1.

In this case, we have x – 1 < 0, x + 2 > 0 and x – 3 < 0

(In particular, observe that for x = 0, f ( x) = ( x – 1) ( x + 2) ( x – 3) = (–1)
(2) (–3)

✜

= 6 > 0)

So



f ( x) > 0 when – 2 < x < 1.

✜

Thus,

f is strictly increasing in (– 2, 1).
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Now consider the interval (1, 3), i.e., when 1 < x < 3. In this case, we have

x – 1 > 0, x + 2 > 0 and x – 3 < 0.

So,

f ( x) < 0 when 1 < x < 3.

✂

Thus,

f is strictly decreasing in (1, 3).

Finally, consider the interval (3, ), i.e., when x > 3. In this case, we have x –
1 > 0,

✟

x + 2 > 0 and x – 3 > 0. So f ( x) > 0 when x > 3.

✂

Thus, f is strictly increasing in the interval (3, ).

✟



Example 48 Show that the function f given by

f ( x) = tan–1(sin x + cos x), x > 0

is always an strictly increasing function in ✁ 0, ✄ .

☎

4✆

✝

✞

Solution We have

f ( x) = tan–1(sin x + cos x), x > 0

1

Therefore

f ( x) =

(cos x ✠ sin x)

✂

2

1✡ (sin x ✡ cos x)

cos x ☛ sin x

=



(on simplification)

2 ☞ sin 2 x

✌

✍

✎

Note that 2 + sin 2 x > 0 for all x in 0,

.

✏

4✑

✒

✓

Therefore

f ( x) > 0 if cos x – sin x > 0

✂

or

f ( x) > 0 if cos x > sin x or cot x > 1

✂

Now

cot x > 1 if tan x < 1, i.e., if 0



x

✔

✕

✕

4

Thus

f ( x) > 0 in ✁ 0, ✄

✂

☎

4✆

✝

✞

Hence f is strictly increasing function in 0, ✌

✍

✎

.

✏



4 ✑

✒

✓

Example 49 A circular disc of radius 3 cm is being heated. Due to
expansion, its

radius increases at the rate of 0.05 cm/s. Find the rate at which its area is
increasing

when radius is 3.2 cm.
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Solution Let r be the radius of the given disc and A be its area. Then

A = r 2

✄

A

d

dr

or

= 2 r

(by Chain Rule)

dt

dt



dr

Now approximate rate of increase of radius = dr =

t

cm/s.

✁

✂

0.05

dt

Therefore, the approximate rate of increase in area is given by

A

d

☎

dr

✆

d A =

(

= 2 r

✝



t

✞

✁ t )

dt

✟

dt

✠

✡

☛

= 2 (3.2) (0.05) = 0.320 cm2/s ( r = 3.2 cm)

✄

✄

Example 50 An open topped box is to be constructed by removing equal
squares from

each corner of a 3 metre by 8 metre rectangular sheet of aluminium and
folding up the

sides. Find the volume of the largest such box.

Solution Let x metre be the length of a side of the removed squares. Then,
the height



of the box is x, length is 8 – 2 x and breadth is 3 – 2 x (Fig 6.25). If V( x) is
the volume of the box, then

Fig 6.25

V ( x) = x (3 – 2 x) (8 – 2 x)

= 4 x 3 – 22 x 2 + 24 x

2

☞

V (

✌

x) ✍ 12 x ✎ 44 x ✏ 24 ✍ 4( x ✎ 3)(3 x ✎

✑

2)

Therefore

✒

V✌ (

✌

x) ✍ 24 x ✎

✑

44

✓



2

Now

V ( x) = 0 gives x

. But x 3 (Why?)

✕

✂

3,

✔

3

2

☎

2 ✆

☎

2

Thus, we have x

. Now V

24

✆



.

✖

✖

✗

✘

44 ✗ ✘ 28 ✙ 0

✂

3

✟

3 ✠

✟

3 ✠

✡

☛

✡

☛
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2

2

Therefore, x

is the point of maxima, i.e., if we remove a square of side

3

3

metre from each corner of the sheet and make a box from the remaining
sheet, then

the volume of the box such obtained will be the largest and it is given by

3

2

✞

2 ✟

✞

2 ✟

✞

2

✁



2

V

✂

= 4

22

24

✟

✠

✡

✄

3 ☎

☛

✌

3 ☞

☛

✍

✌



3 ☞

☛

✍

✌

3 ☞

✆

✝

✍

200

3

=

m

27

✁

x

Example 51 Manufacturer can sell x items at a price of rupees 5

✂



each. The

✎

✄

100☎

✆

✝

✏

x

cost price of x items is Rs

500✑ . Find the number of items he should sell to earn

✒

✓

5

✔

✕

✖

maximum profit.

Solution Let S ( x) be the selling price of x items and let C ( x) be the cost
price of x items. Then, we have



2

✗

x ✘

x

S ( x) =

5 ✙

x ✚ 5 x ✙

✛

100 ✜

✢

✣

100

x

and

C ( x) =

✤

500

5

Thus, the profit function P ( x) is given by

2



x

x

P( x) = S( x) ✥ C ( x) ✦ 5 x ✥

✥

✥

500

100

5

2

24

x

i.e.

P( x) =

x ✧

✧

500

5

100

24

x



or

P ( x) =

✩

★

5

50

✩ 1

✩ 1

Now P ( x) = 0 gives x = 240. Also P

. So P✪ (

✪

240) ✫

✬

0

✪

✪ ( x)

★

✫

50

50



Thus, x = 240 is a point of maxima. Hence, the manufacturer can earn
maximum

profit, if he sells 240 items.
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Miscellaneous Exercise on Chapter 6

1. Using differentials, find the approximate value of each of the following:

1

1

(a)

17 4

✁

(b)

33 ✟ 5

✝

✞

✂



81✄

☎

✆

log x

2. Show that the function given by f ( x)

has maximum at x = e.

✠

x

3. The two equal sides of an isosceles triangle with fixed base b are
decreasing at

the rate of 3 cm per second. How fast is the area decreasing when the two
equal

sides are equal to the base ?

4. Find the equation of the normal to curve x 2 = 4 y which passes through
the point (1, 2).

5. Show that the normal at any point to the curve

✡



x = a cos + a sin , y = a sin – a cos

☛

☛

☛

☛

☛

☛

is at a constant distance from the origin.

6. Find the intervals in which the function f given by

4sin x ☞ 2 x ☞ x cos x

f ( x) ✠

2 ✌ cos x

is (i) increasing (ii) decreasing.

1

7. Find the intervals in which the function f given by

3

f ( x)

is

✍

x ✎



, x ✏ 0

3

x

(i) increasing

(ii) decreasing.

2

2

x

y

8. Find the maximum area of an isosceles triangle inscribed in the ellipse

✑

✒

1

2

2

a

b

with its vertex at one end of the major axis.

9. A tank with rectangular base and rectangular sides, open at the top is to
be



constructed so that its depth is 2 m and volume is 8 m3. If building of tank
costs

Rs 70 per sq metres for the base and Rs 45 per square metre for sides. What
is

the cost of least expensive tank?

10. The sum of the perimeter of a circle and square is k, where k is some
constant.

Prove that the sum of their areas is least when the side of square is double
the

radius of the circle.
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11. A window is in the form of a rectangle surmounted by a semicircular
opening.

The total perimeter of the window is 10 m. Find the dimensions of the
window to

admit maximum light through the whole opening.

12. A point on the hypotenuse of a triangle is at distance a and b from the
sides of the triangle.

2

2

3

Show that the maximum length of the hypotenuse is



3

3

2

( a

b ) .

13. Find the points at which the function f given by f ( x) = ( x – 2)4 ( x +
1)3 has (i) local maxima

(ii) local minima

(iii) point of inflexion

14. Find the absolute maximum and minimum values of the function f given
by

f ( x) = cos2 x + sin x, x [0, ]

☎

✄

15. Show that the altitude of the right circular cone of maximum volume
that can be

4 r

inscribed in a sphere of radius r is

.

3



16. Let f be a function defined on [ a, b] such that f ( x) > 0, for all x ( a, b).
Then

✂

☎

prove that f is an increasing function on ( a, b).

17. Show that the height of the cylinder of maximum volume that can be
inscribed in

2R

a sphere of radius R is

. Also find the maximum volume.

3

18. Show that height of the cylinder of greatest volume which can be
inscribed in a

right circular cone of height h and semi vertical angle is one-third that of
the

✑

4

3

2

cone and the greatest volume of cylinder is

h



.

✁

tan ✆

27

Choose the correct answer in the Exercises from 19 to 24.

19. A cylindrical tank of radius 10 m is being filled with wheat at the rate of
314

cubic metre per hour. Then the depth of the wheat is increasing at the rate of

(A) 1 m3/h

(B) 0.1 m3/h

(C) 1.1 m3/h

(D) 0.5 m3/h

20. The slope of the tangent to the curve x = t 2 + 3 t – 8, y = 2 t 2 – 2 t – 5
at the point (2,– 1) is

22

6

7

✝

6

(A)

(B)



(C)

(D)

7

7

6

7
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21. The line y = mx + 1 is a tangent to the curve y 2 = 4 x if the value of m is
1

(A) 1

(B) 2

(C) 3

(D) 2

22. The normal at the point (1,1) on the curve 2 y + x 2 = 3 is

(A) x + y = 0

(B) x – y = 0

(C) x + y +1 = 0

(D) x – y = 0

23. The normal to the curve x 2 = 4 y passing (1,2) is

(A) x + y = 3



(B) x – y = 3

(C) x + y = 1

(D) x – y = 1

24. The points on the curve 9 y 2 = x 3, where the normal to the curve
makes equal intercepts with the axes are

8

8

✞

✁

✁

(A)

4,

(B)

4,

✂

✄

☎

✄

3 ☎

✆



3 ✝

✆

✝

✟

3

✟

3 ✠

✠

(C)

4,

(D)

✡

4,

✡

☛



8 ☞

☛

✌

8 ☞

✌

✍

✍

Summary

If a quantity y varies with another quantity x, satisfying some rule y

,

✏

f ( x)

✎

dy

then

(or f

) represents the rate of change of y with respect to x and

✑ ( x)

dx

dy ✓



dx

(or f (

) represents the rate of change of y with respect to x at

✖

x )

✔

0

✕

x✒ 0

x

x

.

✗

x 0

If two variables x and y are varying with respect to another variable t, i.e., if

✎

x

and y

, then by Chain Rule

✏



g( t)

✏

f ( t)

dy

dy

dx

dx

, if

.

✙

0

✘

dx

dt

dt

dt

A function f is said to be

✎

(a) increasing on an interval ( a, b) if

x < x in ( a, b)



f ( x ) f ( x ) for all x , x ( a, b).

1

2

✚

1

✛

2

1

2 ✜
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Alternatively, if f ( x) 0 for each x in ( a, b)

✂

✞

(b) decreasing on ( a, b) if

x < x in ( a, b)

f ( x ) f ( x ) for all x , x ( a, b).

1

2

✆



1

☎

✞

2

1

2

Alternatively, if f ( x) 0 for each x in ( a, b)

✝

✂

The equation of the tangent at ( x , y ) to the curve y = f ( x) is given by 0

0

dy

y

y

✁

✄

✟

( x ✄ x )

0



0

dx ✠✡( x , y )

0

0

dy

If

does not exist at the point ( x , y ) , then the tangent at this point is

dx

0

0

parallel to the y-axis and its equation is x = x .

0

dy

If tangent to a curve y = f ( x) at x = x is parallel to x-axis, then

☞

.

✌

0

0

dx ✍✎ x☛ x 0



Equation of the normal to the curve y = f ( x) at a point ( x , y ) is given by 0

0

✏ 1

y ✏ y ✑

( x ✏ x )

0

0

dy ✒

dx ✓✔( x , y )

0

0

dy

If

at the point ( x , y ) is zero, then equation of the normal is x = x .

dx

0

0

0

dy

If



at the point ( x , y ) does not exist, then the normal is parallel to x-axis

dx

0

0

and its equation is y = y .

0

Let y = f ( x), x be a small increment in x and y be the increment in y

✕

✕

corresponding to the increment in x, i.e., y = f ( x + x) – f ( x). Then dy

✕

✕

given by

✘

dy

dy

or dy

✙

.

✚



✛ x

✖

f ✗( x) dx

✜

dx ✢

✣

✤

is a good approximation of y when dx

is relatively small and we denote

✥

✦

x

✕

it by dy

y.

✧

✕

A point c in the domain of a function f at which either f ( c) = 0 or f is not

✂

differentiable is called a critical point of f.
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First Derivative Test Let f be a function defined on an open interval I. Let

f be continuous at a critical point c in I. Then

(i) If f ( x) changes sign from positive to negative as x increases through c,

✂

i.e., if f ( x) > 0 at every point sufficiently close to and to the left of c,

✂

and f ( x) < 0 at every point sufficiently close to and to the right of c,

✂

then c is a point of local maxima.

(ii) If f ( x) changes sign from negative to positive as x increases through c,

✂

i.e., if f ( x) < 0 at every point sufficiently close to and to the left of c,

✂

and f ( x) > 0 at every point sufficiently close to and to the right of c,

✂

then c is a point of local minima.

(iii) If f ( x) does not change sign as x increases through c, then c is neither

✂



a point of local maxima nor a point of local minima. Infact, such a point

is called point of inflexion.

Second Derivative Test Let f be a function defined on an interval I and c I.
Let f be twice differentiable at c. Then

☎

(i) x = c is a point of local maxima if f ( c) = 0 and f ( c) < 0

✎

✂

The values f ( c) is local maximum value of f .

(ii) x = c is a point of local minima if f ( c) = 0 and f ( c) > 0

✎

✂

In this case, f ( c) is local minimum value of f .

(iii) The test fails if f ( c) = 0 and f ( c) = 0.

✎

✂

In this case, we go back to the first derivative test and find whether c is

a point of maxima, minima or a point of inflexion.

Working rule for finding absolute maxima and/or absolute minima



Step 1: Find all critical points of f in the interval, i.e., find points x where
either f ( x) = 0 or f is not differentiable.

✂

Step 2:Take the end points of the interval.

Step 3: At all these points (listed in Step 1 and 2), calculate the values of f .

Step 4: Identify the maximum and minimum values of f out of the values

calculated in Step 3. This maximum value will be the absolute maximum

value of f and the minimum value will be the absolute minimum value of f .

—

—

✁

ANSWERS

EXERCISE 1.1

1. (i) Neither reflexive nor symmetric nor transitive.

(ii) Neither reflexive nor symmetric nor transitive.

(iii) Reflexive and transitive but not symmetric.

(iv) Reflexive, symmetric and transitive.

(v) (a) Reflexive, symmetric and transitive.

(b) Reflexive, symmetric and transitive.

(c) Neither reflexive nor symmetric nor transitive.



(d) Neither reflexive nor symmetric nor transitive.

(e) Neither reflexive nor symmetric nor transitive.

3. Neither reflexive nor symmetric nor transitive.

5. Neither reflexive nor symmetric nor transitive.

9. (i) {1, 5, 9}, (ii) {1}

12. T is related to T .

1

3

13. The set of all triangles

14. The set of all lines y = 2 x + c, c R

✂

15. B

16. C

EXERCISE 1.2

1. No

2. (i) Injective but not surjective

(ii) Neither injective nor surjective

(iii) Neither injective nor surjective (iv) Injective but not surjective

(v) Injective but not surjective

7. (i) One-one and onto



(ii) Neither one-one nor onto.

9. No

10. Yes

11. D

12. A

EXERCISE 1.3

1. gof = {(1, 3), (3,1), (4,3)}

3. (i) ( gof ) ( x) = | 5 | x |– 2|, ( fog) ( x) = |5 x – 2|

(ii) ( g o f ) ( x) = 2 x, ( f o g) ( x) = 8 x

4. Inverse of f is f itself

ANSWERS
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5. (i) No, since f is many-one

(ii) No, since g is many-one.

(iii) Yes, since h is one-one-onto.

2 y

y ✁ 3

6. f –1 is given by f –1 ( y) =

, y 1 7. f –1 is given by f –1 ( y) =

1



y

✄

4

11. f –1 is given by f –1 ( a) = 1, f –1 ( b) = 2 and f –1 ( c) = 3.

13. (C)

14. (B)

EXERCISE 1.4

1. (i) No

(ii) Yes

(iii) Yes

(iv) Yes

(v) Yes

2. (i)

is neither commutative nor associative

☎

(ii)

is commutative but not associative

☎

(iii)



is both commutative and associative

☎

(iv)

is commutative but not associative

☎

(v)

is neither commutative nor associative

☎

(vi)

is neither commutative nor associative

☎

3.

1

2

3

4

5

✆

1

1



1

1

1

1

2

1

2

2

2

2

3

1

2

3

3

3

4

1

2

3



4

4

5

1

2

3

4

5

4. (i) (2 * 3) 4 = 1 and 2 (3 * 4) = 1

(ii) Yes

(iii) 1

5. Yes

6. (i) 5 * 7 = 35, 20 * 16 = 80

(ii) Yes

(iii) Yes

(iv) 1 (v) 1

7. No

8.



is both commutative and associative; does not have any identity in N

☎

☎

9. (ii) , (iv), (v) are commutative; (v) is associative.

11. Identity element does not exist.

12. (ii) False

(ii) True

13. B
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Miscellaneous Exercise on Chapter 1

y

7

1.

g( y)

2. The inverse of f is f itself

✁

10

3. x 4 – 6 x 3 + 10 x 2 – 3 x

8. No



10. n!

11. (i) F–1 = {(3, a), (2, b), (1, c)}, (ii) F–1 does not exist

12. No

15. Yes

16. A

17. B

18. No

19. B

EXERCISE 2.1

✂

✂

✂

✂

1.

2.

3.

4.

6

6

6



3

2✂

✂

✂

✂

5.

6.

7.

8.

3

4

6

6

3

3



2

☎

✄

✄

✄

✄

9.

10.

11.

12.

4

4

4

3

13. B

14. B

EXERCISE 2.2

1

1



x

✂

✂

5.

tan✆ x

6.

– sec–1 x

7.

8.

x

2

2

2

4

1 x

1 x

✂

9.

sin✆

10.



3tan✆

11.

12. 0

a

a

4

x

1

1

✝

y

✂

13.

14.

15.

✟

16.

1

5



2

3

✞

xy

17

✂

17.

18.

19. B

20. D

4

6

21. B

Miscellaneous Exercise on Chapter 2

1

✂

✂

1.

2.

13.



x

✄

14.

x ✡



6

6

✠

4

3

15. D

16. C

17. C
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EXERCISE 3.1

5

1. (i) 3 × 4

(ii) 12

(iii) 19, 35, – 5, 12, 2

2. 1 × 24, 2 × 12, 3 × 8, 4 × 6, 6 × 4, 8 × 3, 12 × 2, 24 × 1; 1 × 13, 13 × 1

3. 1 × 18, 2 × 9, 3 × 6, 6 × 3, 9 × 2, 18 × 1; 1 × 5, 5 × 1

9



2

✁

1

9

25

1

✁

✁

✂

2✄

4. (i)

(ii)

✂

2 ✄

(iii) ✂ 2

2 ✄

✂



9

✄

✂

✄

✂

✄

✂

8 ✄

2

1

8

18

☎

✆

☎

✆

✂



2

✄

☎

✆

✝

1

1

1

0

✞

✟

2

2 ✠

1

✌

0

1

☞



2

☞

✟

5

3

✠

✍

5. (i)

✟

2

1✠ (ii) ✎3 2

1

0 ✏

✟

2



2

✠

✎

✏

✎

5 4

3

2

✟

7

5 ✠

✏

✑

✒

✟

4



3

✠

✟

2

2 ✠

✡

☛

6. (i) x = 1,

y = 4,

z = 3

(ii) x = 4,

y = 2,

z = 0 or x = 2, y = 4, z = 0

(iii) x = 2,

y = 4,

z = 3

7. a = 1, b = 2, c = 3, d = 4

8. C



9. B

10. D

EXERCISE 3.2

✓

1

1 ✔

✓

3

7

1. (i)

A + B =

✔

(ii)

A ✙ B =

✕

✖

✕ 1

7✖

5



✙ 3

✗

✘

✗

✘

6

11

✚

10

✙

✓

26

✓

8

7

(iii)

3A

C =

✔

(iv)



A B =

✔

(v)

BA =

✛

✙

✕

6

2✖

✕

1

19✖

11

✜



2 ✢

✗

✘

✗

✘

✣

✤

2

2

✥

( a

b)

( b

c) ✦

✧

✧

✚

2 a

2 b



2. (i)

✛

(ii)

★

2

2 ✩

✜

0

2 a✢

( a ✪ c)

( a ✪

★

b) ✩

✣

✤

✫

✬

11

✌

11 0 ✍



1

✓

1

(iii)

1

✔

✎

6

5

21✏

(iv)

✕

✖

✎

✏

1 1

✗

✘

✎

5 10



9 ✏

✑

✒
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✞

2 3

4

2

2

✟

a

b

0

✌

3 ✌

✍



4 1✎

✁

✂

3. (i)

(ii)

✠

4

6

8 ✡

(iii)

✏

✑

✄

2

2 ☎

0

a

8 13



9

✠

✡

✒

✓

✂

✄

b ☎

✠

6 9 12

✆

✝

✡

☛

☞

✔

1

2



3

✔ 14

0

42✕

✕

14

✌

✍

6✎

(iv)

✖ 18

1 56✗

(v)

✖

1

4

5✗

(vi)

✘

✏



4

5 ✑

✖

✗

✖

✗

✒

✓

✖

✘ 2

2

0

✖

22

2



70✗

✗

✘

✙

✚

✙

✚

4

1

✘ 1

✘ 1

✘

✔

✕

✔

2

0✕

4.

A + B = ✖9

2



7 ✗ , B C = ✖ 4

1 3✗

✘

✘

✖

✗

✖

✗

✖

3

1

4 ✗

✖

1

2



0✗

✘

✙

✚

✙

✚

✞

0

0

0✟

✍

1

0✎

5.

✠

0

0

0✡



6.

✏

✑

✠

✡

0

1

✒

✓

✠

0

0

0✡

☛

☞

2

✜

✢



12 ✣

✢

2

13 ✣

✤

✥

✤

✥

✍ 5

0✎

✍

2

0✎

5

5

5

5

7. (i)

X

(ii) X ✦



, Y

✛

, Y ✛

✦

✤

✥

✤

✥

✏ 1

4✑

✏

1

1✑

✜ 11

14

✒

✓

✒

✓

✤



3 ✥

✤

2✥

✜

✤

5

✥

✤

5

✥

✧

★

✧

★

✌ 1

✌

✍

1✎

8.

X



9. x = 3, y = 3

10. x = 3, y = 6, z = 9, t = 6

✛

✏

2

1✑

✌

✌

✒

✓

11. x = 3, y = – 4

12. x = 2, y = 4, w = 3, z = 1

1

✘ 1

✘

✔

3 ✕

15.

✖

1



1

10✗

17. k = 1

✘

✘

✘

✖

✗

✖

5

4

4 ✗

✘

✙

✚

19. (a) Rs 15000, Rs 15000

(b) Rs 5000, Rs 25000

20. Rs 20160

21. A

22. B



EXERCISE 3.3

✰

1

3

2 ✱

✲

✍

1

2✎

✳

✴

✩

1

1. (i)

5

1✪

(ii)

(iii)

5

5



3

✫

✏

✑

✳

✴

✬

2

✭

1

✌

3

✮

✯

✒

✓

✳

6

6



1✴

✲

✵

✶
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✞

0

0

0✟ ✞ 0

a

b✟

✁

4

5

4.

✂



9.

✠

0

0

0✡ , ✠ a

0

c✡

☛

✄

1



6☎

✠

✡

✠

✡

✆

✝

✠

0

0

0✡ ✠ b

c



0✡

☛

☛

☞

✌

☞

✌

✍

3

3 ✎

✍

0

2✎

10. (i)

A ✏

✑

✒

3



1✓

✒

2

0✓

✔

✔

✕

✖

✕

✖

6

✗

✘

2

2 ✙

✘

0

0

0 ✙

(ii)



A

✚

2

3

1 ✛

✚

0

0

0 ✛

✜

✗

✗

✢

✚

✛

✚

✛

✚

2

1



3 ✛

✚

0

0

0 ✛

✗

✣

✤

✣

✤

1

✥

✦

5✧

✦

5

3

3



0

✧

★

2

2 ✩

★

2

2✩

★

1

✩

★

5

✩

✁

1

2✂

✁

0



3

✥

(iii)

A

✂

★

2

2✩

★

0

3✩

(iv)



A

✪

✥

✥

✫

✮

✯

✄

☎

✄

☎

★

2

✩

★

2

✩

2

2



3 0

✆

✝

✆

✝

★

5

✩

★

✥ 3

✩

✥

★

2

2 ✩

★

3



0✩

✥

✥

★

2

✩

★

2

✩

✬

✭

✬

✭

11. A

12. B

EXERCISE 3.4

✰

3

1✱

1



7

✔

✍

3

✔

✍

1

✲

5

5✳

✎

✎

1.

2.

3.

✲

✳

✒

1



2 ✓

✒

✔

2

1 ✓

✔

✴ 2

1

✕

✖

✕

✖

✲

✳

✲

5

5✳

✵

✶

4



3

✔

✍

5

✔

✍

1✎

✎

✔

✍

7

3 ✎

4.

5.

6.

✒

✓

✒

✓

✒



5

2✓

✔ 1

2

✔ 7

2

✔

✕

✖

✕

✖

✕

✖

2

4

7

✔

✍



10

✔

✍

5

✔

✍

1✎

✎

✎

7.

8.

9.

✒

5

3 ✓

✒

✒

✔

2

3 ✓



✔ 3

4 ✓

✔

✕

✖

✕

✖

✕

✖

✰

1

1

✱

1

✴

✰

3✱

✲

2 ✳

10.



11.

✲

1

✳

12. Inverse does not exist.

✲

✳

3

✴

✲

1✳

✲

2

✳

✵

2

✶

✲



2 ✳

✵

✶
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2

3✁

13.

14. Inverse does not exist.

✂

1

2✄

☎

✆

2

✝

✝

✞



3

✝

✞

2

3

0

✟

1

✟

✠

5

5 ✡

✠

5

5 ✡



3

✌

✍

1

1 ✎

✠

✡

✠

✡

2

✝

4

11

✝1

1



15.

✏

✑

✠

0 ✡

16.

✠

✡

17.

15

✌

6

5

✌

✏

✑

✠

5



5

✡

✠

5

25

25 ✡

✏

5

2

2 ✑

✌

✠

2

1

2✡

✠



3

✒

✓

✝

1

9 ✡

✝

✠

✡

✠

✡

✠

☛

5

25



25

✠

5

5

5 ✡

✡

☛

☞

☞

18. D

Miscellaneous Exercise on Chapter 3

1

1

1

6.

x ✔ ✕

, y ✔ ✕

, z ✔ ✕

2



6

3

7. x = – 1

9.

x ✖ ✗ 4 3

10. (a) Total revenue in the market - I = Rs 46000

Total revenue in the market - II = Rs 53000

(b) Rs 15000, Rs 17000

1

✘

✙

2

11.

X

✚

13. C

14. B

15. C

✛

✜



2

0 ✢

✣

✤

EXERCISE 4.1

1. (i) 18

2. (i) 1, (ii) x 3 – x 2 + 2

5. (i) – 12, (ii) 46, (iii) 0, (iv) 5

6. 0

7. (i)

x

, (ii) x = 2

8. (B)

✖

✗

3

EXERCISE 4.2

15. C

16. C

ANSWERS
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EXERCISE 4.3

15

47

1. (i)

, (ii)

, (iii) 15

2

2

3. (i) 0, 8, (ii) 0, 8

4. (i) y = 2 x, (ii) x – 3 y = 0

5. (D)

EXERCISE 4.4

1. (i) M = 3, M = 0, M = – 4, M = 2, A = 3, A = 0, A = 4, A = 2

11

12

21

22

11

12



21

22

(ii) M = d, M = b, M = c, M = a

11

12

21

22

A = d, A = – b, A = – c, A = a

11

12

21

22

2. (i) M = 1, M = 0, M = 0, M = 0, M = 1, M = 0, M = 0, M = 0, M = 1,

11

12

13

21

22

23

31



32

33

A = 1, A = 0, A = 0, A = 0, A = 1, A = 0, A = 0, A = 0, A = 1

11

12

13

21

22

23

31

32

33

(ii) M = 11, M = 6, M = 3, M = –4, M = 2, M = 1, M = –20, M = –13, M = 5

11

12

13

21

22

23

31



32

33

A =11, A = – 6, A = 3, A = 4, A = 2, A = –1, A = –20, A = 13, A = 5

11

12

13

21

22

23

31

32

33

3. 7

4. ( x – y) ( y – z) ( z – x)

5. (D)

EXERCISE 4.5

3



1

✞

✟

11✠

1 ✁ 3

2

✁

4

2✂

✂

1.

2.

✡

12

5

1 ☛



5.

✞

✞

✄

3

1 ☎

14 ✄ 4

2☎

✡

☛

✆

✝

✆

✝

✡

6

2



5 ☛

☞

✌

10

✜

✢

3

0

0

✕

✣

✖

10

2 ✗

1 2

1

1

✍

✜

✎



5✏

6.

7.

✘

0

5

4✙

8.

✤

3

1

✜

0✥

✕

13 ✑3

1✒

10 ✘

✙



3 ✤

✥

✍

✓

✔

✤

9

2

3

✘

0

0

2 ✙

✥

✜

✜

✚

✛

✦

✧



2

✟ 1

0

0

✞

✟

0

1

✕

✠

✠

✖

1

5

3 ✗

✕ 1

9.

✘



4

23

12 ✙ 10. ✡ 9

2

3☛

11.

✡ 0

cos ★

sin

☛

✕

✞

★



3 ✘

✙

✡

☛

✡

☛

✡ 0

sin ★

– cos

✡

6

1

2

✘

1

11



6✙

☛

☛

✕

✕

✞

★

☞

✌

☞

✌

✚

✛

✞

✟

3

4

5



1 2

✠

✍

✩

1

✎

1✏

1

13.

14. a = – 4, b = 1

15.

A

✡

✪

9

✞ 1

✞

4☛



7 ✑1

3 ✒

11 ✡

☛

✓

✔

✡

5

3

1☛

✞

✞

☞

✌
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✁

3



1

1✂

1 ✄ 1 3 1☎

16.

4

17. B

18. B

✄

☎

✄

1 1

3☎

✆

✝

EXERCISE 4.6

1. Consistent

2. Consistent

3. Inconsistent

4. Consistent

5. Inconsistent



6. Consistent

5

12

✞

6

✞ 19

7. x = 2, y = – 3

8.

x

✞

, y

9.

x ✟

, y

✟

✟

✟



11

11

11

11

1

3

10. x = –1, y = 4

11. x = 1, y

, z

✞

✟

✟

2

2

12. x = 2, y = –1, z = 1

13. x = 1, y = 2, z = –1

14. x = 2, y = 1, z = 3

0



1

✠

✡

2 ☛

☞

✠ 2

9

✠ 23✌

15.

, x = 1, y = 2, z = 3

☞

✌

☞

1 5



13✌

✠

✠

✍

✎

16.

cost of onions per kg ✏ Rs 5

cost of wheat per kg ✏ Rs 8

cost of rice per kg

✏

Rs 8

Miscellaneous Exercise on Chapter 4

9

✠

✡

3 5☛

a

☞



✠ 2

1

0✌

3. 1

5.

x

✞

7.

✟

3

☞

✌

☞

1

0 2✌

✍

✎

9. – 2( x 3 + y 3)

10. xy



16. x = 2, y = 3, z = 5

17. A

18. A

19. D
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EXERCISE 5.1

2. f is continuous at x = 3

3. (a), (b), (c) and (d) are all continuous functions

5. f is continuous at x = 0 and x = 2; Not continuous at x = 1

6. Discontinuous at x = 2

7. Discontinuous at x = 3

8. Discontinuous at x = 0

9. No point of discontinuity

10. No point of discontinuity

11. No point of discontinuity

12. f is continuous at x = 1

13. f is not continuous at x = 1

14. f is not continuous at x = 1 and x = 3

15. x = 1 is the only point of discontinuity



2

16. Continuous

17.

a

b ✁ 3

18. For no value of , f is continuous at x = 0 but f is continuous at x = 1 for
any

✝

value of .

✝

20. f is continuous at x =

21. (a), (b) and (c) are all continuous

✞

22. Cosine function is continuous for all x R; cosecant is continuous except
for

✂

x = n , n Z; secant is continuous except for x = (2 n

, n Z and

✂

✁



1) ✄

✞

✂

2

cotangent function is continuous except for x = n , n Z

✞

✂

23. There is no point of discontinuity.

24. Yes, f is continuous for all x R

25. f is continuous for all x R

✂

✂

3

2

26. k = 6

27.

k

28.



k

☎

4

✄

9

29.

k

30. a = 2, b = 1

5

34. There is no point of discontinuity.

EXERCISE 5.2

1. 2 x cos ( x 2 + 5)

2. – cos x sin (sin x)

3. a cos ( ax + b)

2

sec (tan x).tan (tan x ).sec

x

4.

2 x

5. a cos ( ax + b) sec ( cx + d) + c sin ( ax + b) tan ( cx + d) sec ( cx + d) 6.
10 x 4 sin x 5 cos x 5 cos x 3 – 3 x 2 sin x 3 sin2 x 5
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2 2 x

sin x

7.

8.

2

2

✁

sin x

sin 2 x

2 x

EXERCISE 5.3

cos x

2

a

✂

2

1.

2.



3.

☎

3

cos y

2 by ✆ sin y

✄

3

2

sec x

(2 x

2

2

(3 x ✞ 2 xy ✞ y )

✆

y)

✝

y

4.

5.



6.

☎

✝

x

( x

2

2

( x ✞ 2 xy ✞ 3 y )

✆

2 y)

✝

✞

2 y 1

y sin xy

sin 2 x

2

3

7.



8.

9.

10.

sin 2 y

2

1

2

1✟ x

✟

x

☎

x sin xy

sin 2 y

2

2

✠

2

✠



2

11.

2

12.

13.

14.

1

2

1

2

1

2

1✁ x

✟

x

✟

x

✟

x



2

15.

✡

2

1✡ x

EXERCISE 5.4

x

sin 1

e (sin x

e ✏ x

☛

cos x)

1.

, x n

n Z 2.

, x (

✑

1,1)



2

☞

✌

✍

✎

sin x

2

1

x

✒

x

✒ 1

– x

3

e

cos (tan

e

)

3.

2



3

x

x e

4.

✓

✒ 2

1

x

✔

e

2

x

3

4

5

5. – ex tan ex, x

e

(2 n 1) ✕

N 6.

x



e

2

x

3 x

4

✙

2

✙

3

✙

4

✙

5

x

e

x

x e

x e



x e

✖

✗

, n ✘

2

x

e

1

7.

, x > 0

8.

, x > 1

x log x

4

x

xe

( x sin x

✜



1

✆

✚

log x cos x)

9.

10.

x ✢

x > 0

✣

✣

☛

sin (log

x

e

x e ),

☎

, x ✛ 0

2

x (log x)

✤



x

✥

✦

✧
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EXERCISE 5.5

1. – cos x cos 2 x cos 3 x [tan x + 2 tan 2 x + 3 tan 3 x]

1

( x 1) ( x

2)

1

1

1

1

1 ✁

✂

✂



2.

✄

✂

✂

✂

2

( x

3)( x

4)( x

5) ☎ x 1

x 2

x 3

x 4



x 5✆

✂

✂

✂

✂

✂

✂

✂

✂

✝

✞

cos x ✟ cos x

✠

3.

(log x)

✡

sin x log (log x)

☛



x log x

☞

✌

✍

4. xx (1 + log x) – 2sin x cos x log 2

5. ( x + 3) ( x + 4)2 ( x + 5)3 (9 x 2 + 70 x + 133)

x

1

2

1

1

x

1

1

✎

✏

✑

✒



x ✓ 1✒

✔

✕

✔

log x

6.

x

✓

✖

log ( x ✓ )

x

✓

x

✕

✓

2

✗

✘

✙

✘



2

x

x

1

x

x

✙

✓

✚

✛

✚

✛

✜

✢

7. (log x) x-1 [1 + log x . log (log x)] + 2 x log x–1 . log x 1

1

8. (sin x) x ( x cot x + log sin x) +

2

2



x ✣ x

✤

sin x

9. x sin x

cos x log x✥ + (sin x)cos x [cos x cot x – sin x log sin x]

✦

✧

x

★

✩

✪

4 x

10. x x cos x [cos x . (1 + log x) – x sin x log x] –

2

2

( x ✫1)

1

x cot x ✄1✂ log ( x sin x)



11. ( x cos x) x [1 – x tan x + log ( x cos x)] + ( x sin x) x

✁

☎

2

x

✆

✝

✞

y✬1

x

yx

y ✮ y ✰ x log y

✭

y log y

✯

12.

13.

✡

y



x 1

x log x

x ✱ x ✰ y log x ✲

✭

xy ✬

✳

✴

y tan x

y ( x ✶1)

✵

log cos y

14.

15.

x tan y

x ( y ✵1)

✵

log cos x

3



7

✟

1

2 x

4 x

8 x

✠

16. (1 + x) (1 + x 2) (1 + x 4) (1 + x 8)

; f (1) = 120

✭

2 ✭

4 ✭

✷

☛

8

1

x

1

x



1

x

1

x ☞

✭

✭

✭

✭

✌

✍

17. 5 x 4 – 20 x 3 + 45 x 2 – 52 x + 11

EXERCISE 5.6

b

1

1. 2 t 2

2.

3. – 4 sin t

4.

✒

a



2

t
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cos ✁ 2cos 2

✂

5.

6.

7. – cot 3 t

8. tan t

✄

cot

2sin 2

2

✁

sin

b

9.

cosec



10. tan ✠

☎

a

EXERCISE 5.7

1. 2

2. 380 x 18

3. – x cos x – 2 sin x

1

4.

5. x(5 + 6 log x)

6. 2 ex (5 cos 5 x – 12 sin 5 x)

✆

2

x

2 x

7. 9 e 6 x (3 cos 3 x – 4 sin 3 x)

8.

✝

2 2



(1✞ x )

(1

sin (log x) ✡ cos (log x)

✟

log x)

9.

10.

✆

✁

2

2

( x log x)

x

12. – cot y cosec2 y

Miscellaneous Exercise on Chapter 5

1. 27 (3 x 2 – 9 x + 5)8 (2 x – 3)

2. 3sin x cosx (sin x – 2 cos4 x)

☛

x



3.

3cos 2 x

3cos 2

(5 x)

6sin 2 x log 5 x☞

✁

✌

x

✍

✎

✏

✓

1

✔

✒

x

3

x

cos

✕



1

✖

4.

5.

2

3

✗

✘

2

1

✕

3

2

✖

2

✑

x

4 ✗ x

2 x ✘

✕



7

(2 x 7) ✖

✘

✙

✚

1

log x ☛ 1

log (log x)

6.

7.

(log x)

☞

✟

, x ✛ 1

2

✌

x



x

✍

✎

✏

8. ( a sin x – b cos x) sin ( a cos x + b sin x) 9. (sin x – cos x)sin x – cos x
(cos x + sin x) (1 + log (sin x – cos x)), sin x > cos x 10. xx (1 + log x) + ax
a–1 + ax log a

2

2

2

✢

✣

2

x

✢

✆

x

✣

11.

x ✜3

3



x

✆

✆

✡

2 x log x ✡ ( x 3) x

✡

2 x log( x

3)

✤

x

✥

✤

x



3

✥

✆

✦

✧

✦

✧
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6

t

3

sec t

12.

cot

13. 0

17.

, 0 ✁ t ✁

5

2



at

2

EXERCISE 6.1

1. (a) 6 cm2/s

(b) 8 cm2/s

✞

✞

8

2.

cm2/s

3. 60 cm2/s

4. 900 cm3/s

3

✞

5. 80 cm2/s

6. 1.4 cm/s

✞

✞



7. (a) –2 cm/min

(b) 2 cm2/min

1

8

8.

cm/s

9. 400 cm3/s

10.

cm/s

✞

3

✂

✄

☎

31

11. (4, 11) and

4,

✆



12. 2 cm3/s

✄

✞

✝

3 ✟

✠

✡

27

2

1

13.

14.

cm/s

15. Rs 20.967

✂

(2 x ☛1)

8

48☞



16. Rs 208

17. B

18. D

EXERCISE 6.2

☎

3

☎

3

4. (a)

,

✆

(b) ✄ ✌

✝

,

✆

✌

✝



4

✟

✠

4 ✟

✠

✡

✡

5. (a) (– , – 2) and (3, )

(b) (– 2, 3)

✍

✍

6. (a) Strictly decreasing for x < – 1 and strictly increasing for x > – 1

3

3

(b) Strictly decreasing for x



and strictly increasing for x

✎

✏

✑

✏

2

2

(c) Strictly increasing for – 2 < x < – 1 and strictly decreasing for x < – 2
and x > – 1

9

9

(d) Strictly increasing for x

and strictly decreasing for x

✑

✏

✎

✏

2

2
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(e) Strictly increasing in (1, 3) and (3, ), strictly decreasing in (– , –1)

✡

✡

and (– 1, 1).

8. 0 < x < 1 and x > 2

12. A, B

13. D

14. a = – 2

19. D

EXERCISE 6.3

1

1. 764

2.

3. 11

4. 24

64

a

5. 1



6.

7. (3, – 20) and (–1, 12)

2 b

8. (3, 1)

9. (2, – 9)

10. (i) y + x +1 = 0 and y + x – 3 = 0

11. No tangent to the curve which has slope 2.

1

12.

y

13. (i) (0, ± 4) (ii) (± 3, 0)

✁

2

14. (i) Tangent: 10 x + y = 5;

Normal: x – 10 y + 50 = 0

(ii) Tangent: y = 2 x + 1;

Normal: x + 2 y – 7 = 0

(iii) Tangent: y = 3 x – 2;

Normal: x + 3 y – 4 = 0

(iv) Tangent: y = 0;



Normal: x = 0

(v) Tangent: x + y

= 0; Normal x = y

✂

2

15. (a) y – 2 x – 3 = 0

(b) 36 y + 12 x – 227 = 0

17. (0, 0), (3, 27)

18. (0, 0), (1, 2), (–1, –2)

19. (1, ± 2)

20. 2 x + 3 my – am 2 (2 + 3 m 2) = 0

21. x + 14 y – 254 = 0, x + 14 y + 86 = 0

22. ty = x + at 2, y = – tx + 2 at + at 3

x x

y y

y ✄ y

x ✄ x

0

0

0



0

24.

☎

✆

☎

✄

1,

0

2

2

2

2

a

b

a y

b x

0

0

25. 48 x – 24 y = 23

26. D



27. A

EXERCISE 6.4

1. (i) 5.03

(ii) 7.035

(iii) 0.8

(iv) 0.208

(v) 0.9999

(vi) 1.96875
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(vii) 2.9629

(viii) 3.9961

(ix) 3.009

(x) 20.025

(xi) 0.06083

(xii) 2.948

(xiii) 3.0046

(xiv) 7.904

(xv) 2.00187

2. 28.21



3. – 34.995

4. 0.03 x 3 m3

5. 0.12 x 2 m2

6. 3.92 m3

7. 2.16 m3

✞

✞

8. D

9. C

EXERCISE 6.5

1. (i) Minimum Value = 3

(ii) Minimum Value = – 2

(iii) Maximum Value = 10

(iv) Neither minimum nor maximum value

2. (i) Minimum Value = – 1; No maximum value

(ii) Maximum Value = 3; No minimum value

(iii) Minimum Value = 4; Maximum Value = 6

(iv) Minimum Value = 2; Maximum Value = 4

(v) Neither minimum nor Maximum Value



3. (i) local minimum at x = 0,

local minimum value = 0

(ii) local minimum at x = 1,

local minimum value = – 2

local maximum at x = – 1, local maximum value = 2

(iii) local maximum at x

,

local maximum value =

✁

4

2

(iv) local maximum at x

✂

, local maximum value =

✁

4

2

7

local minimum at x

✄



, local minimum value = –

☎

4

2

(v) local maximum at x = 1,

local maximum value = 19

local minimum at x = 3,

local minimum value = 15

(vi) local minimum at x = 2,

local minimum value = 2
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1

(vii) local maximum at x = 0,

local maximum value = 2

2

2 3

(viii) local maximum at x

,

local maximum value =



3

9

5. (i) Absolute minimum value = – 8,

absolute maximum value = 8

(ii) Absolute minimum value = – 1,

absolute maximum value = 2

(iii) Absolute minimum value = – 10, absolute maximum value = 8

(iv) Absolute minimum value = 19,

absolute maximum value = 3

6. Maximum profit = 49 unit.

7. Minima at x = 2, minimum value = – 39, Maxima at x = 0, maximum
value = 25.

5✁

8. At x

✁

and

9. Maximum value =

4

4

2



10. Maximum at x = 3, maximum value 89; maximum at x = – 2, maximum
value = 139

11. a = 120

12. Maximum at x = 2 , maximum value = 2 ; Minimum at x = 0, minimum
value = 0

✞

✞

13. 12, 12

14. 45, 15

15. 25, 10

16. 8, 8

17. 3 cm

18. x = 5 cm

1

1

50 3

✂

50 3

21. radius =

✄



cm and height = 2 ✂

✄

cm

☎

✆

☎

✆

✝

✝

✟

✠

✟

✠

112

28✁

22.

cm,



cm 27. A

28. D

29. C

✡

✡

✁

4

✁

4

Miscellaneous Exercise on Chapter 6

1. (a) 0.677

(b) 0.497

3.

b 3 cm2/s

4. x + y – 3 = 0
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3

3



6. (i) 0 < x <

and

< x < 2

(ii)

✁

x ✁

2

2

✞

2

2

7. (i) x < –1 and x > 1

(ii) – 1 < x < 1

3 3

8.

ab

9. Rs 1000

4

20

10



11. length =

m, breadth =

m

✂

✄

4

✂

✄

4

2

13. (i) local maxima at x = 2

(ii) local minima at x ☎ 7

(iii) point of inflection at x = –1

5

14. Absolute maximum =

, Absolute minimum = 1

4

3

4✆ R

17.



19. A

20. B

21. A

3 3

22. B

23. A

24. A

—

—

✝

Appendix 1

PROOFS IN MATHEMATICS

Proofs are to Mathematics what calligraphy is to poetry.

Mathematical works do consist of proofs just as

poems do consist of characters.

— VLADIMIR ARNOLD

A.1.1 Introduction

In Classes IX, X and XI, we have learnt about the concepts of a statement,
compound

statement, negation, converse and contrapositive of a statement; axioms,
conjectures,



theorems and deductive reasoning.

Here, we will discuss various methods of proving mathematical
propositions.

A.1.2 What is a Proof?

Proof of a mathematical statement consists of sequence of statements, each
statement

being justified with a definition or an axiom or a proposition that is
previously established

by the method of deduction using only the allowed logical rules.

Thus, each proof is a chain of deductive arguments each of which has its
premises

and conclusions. Many a times, we prove a proposition directly from what
is given in

the proposition. But some times it is easier to prove an equivalent
proposition rather

than proving the proposition itself. This leads to, two ways of proving a
proposition

directly or indirectly and the proofs obtained are called direct proof and
indirect proof

and further each has three different ways of proving which is discussed
below.

Direct Proof It is the proof of a proposition in which we directly start the
proof with

what is given in the proposition.



(i) Straight forward approach It is a chain of arguments which leads
directly from

what is given or assumed, with the help of axioms, definitions or already
proved

theorems, to what is to be proved using rules of logic.

Consider the following example:

Example 1 Show that if x 2 – 5 x + 6 = 0, then x = 3 or x = 2.

Solution x 2 – 5 x + 6 = 0 (given)
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( x – 3) ( x – 2) = 0 (replacing an expression by an equal/equivalent
expression)

✂

x – 3 = 0 or x – 2 = 0 (from the established theorem ab = 0

either a = 0 or

✂

✂

b = 0, for a, b in R)

x – 3 + 3 = 0 + 3 or x – 2 + 2 = 0 + 2 (adding equal quantities on either side
of the

✂

equation does not alter the nature of the



equation)

x + 0 = 3 or x + 0 = 2 (using the identity property of integers under addition)

✂

x = 3 or x = 2 (using the identity property of integers under addition)

✂

Hence, x 2 – 5 x + 6 = 0 implies x = 3 or x = 2.

Explanation Let p be the given statement “x 2 – 5 x + 6 = 0” and q be the
conclusion statement “x = 3 or x = 2”.

From the statement p, we deduced the statement r : “( x – 3) ( x – 2) = 0” by
replacing the expression x 2 – 5 x + 6 in the statement p by another
expression ( x – 3) ( x – 2) which is equal to x 2 – 5 x + 6.

There arise two questions:

(i) How does the expression ( x – 3) ( x – 2) is equal to the expression x 2 –
5 x + 6?

(ii) How can we replace an expression with another expression which is
equal to

the former?

The first one is proved in earlier classes by factorization, i.e.,

x 2 – 5 x + 6 = x 2 – 3 x – 2 x + 6 = x ( x – 3) –2 ( x – 3) = ( x – 3) ( x – 2).

The second one is by valid form of argumentation (rules of logic)

Next this statement r becomes premises or given and deduce the statement s

“ x – 3 = 0 or x – 2 = 0” and the reasons are given in the brackets.



This process continues till we reach the conclusion.

The symbolic equivalent of the argument is to prove by deduction that p

q

✂

is true.

Starting with p, we deduce p

r

s

…

q. This implies that “p

q” is true.

✂

✂

✂

✂

✂

Example 2 Prove that the function f : R

R

✄

defined by f ( x) = 2 x + 5 is one-one.



Solution Note that a function f is one-one if

f ( x ) = f ( x )

x = x (definition of one-one function)

1

2

✂

1

2

Now, given that

f ( x ) = f ( x ), i.e., 2 x + 5 = 2 x + 5

1

2

1

2

2 x + 5 – 5 = 2 x + 5 – 5 (adding the same quantity on both sides)

✂

1

2
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2 x + 0 = 2 x + 0

✂

1

2

2 x = 2 x (using additive identity of real number)

✂

1

2

2

2

x =

x (dividing by the same non zero quantity)

✂

1

2

2

2

x = x

✂

1



2

Hence, the given function is one-one.

(ii) Mathematical Induction

Mathematical induction, is a strategy, of proving a proposition which is
deductive in

nature. The whole basis of proof of this method depends on the following
axiom:

For a given subset S of N, if

(i) the natural number 1 S and

☎

(ii) the natural number k + 1 S whenever k S, then S = N.

☎

☎

According to the principle of mathematical induction, if a statement “S( n)
is true

for n = 1” (or for some starting point j), and if “S( n) is true for n = k”
implies that “S( n) is true for n = k + 1” (whatever integer k j may be), then
the statement is true for any

✆

positive integer n, for all n j.

✆

We now consider some examples.



Example 3 Show that if

✁

cos n

sin n

✁

cos

sin

✄

✄

A =

, then A n =

✝

sin

cos ✞

✝

✟

sin n



cos n ✞

✟

✠

✡

✠

✡

Solution We have

cos n ☛

sin n ☛

☞

✌

P( n) : A n = ✍ sin n



cos n ✎

✏

☛

☛

✑

✒

✁

cos

sin

✄

We note that

P(1) : A1 = ✝ sin

cos ✞

✟

✠

✡

Therefore, P(1) is true.



Assume that P( k) is true, i.e.,

✁

cos k

sin k

✄

P( k) : A k = ✝ sin k

cos k

✞

✟

✠

✡
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We want to prove that P( k + 1) is true whenever P( k) is true, i.e.,

cos ( k

1) ✁

sin ( k



1) ✁

✂

✄

P( k + 1) : A k+1 = ☎ sin( k 1)

cos ( k

1 ) ✆

✝

✁

✁

✞

✟

Now

A k+1 = A k . A

Since P( k) is true, we have

cos k

✡

cos ✠



sin

✠

sin k ✠

✠

✡

☛

☛

A k+1 =

☞

sin k

cos k ✌

☞

✍

sin ✠



cos ✌

✍

✠

✠

✠

✎

✏

✎

✏

cos k ✠ cos ✠ ✍ sin k ✠ sin ✠

cos k ✠ sin ✠ ✑ sin k ✠ cos ✠

✡

☛

= ☞ sin k cos

cos k

sin

sin k



sin

cos k



cos

✌

✍

✠

✠

✍

✠

✠

✍

✠

✠

✑

✠

✠

✎

✏

(by matrix multiplication)



cos ( k

1) ✁

sin ( k

1) ✁

✂

✄

= ☎ sin( k 1)

cos ( k

1 ) ✆

✝

✁

✁

✞

✟

Thus, P( k + 1) is true whenever P( k) is true.

Hence, P( n) is true for all n 1 (by the principle of mathematical induction).

✒

(iii) Proof by cases or by exhaustion

This method of proving a statement p



q is possible only when p can be split into

✓

several cases, r, s, t (say) so that p = r

s

t (where “

” is the symbol for “OR”).

✔

✔

✔

If the conditionals

r

q;

✓

s

q;

✓

and

t

q

✓



are proved, then ( r

s

t)

q, is proved and so p

q is proved.

✓

✓

✔

✔

The method consists of examining every possible case of the hypothesis. It
is

practically convenient only when the number of possible cases are few.

Example 4 Show that in any triangle ABC,

a = b cos C + c cos B

Solution Let p be the statement “ABC is any triangle” and q be the
statement

“a = b cos C + c cos B”

Let ABC be a triangle. From A draw AD a perpendicular to BC (BC
produced if

necessary).

As we know that any triangle has to be either acute or obtuse or right
angled, we



can split p into three statements r, s and t, where
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r : ABC is an acute angled triangle with

C is acute.

✝

s : ABC is an obtuse angled triangle with

C is obtuse.

✝

t : ABC is a right angled triangle with

C is right angle.

✝

Hence, we prove the theorem by three cases.

Case (i) When

C is acute (Fig. A1.1).

✝

From the right angled triangle ADB,

BD = cos B



AB

i.e.

BD = AB cos B

= c cos B

From the right angled triangle ADC,

CD

Fig A1.1

= cos C

AC

i.e.

CD = AC cos C

= b cos C

Now

a = BD + CD

= c cos B + b cos C ... (1)

Case (ii) When

C is obtuse (Fig A1.2).

✝

From the right angled triangle ADB,

BD = cos B



AB

i.e.

BD = AB cos B

= c cos B

From the right angled triangle ADC,

CD = cos ACD

AC

✝

= cos (180° – C)

= – cos C

i.e.

CD = – AC cos C

= – b cos C

Fig A1.2
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Now

a = BC = BD – CD

i.e.

a = c cos B – ( – b cos C)



a = c cos B + b cos C ... (2)

Case (iii) When

C is a right angle (Fig A1.3).

✝

From the right angled triangle ACB,

BC = cos B

AB

i.e.

BC = AB cos B

a = c cos B,

and

b cos C = b cos 900 = 0.

Fig A1.3

Thus, we may write

a = 0 + c cos B

= b cos C + c cos B

... (3)

From (1), (2) and (3). We assert that for any triangle ABC,

a = b cos C + c cos B

By case (i), r



q is proved.

✂

By case (ii), s

q is proved.

✂

By case (iii), t

q is proved.

✂

Hence, from the proof by cases, ( r

s

t)

q is proved, i.e., p

q is proved.

✂

✂

Indirect Proof Instead of proving the given proposition directly, we
establish the proof

of the proposition through proving a proposition which is equivalent to the
given

proposition.



(i) Proof by contradiction ( Reductio Ad Absurdum) : Here, we start with
the

assumption that the given statement is false. By rules of logic, we arrive at a

conclusion contradicting the assumption and hence it is inferred that the
assumption

is wrong and hence the given statement is true.

Let us illustrate this method by an example.

Example 5 Show that the set of all prime numbers is infinite.

Solution Let P be the set of all prime numbers. We take the negation of the
statement

“the set of all prime numbers is infinite”, i.e., we assume the set of all prime
numbers

to be finite. Hence, we can list all the prime numbers as P , P , P ,..., P (say).
Note

1

2

3

k

that we have assumed that there is no prime number other than P , P , P ,...,
P .

1

2

3



k

Now consider N = (P P P …P ) + 1 ... (1)

1

2

3

k

N is not in the list as N is larger than any of the numbers in the list.

N is either prime or composite.
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If N is a prime, then by (1), there exists a prime number which is not listed.

On the other hand, if N is composite, it should have a prime divisor. But
none of the

numbers in the list can divide N, because they all leave the remainder 1.
Hence, the

prime divisor should be other than the one in the list.

Thus, in both the cases whether N is a prime or a composite, we ended up
with

contradiction to the fact that we have listed all the prime numbers.

Hence, our assumption that set of all prime numbers is finite is false.

Thus, the set of all prime numbers is infinite.



Note Observe that the above proof also uses the method of proof by cases.

(ii) Proof by using contrapositive statement of the given statement

Instead of proving the conditional p

q, we prove its equivalent, i.e.,

✂

~ q

~ p. (students can verify).

✂

The contrapositive of a conditional can be formed by interchanging the
conclusion

and the hypothesis and negating both.

Example 6 Prove that the function f : R

R defined by f ( x) = 2 x + 5 is one-one.

✄

✄

✄

Solution A function is one-one if f ( x ) = f ( x )

x = x .

1



2

✂

1

2

Using this we have to show that “2 x + 5 = 2 x + 5”

“x = x ”. This is of the form

1

2

✂

1

2

p

q, where, p is 2 x + 5 = 2 x + 5 and q : x = x . We have proved this in
Example 2

✂

1

2

1

2

of “direct method”.



We can also prove the same by using contrapositive of the statement. Now

contrapositive of this statement is ~ q

~ p, i.e., contrapositive of “ if f ( x ) = f ( x ),

✂

1

2

then x = x ” is “if x x , then f ( x ) f ( x )”.

1

2

1 ✞ 2

1

✞

2

Now

x

x

1 ✞

2

2 x



2 x

✂

1 ✞

2

2 x + 5 2 x + 5

✂

1

✞

2

f ( x )

f ( x ).

✂

1

✞

2

Since “~ q

~ p”, is equivalent to “p



q” the proof is complete.

✂

✂

Example 7 Show that “if a matrix A is invertible, then A is non singular”.

Solution Writing the above statement in symbolic form, we have

p

q, where, p is “matrix A is invertible” and q is “A is non singular”

✂

Instead of proving the given statement, we prove its contrapositive
statement, i.e.,

if A is not a non singular matrix, then the matrix A is not invertible.
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If A is not a non singular matrix, then it means the matrix A is singular, i.e.,

|A| = 0

adj A

Then

A–1 =

does not exist as | A | = 0

|A|



Hence, A is not invertible.

Thus, we have proved that if A is not a non singular matrix, then A is not
invertible.

i.e., ~ q

~ p.

✂

Hence, if a matrix A is invertible, then A is non singular.

(iii) Proof by a counter example

In the history of Mathematics, there are occasions when all attempts to find
a

valid proof of a statement fail and the uncertainty of the truth value of the
statement

remains unresolved.

In such a situation, it is beneficial, if we find an example to falsify the
statement.

The example to disprove the statement is called a counter example. Since
the disproof

of a proposition p

q is merely a proof of the proposition ~ ( p

q). Hence, this is

✂

✂



also a method of proof.

n

Example 8 For each n, 2

2

1 is a prime ( n N).

☎

This was once thought to be true on the basis that

1

2

2

= 22 + 1 = 5 is a prime.

✁

1

2

2

2

= 24 + 1 = 17 is a prime.

✁

1

3



2

2

= 28 + 1 = 257 is a prime.

✁

1

However, at first sight the generalisation looks to be correct. But, eventually
it was

5

shown that

2

2

1 = 232 + 1 = 4294967297

which is not a prime since 4294967297 = 641 × 6700417 (a product of two
numbers).

n

So the generalisation “For each n, 2

2

is a prime ( n N)” is false.

☎

✁

1



5

Just this one example 2

2

is sufficient to disprove the generalisation. This is the

✁

1

counter example.

n

Thus, we have proved that the generalisation “For each n, 2

2

1 is a prime

( n N)” is not true in general.

☎
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Example 9 Every continuous function is differentiable.

Proof We consider some functions given by

(i) f ( x) = x 2

(ii) g( x) = ex

(iii) h ( x) = sin x



These functions are continuous for all values of x. If we check for their

differentiability, we find that they are all differentiable for all the values of
x. This

makes us to believe that the generalisation “Every continuous function is
differentiable”

may be true. But if we check the differentiability of the function given by “
( x) = | x |”

✟

which is continuous, we find that it is not differentiable at x = 0. This means
that the

statement “Every continuous function is differentiable” is false, in general.
Just this

one function “ ( x) = | x |” is sufficient to disprove the statement. Hence, “ (
x) = | x |”

✟

✟

is called a counter example to disprove “Every continuous function is
differentiable”.

—

—

Appendix 2

MATHEMATICAL MODELLING



A.2.1 Introduction

In class XI, we have learnt about mathematical modelling as an attempt to
study some

part (or form) of some real-life problems in mathematical terms, i.e., the
conversion of

a physical situation into mathematics using some suitable conditions.
Roughly speaking

mathematical modelling is an activity in which we make models to describe
the behaviour

of various phenomenal activities of our interest in many ways using words,
drawings or

sketches, computer programs, mathematical formulae etc.

In earlier classes, we have observed that solutions to many problems,
involving

applications of various mathematical concepts, involve mathematical
modelling in one

way or the other. Therefore, it is important to study mathematical modelling
as a separate

topic.

In this chapter, we shall further study mathematical modelling of some real-
life

problems using techniques/results from matrix, calculus and linear
programming.

A.2.2 Why Mathematical Modelling?



Students are aware of the solution of word problems in arithmetic, algebra,
trigonometry

and linear programming etc. Sometimes we solve the problems without
going into the

physical insight of the situational problems. Situational problems need
physical insight

that is introduction of physical laws and some symbols to compare the
mathematical

results obtained with practical values. To solve many problems faced by us,
we need a

technique and this is what is known as mathematical modelling. Let us
consider the

following problems:

(i) To find the width of a river (particularly, when it is difficult to cross the
river).

(ii) To find the optimal angle in case of shot-put (by considering the
variables

such as : the height of the thrower, resistance of the media, acceleration due
to

gravity etc.).

(iii) To find the height of a tower (particularly, when it is not possible to
reach the top

of the tower).

(iv) To find the temperature at the surface of the Sun.
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(v) Why heart patients are not allowed to use lift? (without knowing the
physiology

of a human being).

(vi) To find the mass of the Earth.

(vii) Estimate the yield of pulses in India from the standing crops (a person
is not

allowed to cut all of it).

(viii) Find the volume of blood inside the body of a person (a person is not
allowed to

bleed completely).

(ix) Estimate the population of India in the year 2020 (a person is not
allowed to wait

till then).

All of these problems can be solved and infact have been solved with the
help of

Mathematics using mathematical modelling. In fact, you might have studied
the methods

for solving some of them in the present textbook itself. However, it will be
instructive if

you first try to solve them yourself and that too without the help of
Mathematics, if

possible, you will then appreciate the power of Mathematics and the need
for

mathematical modelling.



A.2.3 Principles of Mathematical Modelling

Mathematical modelling is a principled activity and so it has some
principles behind it.

These principles are almost philosophical in nature. Some of the basic
principles of

mathematical modelling are listed below in terms of instructions:

(i) Identify the need for the model. (for what we are looking for)

(ii) List the parameters/variables which are required for the model.

(iii) Identify the available relevent data. (what is given?)

(iv) Identify the circumstances that can be applied (assumptions)

(v) Identify the governing physical principles.

(vi) Identify

(a) the equations that will be used.

(b) the calculations that will be made.

(c) the solution which will follow.

(vii) Identify tests that can check the

(a) consistency of the model.

(b) utility of the model.

(viii) Identify the parameter values that can improve the model.
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The above principles of mathematical modelling lead to the following: steps
for

mathematical modelling.

Step 1: Identify the physical situation.

Step 2: Convert the physical situation into a mathematical model by
introducing

parameters / variables and using various known physical laws and symbols.

Step 3: Find the solution of the mathematical problem.

Step 4: Interpret the result in terms of the original problem and compare the
result

with observations or experiments.

Step 5: If the result is in good agreement, then accept the model. Otherwise
modify

the hypotheses / assumptions according to the physical situation and go to

Step 2.

The above steps can also be viewed through the following diagram:

Fig A.2.1

Example 1 Find the height of a given tower using mathematical modelling.



Solution Step 1 Given physical situation is “to find the height of a given
tower”.

Step 2 Let AB be the given tower (Fig A.2.2). Let PQ be an observer
measuring the

height of the tower with his eye at P. Let PQ = h and let height of tower be
H. Let ✂

be the angle of elevation from the eye of the observer to the top of the
tower.

Fig A.2.2
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Let

l = PC = QB

AC

H h

Now

tan =

✁

✂

PC

l

or

H = h + l tan



... (1)

✂

Step 3 Note that the values of the parameters h, l and (using sextant) are
known to

✂

the observer and so (1) gives the solution of the problem.

Step 4 In case, if the foot of the tower is not accessible, i.e., when l is not
known to the observer, let be the angle of depression from P to the foot B of
the tower. So from

✄

PQB, we have

☎

PQ

h

tan

or l = h cot ✄

✆

✝

✝

QB

l



Step 5 is not required in this situation as exact values of the parameters h, l,
and ✄

✂

are known.

Example 2 Let a business firm produces three types of products P , P and P
that

1

2

3

uses three types of raw materials R , R and R . Let the firm has purchase
orders from

1

2

3

two clients F and F . Considering the situation that the firm has a limited
quantity of

1

2

R , R and R , respectively, prepare a model to determine the quantities of
the raw

1

2



3

material R , R and R required to meet the purchase orders.

1

2

3

Solution Step 1 The physical situation is well identified in the problem.

Step 2 Let A be a matrix that represents purchase orders from the two
clients F and

1

F . Then, A is of the form

2

P P P

1

2

3

F ✞• • •

1



A

✟

✠

F ✡• • •☛

2 ☞

✌

Let B be the matrix that represents the amount of raw materials R , R and R
,

1

2

3

required to manufacture each unit of the products P , P and P . Then, B is of
the form

1

2

3

R R R

1

2

3



P ✍•

• •

1

✎

B

P ✏•

• •✑

✒

2

✏

✑

P ✏•

• •

3

✑

✓

✔
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Step 3 Note that the product (which in this case is well defined) of matrices
A and B

is given by the following matrix

R R R

1

2

3

F • • •

1

AB

✁

✂

F ✄• • •☎

2 ✆

✝

which in fact gives the desired quantities of the raw materials R , R and R to
fulfill

1

2

3



the purchase orders of the two clients F and F .

1

2

Example 3 Interpret the model in Example 2, in case

✞ 3

4

0

10

✞

15

6

✟

A =

✟

, B

✠

7



9 3 ✡

☛

10

✠

20

0✡

✠

✡

☞

✌

✠ 5

12

7✡

☞

✌

and the available raw materials are 330 units of R , 455 units of R and 140
units of R .

1



2

3

Solution Note that

✞ 3

4

0

10 15

6

✟

✞

✟

AB =

✠

7

9 3 ✡

10

✠



20

0✡ ✠

✡

☞

✌

✠ 5

12

7✡

☞

✌

R

R

R

1

2

3

F 165

✍



247

87

= 1

✎

F 170

✏

220

60✑

2 ✒

✓

This clearly shows that to meet the purchase order of F and F , the raw
material

1

2

required is 335 units of R , 467 units of R and 147 units of R which is much
more than

1

2

3

the available raw material. Since the amount of raw material required to
manufacture



each unit of the three products is fixed, we can either ask for an increase in
the

available raw material or we may ask the clients to reduce their orders.

Remark If we replace A in Example 3 by A given by

1

✔

9 12

6

A =

✕

1

10

✖

20

0✗

✘

✙

i.e., if the clients agree to reduce their purchase orders, then

✚ 3

4

0 ✛



141

✥

216

78

✚ 9

12

6 ✛

A B =

✜

7

9

3 ✢

✦

1

10

✧

✜

20

0✢ ✜

✢



170

★

220

60✩

✣

✤

✪

✫

✜ 5

12

7✢

✣

✤
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This requires 311 units of R , 436 units of R and 138 units of R which are
well

1

2

3

below the available raw materials, i.e., 330 units of R , 455 units of R and
140 units of



1

2

R . Thus, if the revised purchase orders of the clients are given by A , then
the firm

3

1

can easily supply the purchase orders of the two clients.

Note One may further modify A so as to make full use of the available

raw material.

Query Can we make a mathematical model with a given B and with fixed
quantities of

the available raw material that can help the firm owner to ask the clients to
modify their

orders in such a way that the firm makes the full use of its available raw
material?

The answer to this query is given in the following example:

Example 4 Suppose P , P , P and R , R , R are as in Example 2. Let the firm
has

1

2

3

1



2

3

330 units of R , 455 units of R and 140 units of R available with it and let
the amount

1

2

3

of raw materials R , R and R required to manufacture each unit of the three
products

1

2

3

is given by

R

R R

1

2

3

P ✁3

4

0



1

✂

B

P ✄7

9

3 ☎

✆

2

✄

☎

P ✄5 12

7

3

☎

✝

✞

How many units of each product is to be made so as to utilise the full
available raw

material?

Solution Step 1 The situation is easily identifiable.



Step 2 Suppose the firm produces x units of P , y units of P and z units of P .
Since 1

2

3

product P requires 3 units of R , P requires 7 units of R and P requires 5
units of R

1

1

2

1

3

1

(observe matrix B) and the total number of units, of R , available is 330, we
have

1

3 x + 7 y + 5 z = 330 (for raw material R )

1

Similarly, we have

4 x + 9 y + 12 z = 455 (for raw material R )

2

and



3 y + 7 z = 140 (for raw material R )

3

This system of equations can be expressed in matrix form as

✟

3 7

5 ✠ ✟ x✠

✟ 330✠

✡

4 9 12☛ ✡ y☛

✡



455☛

☞

✡

☛

✡

☛

✡

☛

✡

0 3 7 ☛ ✡ z☛

14

✡



0☛

✌

✍

✌

✍

✌

✍
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Step 3 Using elementary row operations, we obtain

1 0

0✁

x✁

20✁

✂

0 1 0✄ ✂ y✄

✂



35✄

☎

✂

✄

✂

✄

✂

✄

✂

0

0 1✄ ✂ z ✄

✂



5 ✄

✆

✝

✆

✝

✆

✝

This gives x = 20, y = 35 and z = 5. Thus, the firm can produce 20 units of P
, 35

1

units of P and 5 units of P to make full use of its available raw material.

2

3

Remark One may observe that if the manufacturer decides to manufacture
according

to the available raw material and not according to the purchase orders of the
two

clients F and F (as in Example 3), he/she is unable to meet these purchase
orders as

1

2



F demanded 6 units of P where as the manufacturer can make only 5 units
of P .

1

3

3

Example 5 A manufacturer of medicines is preparing a production plan of
medicines

M and M . There are sufficient raw materials available to make 20000
bottles of M

1

2

1

and 40000 bottles of M , but there are only 45000 bottles into which either
of the

2

medicines can be put. Further, it takes 3 hours to prepare enough material to
fill 1000

bottles of M , it takes 1 hour to prepare enough material to fill 1000 bottles
of M and

1

2

there are 66 hours available for this operation. The profit is Rs 8 per bottle
for M and



1

Rs 7 per bottle for M . How should the manufacturer schedule his/her
production in

2

order to maximise profit?

Solution Step 1 To find the number of bottles of M and M in order to
maximise the

1

2

profit under the given hypotheses.

Step 2 Let x be the number of bottles of type M medicine and y be the
number of 1

bottles of type M medicine. Since profit is Rs 8 per bottle for M and Rs 7
per bottle

2

1

for M , therefore the objective function (which is to be maximised) is given
by

2

Z Z ( x, y) = 8 x + 7 y

✞



The objective function is to be maximised subject to the constraints (Refer
Chapter

12 on Linear Programming)

x ✟ 20000

✠

y 40000

✡

✟

✡

x

y

45000 ✡

☛

✟

☞

... (1)

3 x



y 66000✡

☛

✟

✡

x ✌ 0, y ✌ 0

✡

✍

Step 3 The shaded region OPQRST is the feasible region for the constraints
(1)

(Fig A.2.3). The coordinates of vertices O, P, Q, R, S and T are (0, 0),
(20000, 0),

(20000, 6000), (10500, 34500), (5000, 40000) and (0, 40000), respectively.
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Fig A.2.3

Note that

Z at P (0, 0) = 0

Z at P (20000, 0) = 8 × 20000 = 160000

Z at Q (20000, 6000) = 8 × 20000 + 7 × 6000 = 202000

Z at R (10500, 34500) = 8 × 10500 + 7 × 34500 = 325500



Z at S = (5000, 40000) = 8 × 5000 + 7 × 40000 = 320000

Z at T = (0, 40000) = 7 × 40000 = 280000

Now observe that the profit is maximum at x = 10500 and y = 34500 and
the

maximum profit is Rs 325500. Hence, the manufacturer should produce
10500 bottles

of M medicine and 34500 bottles of M medicine in order to get maximum
profit of

1

2

Rs 325500.

Example 6 Suppose a company plans to produce a new product that incur
some costs

(fixed and variable) and let the company plans to sell the product at a fixed
price.

Prepare a mathematical model to examine the profitability.

Solution Step 1 Situation is clearly identifiable.
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Step 2 Formulation: We are given that the costs are of two types: fixed and
variable.

The fixed costs are independent of the number of units produced (e.g., rent
and rates),



while the variable costs increase with the number of units produced (e.g.,
material).

Initially, we assume that the variable costs are directly proportional to the
number of

units produced — this should simplify our model. The company earn a
certain amount

of money by selling its products and wants to ensure that it is maximum.
For convenience,

we assume that all units produced are sold immediately.

The mathematical model

Let

x = number of units produced and sold

C = total cost of production (in rupees)

I = income from sales (in rupees)

P = profit (in rupees)

Our assumptions above state that C consists of two parts:

(i) fixed cost = a (in rupees),

(ii) variable cost = b (rupees/unit produced).

Then

C = a + bx

... (1)

Also, income I depends on selling price s (rupees/unit)



Thus

I = sx

... (2)

The profit P is then the difference between income and costs. So

P = I – C

= sx – ( a + bx)

= ( s – b) x – a

... (3)

We now have a mathematical model of the relationships (1) to (3) between

the variables x, C, I, P , a, b, s. These variables may be classified as:

independent

x

dependent

C, I, P

parameters

a, b, s

The manufacturer, knowing x, a, b, s can determine P.

Step 3 From (3), we can observe that for the break even point (i.e., make
neither profit a

nor loss), he must have P = 0, i.e., x

units.



s ✁ b

Steps 4 and 5 In view of the break even point, one may conclude that if the
company

a

produces few units, i.e., less than x

units , then the company will suffer loss

s ✁ b
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a

and if it produces large number of units, i.e., much more than

units , then it can

s b

make huge profit. Further, if the break even point proves to be unrealistic,
then another

model could be tried or the assumptions regarding cash flow may be
modified.

Remark From (3), we also have

d P

✁

s ✂ b

d x



This means that rate of change of P with respect to x depends on the
quantity

s – b, which is the difference of selling price and the variable cost of each
product.

Thus, in order to gain profit, this should be positive and to get large gains,
we need to

produce large quantity of the product and at the same time try to reduce the
variable

cost.

Example 7 Let a tank contains 1000 litres of brine which contains 250 g of
salt per

litre. Brine containing 200 g of salt per litre flows into the tank at the rate of
25 litres per

minute and the mixture flows out at the same rate. Assume that the mixture
is kept

uniform all the time by stirring. What would be the amount of salt in the
tank at

any time t?

Solution Step 1 The situation is easily identifiable.

Step 2 Let y = y ( t) denote the amount of salt (in kg) in the tank at time t (in
minutes) after the inflow, outflow starts. Further assume that y is a
differentiable function.

When t = 0, i.e., before the inflow–outflow of the brine starts,

y = 250 g × 1000 = 250 kg

Note that the change in y occurs due to the inflow, outflow of the mixture.



Now the inflow of brine brings salt into the tank at the rate of 5 kg per
minute

(as 25 × 200 g = 5 kg) and the outflow of brine takes salt out of the tank at
the rate of

y

✄

y ☎

y

25

kg per minute (as at time t, the salt in the tank is

kg).

✆

✝

1000✞

1000

✟

✠

40

Thus, the rate of change of salt with respect to t is given by



dy

y

= 5

(Why?)

✡

dt

40

dy

1

or

= 5

... (1)

☛

y

dt

40
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This gives a mathematical model for the given problem.



Step 3 Equation (1) is a linear equation and can be easily solved. The
solution of (1) is

given by

t

t

t

✂

40

40

y e

200 e

or y ( t) = 200 + C

40

e

... (2)

✁

C

where, c is the constant of integration.

Note that when t = 0, y = 250. Therefore, 250 = 200 + C

or



C = 50

Then (2) reduces to

t

✄

y = 200 + 50

40

e

... (3)

y

t

✆

☎

200

or

=

40

e

50

t

50



or

40

e

= y✝200

✞

50

✟

Therefore

t = 40 log

... (4)

e ✠ y 200✡

☛

☞

✌

Here, the equation (4) gives the time t at which the salt in tank is y kg.

t

✆

Step 4 Since



40

e

is always positive, from (3), we conclude that y > 200 at all times

Thus, the minimum amount of salt content in the tank is 200 kg.

Also, from (4), we conclude that t > 0 if and only if 0 < y – 200 < 50 i.e., if
and only if 200 < y < 250 i.e., the amount of salt content in the tank after
the start of inflow and outflow of the brine is between 200 kg and 250 kg.

Limitations of Mathematical Modelling

Till today many mathematical models have been developed and applied
successfully

to understand and get an insight into thousands of situations. Some of the
subjects like

mathematical physics, mathematical economics, operations research, bio-
mathematics

etc. are almost synonymous with mathematical modelling.

But there are still a large number of situations which are yet to be modelled.
The

reason behind this is that either the situation are found to be very complex
or the

mathematical models formed are mathematically intractable.
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The development of the powerful computers and super computers has
enabled us



to mathematically model a large number of situations (even complex
situations). Due

to these fast and advanced computers, it has been possible to prepare more
realistic

models which can obtain better agreements with observations.

However, we do not have good guidelines for choosing various parameters /
variables

and also for estimating the values of these parameters / variables used in a
mathematical

model. Infact, we can prepare reasonably accurate models to fit any data by
choosing

five or six parameters variables. We require a minimal number of
parameters variables

to be able to estimate them accurately.

Mathematical modelling of large or complex situations has its own special
problems.

These type of situations usually occur in the study of world models of
environment,

oceanography, pollution control etc. Mathematical modellers from all
disciplines —

mathematics, computer science, physics, engineering, social sciences, etc.,
are involved

in meeting these challenges with courage.

—

—



CONSTITUTION OF INDIA

Part III (Articles 12 – 35)

(Subject to certain conditions, some exceptions

and reasonable restrictions)

guarantees these



Fundamental Rights

Right to Equality

before law and equal protection of laws;

⑨

irrespective of religion, race, caste, sex or place of birth;

⑨

of opportunity in public employment;

⑨

by abolition of untouchability and titles.

⑨

Right to Freedom

of expression, assembly, association, movement, residence and profession;

⑨

of certain protections in respect of conviction for offences;

⑨

of protection of life and personal liberty;

⑨

of free and compulsory education for children between the age of six and



⑨

fourteen years;

of protection against arrest and detention in certain cases.

⑨

Right against Exploitation

for prohibition of traffic in human beings and forced labour;

⑨

for prohibition of employment of children in hazardous jobs.

⑨

Right to Freedom of Religion

freedom of conscience and free profession, practice and propagation of

⑨

religion;

freedom to manage religious affairs;

⑨

freedom as to payment of taxes for promotion of any particular religion;

⑨

freedom as to attendance at religious instruction or religious worship in



⑨

educational institutions wholly maintained by the State.

Cultural and Educational Rights

for protection of interests of minorities to conserve their language, script
and

⑨

culture;

for minorities to establish and administer educational institutions of their
choice.

⑨

Right to Constitutional Remedies

by issuance of directions or orders or writs by the Supreme Court and High

⑨

Courts for enforcement of these Fundamental Rights.
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