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Chapter One
ELECTRIC CHARGES
AND FIELDS

1.1 INTRODUCTION

All of us have the experience of seeing a spark or hearing a crackle when



we take off our synthetic clothes or sweater, particularly in dry weather.
This is almost inevitable with ladies garments like a polyester saree. Have
you ever tried to find any explanation for this phenomenon? Another
common example of electric discharge is the lightning that we see in the
sky during thunderstorms. We also experience a sensation of an electric
shock either while opening the door of a car or holding the iron bar of a
bus after sliding from our seat. The reason for these experiences is
discharge of electric charges through our body, which were accumulated
due to rubbing of insulating surfaces. You might have also heard that

this is due to generation of static electricity. This is precisely the topic we
are going to discuss in this and the next chapter. Static means anything that
does not move or change with time. Electrostatics deals with the

study of forces, fields and potentials arising from static charges.

1.2 ELECTRIC CHARGE

Historically the credit of discovery of the fact that amber rubbed with
wool or silk cloth attracts light objects goes to Thales of Miletus, Greece,
around 600 BC. The name electricity is coined from the Greek word
elektron meaning amber. Many such pairs of materials were known which
Physics

on rubbing could attract light objects

like straw, pith balls and bits of papers.



You can perform the following activity

at home to experience such an effect.

Cut out long thin strips of white paper

and lightly iron them. Take them near a

TV screen or computer monitor. You will

see that the strips get attracted to the

screen. In fact they remain stuck to the

screen for a while.

It was observed that if two glass rods

rubbed with wool or silk cloth are

brought close to each other, they repel

each other [Fig. 1.1(a)]. The two strands

FIGURE 1.1 Rods and pith balls: like charges repel and

of wool or two pieces of silk cloth, with

unlike charges attract each other.

which the rods were rubbed, also repel

each other. However, the glass rod and

wool attracted each other. Similarly, two plastic rods rubbed with cat’s
fur repelled each other [Fig. 1.1(b)] but attracted the fur. On the other

hand, the plastic rod attracts the glass rod [Fig. 1.1(c)] and repel the silk



or wool with which the glass rod is rubbed. The glass rod repels the fur.
If a plastic rod rubbed with fur is made to touch two small pith balls
(now-a-days we can use polystyrene balls) suspended by silk or nylon
thread, then the balls repel each other [Fig. 1.1(d)] and are also repelled
by the rod. A similar effect is found if the pith balls are touched with a
glass rod rubbed with silk [Fig. 1.1(e)]. A dramatic observation is that a
pith ball touched with glass rod attracts another pith ball touched with
plastic rod [Fig. 1.1(f)].

These seemingly simple facts were established from years of efforts
and careful experiments and their analyses. It was concluded, after many
careful studies by different scientists, that there were only two kinds of

an entity which is called the electric charge. We say that the bodies like
glass or plastic rods, silk, fur and pith balls are electrified. They acquire an
electric charge on rubbing. The experiments on pith balls suggested

that there are two kinds of electrification and we find that (1) like charges
repel and (11) unlike charges attract each other. The experiments also
demonstrated that the charges are transferred from the rods to the pith balls
on contact. It is said that the pith balls are electrified or are charged by
contact. The property which differentiates the two kinds of charges is called
the polarity of charge.

When a glass rod is rubbed with silk, the rod acquires one kind of
Interactive animation on simple electrostatic experiments:

http://ephysics.physics.ucla.edu/travoltage/ HTML/



charge and the silk acquires the second kind of charge. This is true for

any pair of objects that are rubbed to be electrified. Now if the electrified
glass rod is brought in contact with silk, with which it was rubbed, they
no longer attract each other. They also do not attract or repel other light
objects as they did on being electrified.

Thus, the charges acquired after rubbing are lost when the charged

bodies are brought in contact. What can you conclude from these

2

observations? It just tells us that unlike charges acquired by the objects
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neutralise or nullify each other’s effect. Therefore the charges were named
as positive and negative by the American scientist Benjamin Franklin.

We know that when we add a positive number to a negative number of

the same magnitude, the sum is zero. This might have been the
philosophy in naming the charges as positive and negative. By convention,
the charge on glass rod or cat’s fur is called positive and that on plastic
rod or silk is termed negative. If an object possesses an electric charge, it
1s said to be electrified or charged. When it has no charge it is said to be

neutral.



UNIFICATION OF ELECTRICITY AND MAGNETISM

In olden days, electricity and magnetism were treated as separate subjects.
Electricity dealt with charges on glass rods, cat’s fur, batteries, lightning,
etc., while magnetism described interactions of magnets, iron filings,
compass needles, etc. In 1820 Danish scientist Oersted found that a
compass needle is deflected by passing an electric current through a wire
placed near the needle. Ampere and Faraday supported this observation by
saying that electric charges in motion produce magnetic fields and moving
magnets generate electricity. The unification was achieved when the
Scottish physicist Maxwell and the Dutch physicist Lorentz put forward a
theory where they showed the interdependence of these two subjects. This
field is called electromagnetism. Most of the phenomena occurring around
us can be described under electromagnetism. Virtually every force that we
can think of like friction, chemical force between atoms holding the matter
together, and even the forces describing processes occurring in cells of
living organisms, have its origin in electromagnetic force. Electromagnetic
force is one of the fundamental forces of nature.

Maxwell put forth four equations that play the same role in classical
electromagnetism as Newton’s equations of motion and gravitation law play
in mechanics. He also argued that light is electromagnetic in nature and its
speed can be found by making purely electric and magnetic measurements.
He claimed that the science of optics is intimately related to that of
electricity and magnetism.

The science of electricity and magnetism is the foundation for the modern
technological civilisation. Electric power, telecommunication, radio and
television, and a wide variety of the practical appliances used in daily life
are based on the principles of this science.

Although charged particles in motion exert both electric and magnetic
forces, in the frame of reference where all the charges are at rest, the forces
are purely electrical. You know that gravitational force is a long-range
force. Its effect is felt even when the distance between the interacting
particles is very large because the force decreases inversely as the square of
the distance between the interacting bodies. We will learn in this chapter
that electric force is also as pervasive and is in fact stronger than the



gravitational force by several orders of magnitude (refer to Chapter 1 of
Class XI Physics Textbook).

A simple apparatus to detect charge on a body is the gold-leaf

electroscope [Fig. 1.2(a)]. It consists of a vertical metal rod housed in a
box, with two thin gold leaves attached to its bottom end. When a charged
object touches the metal knob at the top of the rod, charge flows on to

the leaves and they diverge. The degree of divergance is an indicator of
3

the amount of charge.
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Students can make a simple electroscope as

follows [Fig. 1.2(b)]: Take a thin aluminium curtain
rod with ball ends fitted for hanging the curtain. Cut
out a piece of length about 20 cm with the ball at

one end and flatten the cut end. Take a large bottle
that can hold this rod and a cork which will fit in the
opening of the bottle. Make a hole in the cork
sufficient to hold the curtain rod snugly. Slide the
rod through the hole in the cork with the cut end on
the lower side and ball end projecting above the cork.

Fold a small, thin aluminium foil (about 6 cm in



length) in the middle and attach it to the flattened

end of the rod by cellulose tape. This forms the leaves
of your electroscope. Fit the cork in the bottle with
about 5 cm of the ball end projecting above the cork.
A paper scale may be put inside the bottle in advance
to measure the separation of leaves. The separation

is a rough measure of the amount of charge on the
electroscope.

To understand how the electroscope works, use

the white paper strips we used for seeing the
attraction of charged bodies. Fold the strips into half
so that you make a mark of fold. Open the strip and
FIGURE 1.2 Electroscopes: (a) The gold leaf

iron it lightly with the mountain fold up, as shown
electroscope, (b) Schematics of a simple

in Fig. 1.3. Hold the strip by pinching it at the fold.
electroscope.

You would notice that the two halves move apart.
This shows that the strip has acquired charge on ironing. When you fold

it into half, both the halves have the same charge. Hence they repel each



other. The same effect is seen in the leaf electroscope. On charging the
curtain rod by touching the ball end with an electrified body, charge is
transferred to the curtain rod and the attached aluminium foil. Both the
halves of the foil get similar charge and therefore repel each other. The
divergence in the leaves depends on the amount of charge on them. Let
us first try to understand why material bodies acquire charge.

You know that all matter is made up of atoms and/or molecules.
Although normally the materials are electrically neutral, they do contain
charges; but their charges are exactly balanced. Forces that hold the
molecules together, forces that hold atoms together in a solid, the adhesive
force of glue, forces associated with surface tension, all are basically
electrical in nature, arising from the forces between charged particles.
Thus the electric force is all pervasive and it encompasses almost each
and every field associated with our life. It is therefore essential that we
learn more about such a force.

To electrify a neutral body, we need to add or remove one kind of

FIGURE 1.3 Paper strip charge. When we say that a body is charged, we
always refer to this experiment.

excess charge or deficit of charge. In solids, some of the electrons, being
less tightly bound in the atom, are the charges which are transferred

from one body to the other. A body can thus be charged positively by



4

losing some of its electrons. Similarly, a body can be charged negatively
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by gaining electrons. When we rub a glass rod with silk, some of the
electrons from the rod are transferred to the silk cloth. Thus the rod gets
positively charged and the silk gets negatively charged. No new charge is
created in the process of rubbing. Also the number of electrons, that are
transferred, is a very small fraction of the total number of electrons in the
material body. Also only the less tightly bound electrons in a material
body can be transferred from it to another by rubbing. Therefore, when

a body is rubbed with another, the bodies get charged and that is why

we have to stick to certain pairs of materials to notice charging on rubbing
the bodies.

1.3 CONDUCTORS AND INSULATORS

A metal rod held in hand and rubbed with wool will not show any sign of
being charged. However, if a metal rod with a wooden or plastic handle is
rubbed without touching its metal part, it shows signs of charging.
Suppose we connect one end of a copper wire to a neutral pith ball and

the other end to a negatively charged plastic rod. We will find that the



pith ball acquires a negative charge. If a similar experiment is repeated
with a nylon thread or a rubber band, no transfer of charge will take

place from the plastic rod to the pith ball. Why does the transfer of charge
not take place from the rod to the ball?

Some substances readily allow passage of electricity through them,

others do not. Those which allow electricity to pass through them easily are
called conductors. They have electric charges (electrons) that are
comparatively free to move inside the material. Metals, human and animal

bodies and earth are conductors. Most of the non-metals like glass,
porcelain, plastic, nylon, wood offer high resistance to the passage of

electricity through them. They are called insulators. Most substances fall
into one of the two classes stated above*.

When some charge is transferred to a conductor, it readily gets
distributed over the entire surface of the conductor. In contrast, if some
charge is put on an insulator, it stays at the same place. You will learn
why this happens in the next chapter.

This property of the materials tells you why a nylon or plastic comb
gets electrified on combing dry hair or on rubbing, but a metal article
like spoon does not. The charges on metal leak through our body to the
ground as both are conductors of electricity.

When we bring a charged body in contact with the earth, all the



excess charge on the body disappears by causing a momentary current
to pass to the ground through the connecting conductor (such as our
body). This process of sharing the charges with the earth is called

grounding or earthing. Earthing provides a safety measure for electrical
circuits and appliances. A thick metal plate is buried deep into the earth and
thick wires are drawn from this plate; these are used in buildings

for the purpose of earthing near the mains supply. The electric wiring in
our houses has three wires: live, neutral and earth. The first two carry

* There 1s a third category called semiconductors, which offer resistance to
the movement of charges which is intermediate between the conductors and
5

insulators.
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electric current from the power station and the third is earthed by
connecting it to the buried metal plate. Metallic bodies of the electric
appliances such as electric iron, refrigerator, TV are connected to the
earth wire. When any fault occurs or live wire touches the metallic body,
the charge flows to the earth without damaging the appliance and without
causing any injury to the humans; this would have otherwise been
unavoidable since the human body is a conductor of electricity.

1.4 CHARGING BY INDUCTION

When we touch a pith ball with an electrified plastic rod, some of the



negative charges on the rod are transferred to the pith ball and it also

gets charged. Thus the pith ball is charged by contact. 1t is then repelled by
the plastic rod but is attracted by a glass rod which is oppositely charged.
However, why a electrified rod attracts light objects, is a question we have
still left unanswered. Let us try to understand what could be happening by
performing the following experiment.

(1) Bring two metal spheres, A and B, supported on insulating stands,

in contact as shown in Fig. 1.4(a).

(i1) Bring a positively charged rod near one of the spheres, say A, taking
care that it does not touch the sphere. The free electrons in the spheres
are attracted towards the rod. This leaves an excess of positive charge
on the rear surface of sphere B. Both kinds of charges are bound in

the metal spheres and cannot escape. They, therefore, reside on the
surfaces, as shown in Fig. 1.4(b). The left surface of sphere A, has an
excess of negative charge and the right surface of sphere B, has an
excess of positive charge. However, not all of the electrons in the spheres
have accumulated on the left surface of A. As the negative charge

starts building up at the left surface of A, other electrons are repelled

by these. In a short time, equilibrium is reached under the action of
force of attraction of the rod and the force of repulsion due to the
accumulated charges. Fig. 1.4(b) shows the equilibrium situation.

The process is called induction of charge and happens almost



instantly. The accumulated charges remain on the surface, as shown,
till the glass rod is held near the sphere. If the rod is removed, the
charges are not acted by any outside force and they redistribute to
their original neutral state.

(111) Separate the spheres by a small distance while the glass rod is still
held near sphere A, as shown in Fig. 1.4(c). The two spheres are found
to be oppositely charged and attract each other.

(iv) Remove the rod. The charges on spheres rearrange themselves as
shown in Fig. 1.4(d). Now, separate the spheres quite apart. The
charges on them get uniformly distributed over them, as shown in

Fig. 1.4(e).

In this process, the metal spheres will each be equal and oppositely

charged. This is charging by induction. The positively charged glass rod
does not lose any of its charge, contrary to the process of charging by
FIGURE 1.4 Charging

contact.

by induction.

When electrified rods are brought near light objects, a similar effect
takes place. The rods induce opposite charges on the near surfaces of
6

the objects and similar charges move to the farther side of the object.
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[ This happens even when the light object is not a conductor. The
mechanism for how this happens is explained later in Sections 1.10 and
2.10.] The centres of the two types of charges are slightly separated. We
know that opposite charges attract while similar charges repel. However,
the magnitude of force depends on the distance between the charges

and 1in this case the force of attraction overweighs the force of repulsion.
As a result the particles like bits of paper or pith balls, being light, are
pulled towards the rods.

Example 1.1 How can you charge a metal sphere positively without
touching it?

Solution Figure 1.5(a) shows an uncharged metallic sphere on an

http://www.physicsclassroom.com/mmedia/estatics/estaticTOC.html



Interactive animation on charging a two-sphere system by induction:
insulating metal stand. Bring a negatively charged rod close to the
metallic sphere, as shown in Fig. 1.5(b). As the rod is brought close
to the sphere, the free electrons in the sphere move away due to
repulsion and start piling up at the farther end. The near end becomes
positively charged due to deficit of electrons. This process of charge
distribution stops when the net force on the free electrons inside the
metal is zero. Connect the sphere to the ground by a conducting
wire. The electrons will flow to the ground while the positive charges
at the near end will remain held there due to the attractive force of
the negative charges on the rod, as shown in Fig. 1.5(c). Disconnect
the sphere from the ground. The positive charge continues to be

held at the near end [Fig. 1.5(d)]. Remove the electrified rod. The
positive charge will spread uniformly over the sphere as shown in
Fig. 1.5(e).

FIGURE 1.5

In this experiment, the metal sphere gets charged by the process

E

of induction and the rod does not lose any of its charge.

XAMPLE



Similar steps are involved in charging a metal sphere negatively

by induction, by bringing a positively charged rod near it. In this

1.1

case the electrons will flow from the ground to the sphere when the
sphere 1s connected to the ground with a wire. Can you explain why?

7
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1.5 BASIC PROPERTIES OF ELECTRIC CHARGE

We have seen that there are two types of charges, namely positive and
negative and their effects tend to cancel each other. Here, we shall now
describe some other properties of the electric charge.

If the sizes of charged bodies are very small as compared to the
distances between them, we treat them as point charges. All the

charge content of the body is assumed to be concentrated at one point
in space.

1.5.1 Additivity of charges

We have not as yet given a quantitative definition of a charge; we shall
follow it up in the next section. We shall tentatively assume that this can
be done and proceed. If a system contains two point charges g and g , 1

2



the total charge of the system is obtained simply by adding algebraically
g and g, 1.e., charges add up like real numbers or they are scalars like 1
2

the mass of a body. If a system contains n charges g ,¢q,q, ..., g, then 1
2

3

n

the total charge of the systemis g + ¢ + g + ... + ¢ . Charge has

1

2

3

n

magnitude but no direction, similar to the mass. However, there is one
difference between mass and charge. Mass of a body 1s always positive
whereas a charge can be either positive or negative. Proper signs have to
be used while adding the charges in a system. For example, the

total charge of a system containing five charges +1, +2, -3, +4 and -5,
in some arbitrary unit, is (+1) + (+2) + (-3) + (+4) + (-=5) =—1 in the
same unit.

1.5.2 Charge is conserved



We have already hinted to the fact that when bodies are charged by
rubbing, there is transfer of electrons from one body to the other; no new
charges are either created or destroyed. A picture of particles of electric
charge enables us to understand the idea of conservation of charge. When
we rub two bodies, what one body gains in charge the other body loses.
Within an isolated system consisting of many charged bodies, due to
interactions among the bodies, charges may get redistributed but it is
found that the total charge of the isolated system is always conserved.
Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated
system although the charge carrying particles may be created or destroyed
in a process. Sometimes nature creates charged particles: a neutron turns
into a proton and an electron. The proton and electron thus created have
equal and opposite charges and the total charge is zero before and after
the creation.

1.5.3 Quantisation of charge

Experimentally it is established that all free charges are integral multiples

of a basic unit of charge denoted by e. Thus charge ¢ on a body is always
given by

8

q = ne
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where 7 i1s any integer, positive or negative. This basic unit of charge is the
charge that an electron or proton carries. By convention, the charge on an
electron is taken to be negative; therefore charge on an electron is

written as —e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed as
quantisation of charge. There are a large number of situations in physics
where certain physical quantities are quantised. The quantisation of charge
was first suggested by the experimental laws of electrolysis discovered by

English experimentalist Faraday. It was experimentally demonstrated by
Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a
coulomb and is denoted by the symbol C. A coulomb is defined in terms
the unit of the electric current which you are going to learn in a
subsequent chapter. In terms of this definition, one coulomb is the charge
flowing through a wire in 1 s if the current is 1 A (ampere), (see Chapter 2
of Class XI, Physics Textbook , Part I). In this system, the value of the
basic unit of charge is

e =1.602192 x 10-19 C

Thus, there are about 6 x 1018 electrons in a charge of —1C. In

electrostatics, charges of this large magnitude are seldom encountered



and hence we use smaller units 1 uC (micro coulomb) = 10-6 C or 1 mC
(milli coulomb) = 10-3 C.
If the protons and electrons are the only basic charges in the universe,

all the observable charges have to be integral multiples of e. Thus, if a body
contains #n electrons and n protons, the total amount of charge 1

2
on the body isn x e +n x (—e) = (n—n ) e. Since n and n are integers, 2
1
2
1
1
2
their difference is also an integer. Thus the charge on any body is always

an integral multiple of e and can be increased or decreased also in steps of
e.

The step size e is, however, very small because at the macroscopic

level, we deal with charges of a few puC . At this scale the fact that charge of
a body can increase or decrease in units of e is not visible. The grainy
nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points
and lines. A dotted line viewed from a distance appears continuous to

us but is not continuous in reality. As many points very close to



each other normally give an impression of a continuous line, many
small charges taken together appear as a continuous charge
distribution.

At the macroscopic level, one deals with charges that are enormous

compared to the magnitude of charge e. Since e = 1.6 x 10-19 C, a charge
of magnitude, say 1 pC, contains something like 1013 times the electronic
charge. At this scale, the fact that charge can increase or decrease only in

units of e is not very different from saying that charge can take continuous
values. Thus, at the macroscopic level, the quantisation of charge has no
practical consequence and can be ignored. At the microscopic level, where

9

the charges involved are of the order of a few tens or hundreds of e, i.e.,
Physics

they can be counted, they appear in discrete lumps and quantisation of
charge cannot be ignored. It is the scale involved that is very important.
Example 1.2 If 109 electrons move out of a body to another body
every second, how much time is required to get a total charge of 1 C

on the other body?

Solution In one second 109 electrons move out of the body. Therefore
the charge given out in one second is 1.6 x 10—-19 x 109 C = 1.6 x 10-10 C.
The time required to accumulate a charge of 1 C can then be estimated

tobe 1 C+ (1.6 x 10-10C/s ) =6.25 x 109 s = 6.25 x 109 + (365 x 24 X



3600) years = 198 years. Thus to collect a charge of one coulomb,
from a body from which 109 electrons move out every second, we will
need approximately 200 years. One coulomb is, therefore, a very large
1.2

unit for many practical purposes.

It is, however, also important to know what is roughly the number of
electrons contained in a piece of one cubic centimetre of a material.
XAMPLE

A cubic piece of copper of side 1 cm contains about 2.5 x 1024

E

electrons.

Example 1.3 How much positive and negative charge is there in a
cup of water?

Solution Let us assume that the mass of one cup of water is

250 g. The molecular mass of water is 18g. Thus, one mole

(= 6.02 x 1023 molecules) of water is 18 g. Therefore the number of
molecules in one cup of water is (250/18) x 6.02 x 1023.

1.3

Each molecule of water contains two hydrogen atoms and one oxygen

atom, i.e., 10 electrons and 10 protons. Hence the total positive and



total negative charge has the same magnitude. It is equal to

XAMPLE

E

(250/18) x 6.02 x 1023 x 10 x 1.6 x 10-19 C=1.34 x 107 C.

1.6 COULOMB’S LAW

Coulomb’s law is a quantitative statement about the force between two
point charges. When the linear size of charged bodies are much smaller
than the distance separating them, the size may be ignored and the

charged bodies are treated as point charges. Coulomb measured the force
between two point charges and found that it varied inversely as the square
of the distance between the charges and was directly

proportional to the product of the magnitude of the two charges and

acted along the line joining the two charges. Thus, if two point charges g , ¢
are separated by a distance » in vacuum, the magnitude of the 1

2

force (F) between them is given by



(1.1)
2

r
How did Coulomb arrive at this law from his experiments? Coulomb

used a torsion balance* for measuring the force between two charged
metallic

* A torsion balance is a sensitive device to measure force. It was also used
later by Cavendish to measure the very feeble gravitational force between
two objects, 10

to verify Newton’s Law of Gravitation.

LY
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spheres. When the separation between two spheres is much
larger than the radius of each sphere, the charged spheres
may be regarded as point charges. However, the charges
on the spheres were unknown, to begin with. How then
could he discover a relation like Eq. (1.1)? Coulomb

thought of the following simple way: Suppose the charge



on a metallic sphere is g. If the sphere is put in contact
with an identical uncharged sphere, the charge will spread
over the two spheres. By symmetry, the charge on each
sphere will be g/2*. Repeating this process, we can get
charges ¢g/2, q/4, etc. Coulomb varied the distance for a
fixed pair of charges and measured the force for different
CHARLES AUGUSTIN DE COULOMB

separations. He then varied the charges in pairs, keeping
the distance fixed for each pair. Comparing forces for
Charles Augustin de

different pairs of charges at different distances, Coulomb
Coulomb (1736 — 1806)

arrived at the relation, Eq. (1.1).

Coulomb, a French

Coulomb’s law, a simple mathematical statement,
physicist, began his career

as a military engineer in

was initially experimentally arrived at in the manner

the West Indies. In 1776, he

described above. While the original experiments



returned to Paris and

established it at a macroscopic scale, it has also been
retired to a small estate to

established down to subatomic level ( 7 ~ 10-10 m).

do his scientific research.

Coulomb discovered his law without knowing the

He invented a torsion

explicit magnitude of the charge. In fact, it is the other
balance to measure the

way round: Coulomb’s law can now be employed to
quantity of a force and used

furnish a definition for a unit of charge. In the relation,

it for determination of

Eq. (1.1), k 1s so far arbitrary. We can choose any positive
forces of electric attraction

value of k. The choice of k£ determines the size of the unit
or repulsion between small

charged spheres. He thus

of charge. In SI units, the value of & is about 9 x 109.

arrived in 1785 at the



The unit of charge that results from this choice is called
inverse square law relation,

a coulomb which we defined earlier in Section 1.4.
now known as Coulomb’s

Putting this value of £ in Eq. (1.1), we see that for

law. The law had been

g=qg=1C,r=1m

1

1

2

anticipated by Priestley and
73

F=9x109N

also by Cavendish earlier,
though Cavendish never

6

That is, 1 C is the charge that when placed at a

published his results.



—1

distance of 1 m from another charge of the same
Coulomb also found the

8

magnitude in vacuum experiences an electrical force of
inverse square law of force

0

repulsion of magnitude 9 x 109 N. One coulomb is

6

between unlike and like

)

evidently too big a unit to be used. In practice, in
magnetic poles.

electrostatics, one uses smaller units like 1 mC or 1 pC.
The constant k£ in Eq. (1.1) is usually put as

k = 1/4ne for later convenience, so that Coulomb’s law is written as
0

1

q9



¢ 1s called the permittivity of free space . The value of € in SI units is 0
0

e=28.854 x 10-12 C2 N-1m-2

0

* Implicit in this 1s the assumption of additivity of charges and
conservation: 11

two charges ( ¢/2 each) add up to make a total charge g.
Physics

Since force is a vector, it is better to write

Coulomb’s law in the vector notation. Let the

position vectors of charges ¢ and g be r and r

1

2



2

respectively [see Fig.1.6(a)]. We denote force on
g due to g by F and force on g due to g by 1

2

12

2

1

F . The two point charges g and ¢ have been

21

1

2

numbered 1 and 2 for convenience and the vector
leading from 1 to 2 is denoted by r :

21

1
In the same way, the vector leading from 2 to

1 is denoted by r :



2

21

The magnitude of the vectors r and r is

21

12

denoted by r and 7, respectively ( # =r). The 21
12

12

21

direction of a vector is specified by a unit vector
along the vector. To denote the direction from 1
to 2 (or from 2 to 1), we define the unit vectors:
FIGURE 1.6 (a) Geometry and

r

21



(b) Forces between charges.
=r
r

12

12

21

12

r

21

12

Coulomb’s force law between two point charges g and g located at 1

2



r and r is then expressed as
1

2

21

21

(1.3)

dme

0
21

Some remarks on Eq. (1.3) are relevant:



* Equation (1.3) 1s valid for any sign of ¢ and g whether positive or 1

2

negative. If g and ¢ are of the same sign (either both positive or both 1
2

negative), F is along "r

, which denotes repulsion, as it should be for

21

21

like charges. If g and g are of opposite signs, F is along —"r (="r), 1
2

21

21

12

which denotes attraction, as expected for unlike charges. Thus, we do
not have to write separate equations for the cases of like and unlike
charges. Equation (1.3) takes care of both cases correctly [Fig. 1.6(b)].
* The force F on charge g due to charge ¢ , is obtained from Eq. (1.3), 12
1

2

by simply interchanging 1 and 2, i.e.,



12

21

4ne

r

0

12

Thus, Coulomb’s law agrees with the Newton’s third law.

* Coulomb’s law [Eq. (1.3)] gives the force between two charges g and

1



g in vacuum. If the charges are placed in matter or the intervening

2

space has matter, the situation gets complicated due to the presence
of charged constituents of matter. We shall consider electrostatics in
12

matter in the next chapter.
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Example 1.4 Coulomb’s law for electrostatic force between two point
charges and Newton’s law for gravitational force between two
stationary point masses, both have inverse-square dependence on

the distance between the charges/masses. (a) Compare the strength

of these forces by determining the ratio of their magnitudes (i) for an
electron and a proton and (i1) for two protons. (b) Estimate the
accelerations of electron and proton due to the electrical force of their
mutual attraction when they are 1 A (= 10-10 m) apart? (m = 1.67 x
P

1027 kg, m=9.11 x 10-31 kg)

e

Solution



(a) (1) The electric force between an electron and a proton at a distance

http://webphysics.davidson.edu/physlet resources/bu_semester2/col coulo
mb.html

Interactive animation on Coulomb’s law:
r apart is:

2

dre r

0

where the negative sign indicates that the force is attractive. The
corresponding gravitational force (always attractive) is:

m

m



2

r

where m and m are the masses of a proton and an electron
'z

e

respectively.

2

F

39

=2.4x10

4¢

Tt Gm m



p

e
(i1) On similar lines, the ratio of the magnitudes of electric force
to the gravitational force between two protons at a distance r
apart is :

2

F

4 ¢
T
1.3 x 1036

Gmm



p

However, it may be mentioned here that the signs of the two forces
are different. For two protons, the gravitational force is attractive
in nature and the Coulomb force is repulsive . The actual values

of these forces between two protons inside a nucleus (distance
between two protons is ~ 10-15 m inside a nucleus) are F'~ 230 N
e

whereas /'~ 1.9 x 10-34 N.

G

The (dimensionless) ratio of the two forces shows that electrical
forces are enormously stronger than the gravitational forces.

(b) The electric force F exerted by a proton on an electron is same in
magnitude to the force exerted by an electron on a proton; however
the masses of an electron and a proton are different. Thus, the
magnitude of force is

2

1

e

F| =

2 =28.987 x 109 Nm2/C2 x (1.6 x10-19C)2 / (10—-10m)2



dner
0
=23 x10-8N

Using Newton’s second law of motion, F' = ma, the acceleration that an
electron will undergo is @ =2.3x10-8 N/ 9.11 x10-31 kg =2.5 x 1022
m/s2

E

Comparing this with the value of acceleration due to gravity, we
XAMPLE

can conclude that the effect of gravitational field is negligible on
the motion of electron and it undergoes very large accelerations
under the action of Coulomb force due to a proton.

14

The value for acceleration of the proton is

23 x 108N 1.67 x 10-27 kg = 1.4 x 1019 ms2

13
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Example 1.5 A charged metallic sphere A is suspended by a nylon
thread. Another charged metallic sphere B held by an insulating
handle is brought close to A such that the distance between their
centres is 10 cm, as shown in Fig. 1.7(a). The resulting repulsion of A
is noted (for example, by shining a beam of light and measuring the
deflection of its shadow on a screen). Spheres A and B are touched
by uncharged spheres C and D respectively, as shown in Fig. 1.7(b).
C and D are then removed and B is brought closer to A to a
distance of 5.0 cm between their centres, as shown in Fig. 1.7(c).
What is the expected repulsion of A on the basis of Coulomb’s law?
Spheres A and C and spheres B and D have identical sizes. Ignore
the sizes of A and B in comparison to the separation between their
centres.

1.5

XAMPLE

14

E

FIGURE 1.7
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Solution Let the original charge on sphere A be g and that on B be ¢'. Ata
distance r between their centres, the magnitude of the electrostatic force on
each is given by 1

!

949

F=

2

4 ¢

T

r

0

neglecting the sizes of spheres A and B in comparison to . When an
identical but uncharged sphere C touches A, the charges redistribute
on A and C and, by symmetry, each sphere carries a charge g/2.
Similarly, after D touches B, the redistributed charge on each is

q'/2. Now, if the separation between A and B is halved, the magnitude
of the electrostatic force on each is

E

XAMPLE

1



(q/2)(q'/2)
1

(qq")

F'=

4 ¢

(r/2)

4ne

r

0

0

1.5

Thus the electrostatic force on A, due to B, remains unaltered.
1.7 FORCES BETWEEN MULTIPLE CHARGES

The mutual electric force between two charges is given

by Coulomb’s law. How to calculate the force on a



charge where there are not one but several charges
around? Consider a system of » stationary charges
q.9,.4,...,q1invacuum. What is the force on ¢ due 1
2

3

n

1

tog,q, ..,q ? Coulomb’s law is not enough to answer 2
3

n

this question. Recall that forces of mechanical origin
add according to the parallelogram law of addition. Is
the same true for forces of electrostatic origin?
Experimentally it is verified that force on any

charge due to a number of other charges is the vector
sum of all the forces on that charge due to the other
charges, taken one at a time. The individual forces
are unaffected due to the presence of other charges.
This is termed as the principle of superposition.

To better understand the concept, consider a



system of three charges ¢ ¢ and ¢ , as shown in

1,

2

3

Fig. 1.8(a) . The force on one charge, say ¢ , due to two
1

other charges ¢ , g can therefore be obtained by

2

3

performing a vector addition of the forces due to each
one of these charges. Thus, if the force on g due to ¢

1

2

is denoted by F, F is given by Eq. (1.3) even though
12

12

other charges are present.

1

q9
Thus, F



12

12

12

dme

12

In the same way, the force on ¢ due to ¢ , denoted
1

3

FIGURE 1.8 A system of (a) three

by F, is given by

13

charges (b) multiple charges.

1

q49
13



13

13

15

0

13

Physics

which again is the Coulomb force on g due to g , even though other 1
3

charge ¢ is present.

2

Thus the total force F on ¢ due to the two charges g and g 1s 1

1

2



3
given as

1

99
|

949
12
13
F=F
+F=
r+

A

r
1
12
13
2
12
2
13

dme



4¢

(1.4)

0

12

0

13

The above calculation of force can be generalised to a system of

charges more than three, as shown in Fig. 1.8(b).

The principle of superposition says that in a system of charges ¢ ,

1

q, ..., q,the force on g due to ¢ is the same as given by Coulomb’s law, 2
n

1

2

1.e., it is unaffected by the presence of the other charges ¢, ¢, ..., ¢ . The 3

4

n



total force F on the charge ¢ , due to all other charges, is then given by 1
1

the vector sum of the forces F, F, ..., F:

12

13

ln

1.e.,

99

q949

12

13

F=F+F+.+F



r+..

12

13

In

12

13



12
13

I n

21

(1.5)



T
r

0i=211

The vector sum is obtained as usual by the parallelogram law of
addition of vectors. All of electrostatics is basically a consequence of
Coulomb’s law and the superposition principle.

Example 1.6 Consider three charges g , g , g each equal to g at the 1
2

3

vertices of an equilateral triangle of side /. What is the force on a

charge Q (with the same sign as g) placed at the centroid of the triangle, as
shown in Fig. 1.9?

FIGURE 1.9

1.6

Solution In the given equilateral triangle ABC of sides of length /, if we
draw a perpendicular AD to the side BC, XAMPLE

AD =AC cos 30°= (3 /2) [ and the distance AO of the centroid O
16

E



from A 1s (2/3) AD =(1/3 ) [. By symmatry AO = BO = CO.
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Thus,

3

Qq

Force F on Q due to charge g at A =

along AO

1

2

4 ¢

3

Qg

Force F on Q due to charge g at B =

2



along BO

[

0

3

Qq

Force F on Q due to charge g at C =
3

2

4 ¢

T

along CO

[

0

3

Qq

The resultant of forces F and F is
2

3



4¢

T

along OA, by the

[

0

3

Qq (r—"r)

parallelogram law. Therefore, the total force on Q =
2

4¢

E

XAMPLE

=0, where ~

r is the unit vector along OA.

It is clear also by symmetry that the three forces will sum to zero.

Suppose that the resultant force was nonzero but in some direction.

1.6



Consider what would happen if the system was rotated through 60°
about O.

Example 1.7 Consider the charges ¢, ¢, and — g placed at the vertices of an
equilateral triangle, as shown in Fig. 1.10. What is the force on each
charge?

FIGURE 1.10

Solution The forces acting on charge g at A due to charges g at B

and — g at C are F along BA and F along AC respectively, as shown 12
13

in Fig. 1.10. By the parallelogram law, the total force F on the charge 1
g at A is given by

F = F "r where “r is a unit vector along BC.

1

1
1
The force of attraction or repulsion for each pair of charges has the
E

XAMPLE



same magnitude F =

2

4nel

0

1.7

The total force F on charge g at Bisthus F=F"
r, where 'ris a

2

2

2

2

unit vector along AC.

17
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Similarly the total force on charge —gat Cis F=3 F"
n , where *

nis

3

the unit vector along the direction bisecting the ZBCA.



It is interesting to see that the sum of the forces on the three charges
1S zero, 1.€.,

1.7

F+F+F=0

1

2

3

The result is not at all surprising. It follows straight from the fact
that Coulomb’s law is consistent with Newton’s third law. The proof
XAMPLE

E

is left to you as an exercise.

1.8 ELECTRIC FIELD

Let us consider a point charge Q placed in vacuum, at the origin O. If we
place another point charge g at a point P, where OP = r, then the charge QO

will exert a force on ¢g as per Coulomb’s law. We may ask the question: If
charge ¢ is removed, then what is left in the surrounding? Is there nothing?
If there 1s nothing at the point P, then how does a force act

when we place the charge ¢ at P. In order to answer such questions, the
early scientists introduced the concept of field. According to this, we say
that the charge Q produces an electric field everywhere in the surrounding.

When another charge ¢ is brought at some point P, the field there acts on it
and produces a force. The electric field produced by the charge Q at a point



r is given as E (r)

1

dmte

(1.6)

r
4¢
nr
0

0

where “r = r/r, is a unit vector from the origin to the point r. Thus, Eq.(1.6)
specifies the value of the electric field for each value of the position vector
r. The word “field” signifies how some distributed quantity (which could be
a scalar or a vector) varies with position. The effect of the charge has been
incorporated in the existence of the electric field. We obtain the



force F exerted by a charge O on a charge ¢, as

(1.7)

dne r
0
Note that the charge g also exerts an equal and opposite force on the

charge Q. The electrostatic force between the charges O and ¢ can be
looked upon as an interaction between charge g and the electric field of O
and vice versa. 1If we denote the position of charge g by the vector r, it
experiences a force F equal to the charge g multiplied by the electric field E
at the location of g. Thus, F(r) = g E(r)

(1.8)
Equation (1.8) defines the SI unit of electric field as N/C*.
Some important remarks may be made here:

(1) From Eq. (1.8), we can infer that if g is unity, the electric field due to a
charge Q is numerically equal to the force exerted by it. Thus, the FIGURE
1.11 Electric



field (a) due to a

electric field due to a charge Q at a point in space may be defined charge Q,
(b) due to a as the force that a unit positive charge would experience if
placed

charge —Q.

18

* An alternate unit V/m will be introduced in the next chapter.
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at that point. The charge O, which is producing the electric field, is called a
source charge and the charge g, which tests the effect of a source charge, is
called a test charge. Note that the source charge O

must remain at its original location. However, if a charge ¢ is brought at any
point around Q, Q itself is bound to experience an electrical force due to ¢
and will tend to move. A way out of this difficulty is to make ¢ negligibly
small. The force F is then negligibly small but the ratio F/ g is finite and
defines the electric field: [ F)

E=Ilim]| |

(1.9)

g—0\q)

A practical way to get around the problem (of keeping Q undisturbed
in the presence of g) is to hold Q to its location by unspecified forces!
This may look strange but actually this is what happens in practice.

When we are considering the electric force on a test charge g due to a



charged planar sheet (Section 1.15), the charges on the sheet are held to
their locations by the forces due to the unspecified charged constituents
inside the sheet.

(i1) Note that the electric field E due to Q, though defined operationally in
terms of some test charge ¢, 1s independent of g. This is because F is
proportional to g, so the ratio F/ g does not depend on g. The force F on the
charge g due to the charge O depends on the particular location of charge ¢
which may take any value in the space around the charge Q. Thus, the
electric field E due to Q is also dependent on the space coordinate r. For
different positions of the charge ¢ all over the space , we get different
values of electric field E. The field exists at every point in three-
dimensional space.

(111) For a positive charge, the electric field will be directed radially
outwards from the charge. On the other hand, if the source charge is
negative, the electric field vector, at each point, points radially inwards.
(iv) Since the magnitude of the force F on charge ¢ due to charge O

depends only on the distance r of the charge g from charge O, the
magnitude of the electric field E will also depend only on the distance .
Thus at equal distances from the charge Q, the magnitude of its electric
field E is same. The magnitude of electric field E due to a point charge is
thus same on a sphere with the point charge at its centre; in other words, it
has a spherical symmetry.

1.8.1 Electric field due to a system of charges
Consider a system of charges ¢ , g , ..., ¢ with position vectors r , 1

2

n



1

r, ..., rrelative to some origin O. Like the electric field at a point in 2
n

space due to a single charge, electric field at a point in space due to the
system of charges is defined to be the force experienced by a unit

test charge placed at that point, without disturbing the original
positions of charges g , ¢ , ..., ¢ . We can use Coulomb’s law and the 1
2

n

superposition principle to determine this field at a point P denoted by
19

position vector r.
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Electric field E at r due to g at r is given by 1

1

1



1P

dne r

0

1P

where “r is a unit vector in the direction from ¢ to P,
1P

1

and r 1s the distance between g and P.

1P

1

In the same manner, electric field E at r due to g at



2P

dne r

0

2P

where “r is a unit vector in the direction from ¢ to P
2P

2

and 7 is the distance between g and P. Similar
FIGURE 1.12 Electric field at a

2P

2

point due to a system of charges is

expressions hold good for fields E , E , ..., E due to
3

4



n
the vector sum of the electric fields
chargesgq,q,....,q .

3

4

n

at the point due to individual

By the superposition principle, the electric field E at r
charges.

due to the system of charges is (as shown in Fig. 1.12)
E@)=E(r)+E(@)+...+E()1

2

n



1P

2P

nP

4ne r

4ne r

dne r

1P



2P

nP

E(r) =

>r
(1.10)

1P

dme

071

iP

E is a vector quantity that varies from one point to another point in space
and is determined from the positions of the source charges.

1.8.2 Physical significance of electric field



You may wonder why the notion of electric field has been introduced
here at all. After all, for any system of charges, the measurable quantity
is the force on a charge which can be directly determined using Coulomb’s
law and the superposition principle [Eq. (1.5)]. Why then introduce this
intermediate quantity called the electric field?

For electrostatics, the concept of electric field is convenient, but not
really necessary. Electric field is an elegant way of characterising the
electrical environment of a system of charges. Electric field at a point in
the space around a system of charges tells you the force a unit positive
test charge would experience if placed at that point (without disturbing
the system). Electric field is a characteristic of the system of charges and
is independent of the test charge that you place at a point to determine

the field. The term field in physics generally refers to a quantity that is
defined at every point in space and may vary from point to point. Electric
field is a vector field, since force is a vector quantity.

The true physical significance of the concept of electric field, however,

emerges only when we go beyond electrostatics and deal with time-
dependent electromagnetic phenomena. Suppose we consider the force

between two distant charges g , ¢ in accelerated motion. Now the greatest 1

2

speed with which a signal or information can go from one point to another



20

is ¢, the speed of light. Thus, the effect of any motion of ¢ on g cannot 1
2
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arise instantaneously. There will be some time delay between the effect
(force on ¢ ) and the cause (motion of g ). It is precisely here that the 2

1

notion of electric field (strictly, electromagnetic field) is natural and very
useful. The field picture is this: the accelerated motion of charge q 1
produces electromagnetic waves, which then propagate with the speed

¢, reach q and cause a force on g . The notion of field elegantly accounts 2
2

for the time delay. Thus, even though electric and magnetic fields can be
detected only by their effects (forces) on charges, they are regarded as
physical entities, not merely mathematical constructs. They have an

independent dynamics of their own, i.e., they evolve according to laws of
their own. They can also transport energy. Thus, a source of time-dependent
electromagnetic fields, turned on briefly and switched off, leaves behind
propagating electromagnetic fields transporting energy. The

concept of field was first introduced by Faraday and is now among the



central concepts in physics.

Example 1.8 An electron falls through a distance of 1.5 cm in a
uniform electric field of magnitude 2.0 x 104 N C-1 [Fig. 1.13(a)]. The
direction of the field is reversed keeping its magnitude unchanged

and a proton falls through the same distance [Fig. 1.13(b)]. Compute
the time of fall in each case. Contrast the situation with that of ‘free

fall under gravity’.

FIGURE 1.13

Solution In Fig. 1.13(a) the field is upward, so the negatively charged

electron experiences a downward force of magnitude e£ where E is the
magnitude of the electric field. The acceleration of the electron is a = eE/ m

e
e

where m 1s the mass of the electron.

e

Starting from rest, the time required by the electron to fall through a
2 h

2hme

distance /4 is given by ¢ =



ek

e

Fore=1.6 x 10-19C, m =9.11 x 10-31 kg,

e

E=20x104NC-1,h=1.5%10-2m,

t=2.9x%x10-9s

e

In Fig. 1.13 (b), the field is downward, and the positively charged
E

proton experiences a downward force of magnitude eE . The
XAMPLE

acceleration of the proton is

a=eE/ m

p

pP
1.8

where m 1s the mass of the proton; m = 1.67 x 10-27 kg. The time of p

p

fall for the proton is



21
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2h

2hmp

=1.3x10s

el

p

Thus, the heavier particle (proton) takes a greater time to fall through

the same distance. This i1s in basic contrast to the situation of ‘free

fall under gravity’ where the time of fall is independent of the mass of

the body. Note that in this example we have ignored the acceleration

due to gravity in calculating the time of fall. To see if this is justified,

let us calculate the acceleration of the proton in the given electric

field:



mp
-19

4

1

(1.6x10
C)x(2.0x10

NC-)

27
16

LT x 10—



x 10
msS
1.8

which is enormous compared to the value of g (9.8 m s—2), the acceleration
due to gravity. The acceleration of the electron is even XAMPLE

greater. Thus, the effect of acceleration due to gravity can be ignored
E

in this example.

Example 1.9 Two point charges ¢ and ¢ , of magnitude +10-8 C and 1
2

—10-8 C, respectively, are placed 0.1 m apart. Calculate the electric
fields at points A, B and C shown in Fig. 1.14.

FIGURE 1.14

Solution The electric field vector E at A due to the positive charge 1A

g points towards the right and has a magnitude
1

9



(910 Nm C) (10—

C)

=3.6 x 104 N C-1

1A

2

(0.05 m)

The electric field vector E at A due to the negative charge g points 2A
2

1.9

towards the right and has the same magnitude. Hence the magnitude
of the total electric field £ at A is

A

E=E+E=72x%x104N C-1

A

1A

2A



XAMPLE

E is directed toward the right.
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The electric field vector E at B due to the positive charge g points 1B
1

towards the left and has a magnitude
9

2

-2

8

(910 Nm C ) (10—

C)



=3.6 x 104 N C-1

1B

2

(0.05 m)

The electric field vector E at B due to the negative charge g points 2B
2

towards the right and has a magnitude
9

2

-2

8

(910 Nm C ) (10—

9

=4 x 103 N C-1
2B

2



(0.15 m)

The magnitude of the total electric field at B is
E=E—-E=32x104N C-1

B

1B

2B

E is directed towards the left.

B

The magnitude of each electric field vector at point C, due to charge
g and q is

1

2

2
-8
(9 x 10 Nm C ) x (10 C)
E

=K



=9 x 103 N C-1

1C

2C

2

(0.10 m)

E

The directions in which these two vectors point are indicated in
XAMPLE

Fig. 1.14. The resultant of these two vectors is
T

T

E=FE cos

+ E cos

=9 x 103 N C-1

1.9

C



E points towards the right.

C

1.9 ELECTRIC FIELD LINES

We have studied electric field in the last section. It is a vector quantity
and can be represented as we represent vectors. Let us try to represent E
due to a point charge pictorially. Let the point charge be placed at the
origin. Draw vectors pointing along the direction of the electric field with
their lengths proportional to the strength of the field at

each point. Since the magnitude of electric field at a point

decreases inversely as the square of the distance of that

point from the charge, the vector gets shorter as one goes

away from the origin, always pointing radially outward.

Figure 1.15 shows such a picture. In this figure, each

arrow indicates the electric field, i.e., the force acting on a

unit positive charge, placed at the tail of that arrow.

Connect the arrows pointing in one direction and the

resulting figure represents a field line. We thus get many

field lines, all pointing outwards from the point charge.

Have we lost the information about the strength or

magnitude of the field now, because it was contained in



the length of the arrow? No. Now the magnitude of the
field is represented by the density of field lines. E is strong
near the charge, so the density of field lines is more near

the charge and the lines are closer. Away from the charge, FIGURE 1.15
Field of a point charge.

the field gets weaker and the density of field lines is less,

resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not

23

important. In fact, an infinite number of lines can be drawn in any region.
Physics

It is the relative density of lines in different regions which is

important.

We draw the figure on the plane of paper, i.e., in two-dimensions but we
live in three-dimensions. So if one wishes

to estimate the density of field lines, one has to consider the
number of lines per unit cross-sectional area, perpendicular
to the lines. Since the electric field decreases as the square of
the distance from a point charge and the area enclosing the
charge increases as the square of the distance, the number

of field lines crossing the enclosing area remains constant,



whatever may be the distance of the area from the charge.

We started by saying that the field lines carry information

about the direction of electric field at different points in space.
FIGURE 1.16 Dependence of

Having drawn a certain set of field lines, the relative density

electric field strength on the

(i.e., closeness) of the field lines at different points indicates

distance and its relation to the

the relative strength of electric field at those points. The field

number of field lines.

lines crowd where the field is strong and are spaced apart

where it is weak. Figure 1.16 shows a set of field lines. We

can imagine two equal and small elements of area placed at points R and
S normal to the field lines there. The number of field lines in our picture
cutting the area elements is proportional to the magnitude of field at
these points. The picture shows that the field at R is stronger than at S.
To understand the dependence of the field lines on the area, or rather

the solid angle subtended by an area element, let us try to relate the area
with the solid angle, a generalization of angle to three dimensions.

Recall how a (plane) angle is defined in two-dimensions. Let a small



transverse line element A / be placed at a distance  from a point O. Then
the angle subtended by A/ at O can be approximated as AO =A// r.

Likewise, in three-dimensions the solid angle* subtended by a small

perpendicular plane area A S, at a distance 7, can be written as AQ=A S/ r
2. We know that in a given solid angle the number of radial field lines is the
same. In Fig. 1.16, for two points P and P at distances 1

2

r and r from the charge, the element of area subtending the solid angle 1
2

AQ is 2

r AQ at P and an element of area 2

r AQ at P, respectively. The

1

1

2

2

number of lines (say n) cutting these area elements are the same. The
number of field lines, cutting unit area element is therefore n/( 2

r AQ) at

1

P and n/( 2



r AQ) at P, respectively. Since n and ACQ are common, the

1

2

2

strength of the field clearly has a 1/ » 2 dependence.

The picture of field lines was invented by Faraday to develop an
intuitive non-mathematical way of visualizing electric fields around
charged configurations. Faraday called them lines of force. This term is
somewhat misleading, especially in case of magnetic fields. The more

appropriate term is field lines (electric or magnetic) that we have adopted
in this book.

Electric field lines are thus a way of pictorially mapping the electric
field around a configuration of charges. An electric field line is, in general,

* Solid angle is a measure of a cone. Consider the intersection of the given
cone with a sphere of radius R. The solid angle AQ of the cone 1s defined to
be equal 24

to AS/R 2, where A S is the area on the sphere cut out by the cone.
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a curve drawn in such a way that the tangent to it at each

point is in the direction of the net field at that point. An



arrow on the curve is obviously necessary to specify the
direction of electric field from the two possible directions
indicated by a tangent to the curve. A field line is a space
curve, 1.e., a curve in three dimensions.

Figure 1.17 shows the field lines around some simple
charge configurations. As mentioned earlier, the field lines
are in 3-dimensional space, though the figure shows them
only in a plane. The field lines of a single positive charge
are radially outward while those of a single negative
charge are radially inward. The field lines around a system
of two positive charges ( ¢, g) give a vivid pictorial
description of their mutual repulsion, while those around
the configuration of two equal and opposite charges
(¢g,—q), adipole, show clearly the mutual attraction
between the charges. The field lines follow some important
general properties:

(1) Field lines start from positive charges and end at
negative charges. If there is a single charge, they may

start or end at infinity.

(11) In a charge-free region, electric field lines can be taken



to be continuous curves without any breaks.

(i11) Two field lines can never cross each other. (If they did,
the field at the point of intersection will not have a

unique direction, which is absurd.)

(iv) Electro static field lines do not form any closed loops.
This follows from the conservative nature of electric

field (Chapter 2).

1.10 ELECTRIC FLUX

Consider flow of a liquid with velocity v, through a small
flat surface d S, in a direction normal to the surface. The
rate of flow of liquid is given by the volume crossing the

area per unit time v d S and represents the flux of liquid flowing across the
plane. If the normal to the surface is not parallel to the direction of flow of
liquid, i.e., to v, but makes an angle 0 with it, the projected area in a plane
perpendicular to v is v d S cos 0. Therefore the flux going out of the surface
dSisv.”

ndS.

For the case of the electric field, we define an
analogous quantity and call it electric flux.

We should however note that there 1s no flow of a
physically observable quantity unlike the case of liquid

flow.



In the picture of electric field lines described above,
FIGURE 1.17 Field lines due to

we saw that the number of field lines crossing a unit area,
some simple charge configurations.

placed normal to the field at a point is a measure of the
25

strength of electric field at that point. This means that if
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we place a small planar element of area A S
normal to E at a point, the number of field lines
crossing it is proportional* to £ A S. Now
suppose we tilt the area element by angle 0.
Clearly, the number of field lines crossing the

area element will be smaller. The projection of



the area element normal to £ 1s A S cos6. Thus,

the number of field lines crossing A S is

proportional to £ A S cosf. When 6 =90°, field

lines will be parallel to A S and will not cross it

at all (Fig. 1.18).

The orientation of area element and not

merely its magnitude is important in many

contexts. For example, in a stream, the amount

of water flowing through a ring will naturally

depend on how you hold the ring. If you hold

it normal to the flow, maximum water will flow

FIGURE 1.18 Dependence of flux on the

through it than if you hold it with some other

inclination 0 between E and "n .

orientation. This shows that an area element

should be treated as a vector. It has a

magnitude and also a direction. How to specify the direction of a planar
area? Clearly, the normal to the plane specifies the orientation of the
plane. Thus the direction of a planar area vector is along its normal.

How to associate a vector to the area of a curved surface? We imagine



dividing the surface into a large number of very small area elements.
Each small area element may be treated as planar and a vector associated
with it, as explained before.

Notice one ambiguity here. The direction of an area element is along

its normal. But a normal can point in two directions. Which direction do
we choose as the direction of the vector associated with the area element?
This problem is resolved by some convention appropriate to the given
context. For the case of a closed surface, this convention is very simple.
The vector associated with every area element of a closed surface is taken

to be in the direction of the outward normal. This is the convention used in
Fig. 1.19. Thus, the area element vector AS at a point on a closed surface
equals AS”

n where A S is the magnitude of the area element and

n is a unit vector in the direction of outward normal at that point.

We now come to the definition of electric flux. Electric flux A¢ through
an area element AS is defined by

Ap=E.AS=FE A S cosf

(1.11)

which, as seen before, is proportional to the number of field lines cutting



the area element. The angle 6 here is the angle between E and AS. For a
closed surface, with the convention stated already, 0 1s the angle between E
and the outward normal to the area element. Notice we could look at

FIGURE 1.19

the expression £ A S cos0 in two ways: E (A S cos0 ) 1.e., E times the
Convention for defining normal

A

nand A S.

* [t will not be proper to say that the number of field lines is equal to EA S.
The number of field lines is after all, a matter of how many field lines we
choose to draw. What is physically significant is the relative number of field
lines crossing 26

a given area at different points.
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projection of area normal to E, or EL A S, i.e., component of E along the
normal to the area element times the magnitude of the area element. The
unit of electric flux is N C—1 m2.

The basic definition of electric flux given by Eq. (1.11) can be used, in
principle, to calculate the total flux through any given surface. All we
have to do is to divide the surface into small area elements, calculate the
flux at each element and add them up. Thus, the total flux ¢ through a
surface S 1s

¢o~2XE.AS



(1.12)
The approximation sign is put because the electric field E is taken to
be constant over the small area element. This is mathematically exact

only when you take the limit A S — 0 and the sum in Eq. (1.12) is written as
an integral.

1.11 ELECTRIC DIPOLE

An electric dipole is a pair of equal and opposite point charges g and — ¢,
separated by a distance 2 a. The line connecting the two charges defines a
direction in space. By convention, the direction from — ¢ to g 1s said to be
the direction of the dipole. The midpoint of locations of — g and g is called
the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not
mean that the field of the electric dipole is zero. Since the charge g and

— g are separated by some distance, the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipole ( » >> 2 a), the fields due
to g and — g nearly cancel out. The electric field due to a dipole therefore
falls off, at large distance, faster than like 1/ » 2 (the dependence on r of the
field due to a single charge g). These qualitative ideas are borne out by the
explicit calculation as follows: 1.11.1 The field of an electric dipole

The electric field of the pair of charges (— g and ¢) at any point in space can
be found out from Coulomb’s law and the superposition principle.

The results are simple for the following two cases: (i) when the point is on

the dipole axis, and (i1) when it is in the equatorial plane of the dipole, i.e.,
on a plane perpendicular to the dipole axis through its centre. The electric
field at any general point P is obtained by adding the electric

fields E due to the charge — g and E due to the charge ¢, by the



—q

Tq

parallelogram law of vectors.
(i) For points on the axis

Let the point P be at distance » from the centre of the dipole on the side of
the charge ¢, as shown in Fig. 1.20(a). Then ¢

E

q
2

Ane (r+a)

[1.13(a)]

0

where ~

p is the unit vector along the dipole axis (from — g to g). Also ¢

E



q
2

[1.13(b)]
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The total field at P 1s

q



dne|(r—a)

(r+a)

dar

22

dre



(1.14)

(r>>a)
(1.15)

dner

0

(ii) For points on the equatorial plane

The magnitudes of the electric fields due to the two

charges + g and — g are given by

q
|



tq

e r +

[1.16(a)]

2

4re r +

[1.16(b)]

a

0

FIGURE 1.20 Electric field of a dipole and are equal.

at (a) a point on the axis, (b) a point



The directions of E and E are as shown in
+q
—q

on the equatorial plane of the dipole. Fig. 1.20(b). Clearly, the components
normal to the dipole p is the dipole moment vector of axis cancel away. The
components along the dipole axis

magnitude p = ¢ %X 2 a and
add up. The total electric field is opposite to
p . We have
directed from — g to g.
=—(E+E)cosdp

Tq

Y
2

23/2
(1.17)

4dne(r+a)



o

At large distances ( » >> a), this reduces to

2qa
E=—

p
(r>>a)
3

(1.18)
drer
0

From Egs. (1.15) and (1.18), it is clear that the dipole field at large

distances does not involve g and a separately; it depends on the product ga.
This suggests the definition of dipole moment. The dipole moment vector p
of an electric dipole is defined by p=¢g x2a”

p
(1.19)

that is, it is a vector whose magnitude is charge g times the separation 2 a
(between the pair of charges g, — ¢g) and the direction is along the line from
— g to g. In terms of p, the electric field of a dipole at large distances takes
simple forms: At a point on the dipole axis



(r>>a)
(1.20)

dne r

0

At a point on the equatorial plane
E=—

P
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3

dne r

(r>>a)

(1.21)

0
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Notice the important point that the dipole field at large distances

falls off not as 1/ » 2 but as1/ r 3. Further, the magnitude and the direction
of the dipole field depends not only on the distance » but also on the angle
between the position vector r and the dipole moment p.

We can think of the limit when the dipole size 2 a approaches zero,
the charge g approaches infinity in such a way that the product

p =q * 2 ais finite. Such a dipole is referred to as a point dipole. For a
point dipole, Egs. (1.20) and (1.21) are exact, true for any 7.

1.11.2 Physical significance of dipoles

In most molecules, the centres of positive charges and of negative charges®
lie at the same place. Therefore, their dipole moment is zero. CO and

2

CH are of this type of molecules. However, they develop a dipole moment
4

when an electric field is applied. But in some molecules, the centres of
negative charges and of positive charges do not coincide. Therefore they
have a permanent electric dipole moment, even in the absence of an electric
field. Such molecules are called polar molecules. Water molecules, H O,

2

is an example of this type. Various materials give rise to interesting

properties and important applications in the presence or absence of



electric field.

Example 1.10 Two charges £10 pC are placed 5.0 mm apart.
Determine the electric field at (a) a point P on the axis of the dipole
15 cm away from its centre O on the side of the positive charge, as
shown in Fig. 1.21(a), and (b) a point Q, 15 cm away from O on a line
passing through O and normal to the axis of the dipole, as shown in
Fig. 1.21(b).

E

XAMPLE

1.10

FIGURE 1.21

* Centre of a collection of positive point charges is defined much the same
way

2.qr

ii

as the centre of mass:
I

r

cm



2. qi
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Solution (a) Field at P due to charge +10 uC
5

10— C

1

—12

4 (8.854 10
CN

m—



2

(15—10.25) x10

m

=4.13 x 106 N C-1 along BP
Field at P due to charge —10 uC
-5

10C

12



47 (8.854 x

10

CN

2

(15+0.25) x10

m

=3.86 x 106 N C-1 along PA

The resultant electric field at P due to the two charges at A and B is
=2.7 x 105 N C-1 along BP.

In this example, the ratio OP/OB is quite large (= 60). Thus, we can
expect to get approximately the same result as above by directly using
the formula for electric field at a far-away point on the axis of a dipole.

For a dipole consisting of charges + ¢, 2 a distance apart, the electric field
at a distance » from the centre on the axis of the dipole has a magnitude

2p



where p = 2 a g 1s the magnitude of the dipole moment.
The direction of electric field on the dipole axis is always along the

direction of the dipole moment vector (i.e., from — g to g). Here, p =10-5 C
X 5%x10-3 m=15 % 10-8 C m Therefore,

—8
2 x5x10

Cm

12



47 (8.854 <10

CNm—)

3

6

3

(15) x

=2.6 x 105N C-1

10

m

along the dipole moment direction AB, which is close to the result
obtained earlier.

(b) Field at Q due to charge + 10 uC at B
5

10—-C

1



12

2
47(8.854 x 10
CN

m

2

[15+(0.25) ] % 10

m

=3.99 x 106 N C-1 along BQ

Field at Q due to charge —10 uC at A

5



10—-C

—12

47 (8.854 x10

CN

m )

2

2

4

2

[15+(0.25)] x10 m

=3.99 x 106 N C—1 along QA.

Clearly, the components of these two forces with equal magnitudes



cancel along the direction OQ but add up along the direction parallel
to BA. Therefore, the resultant electric field at Q due to the two
charges at A and B is

0.25

% 3.99 x 10 N C along BA

2

2

15

+(0.25)

1.10

=1.33 x 105 N C-1 along BA.

As in (a), we can expect to get approximately the same result by
XAMPLE

directly using the formula for dipole field at a point on the normal to
30

E

the axis of the dipole:
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5 %10

Cm

XAMPLE

12



1
2

47 (8.854 x10
CN

m )

(15)x 10

m

=1.33 x 105 N C-1.

The direction of electric field in this case is opposite to the direction
1.10

of the dipole moment vector. Again the result agrees with that obtained
before.

1.12 DIPOLE IN A UNIFORM EXTERNAL FIELD

Consider a permanent dipole of dipole moment p in a uniform

external field E, as shown in Fig. 1.22. (By permanent dipole, we

mean that p exists irrespective of E; it has not been induced by E.) There is
a force gE on g and a force — gE on — g. The net force on the dipole is zero,



since E is uniform. However, the charges are separated, so the forces act at
different points, resulting in a torque

on the dipole. When the net force is zero, the torque (couple) is
independent of the origin. Its magnitude equals the magnitude of
FIGURE 1.22 Dipole in a

each force multiplied by the arm of the couple (perpendicular
uniform electric field.

distance between the two antiparallel forces).

Magnitude of torque = g E x 2 a sinf

=2gqa E sinb

Its direction is normal to the plane of the paper, coming out of it.

The magnitude of p x E is also p E sinf and its direction is normal to the
paper, coming out of it. Thus, t=p X E

(1.22)

This torque will tend to align the dipole with the field

E. When p is aligned with E, the torque is zero.

What happens if the field is not uniform? In that case,
the net force will evidently be nonzero. In addition there
will, in general, be a torque on the system as before. The

general case is involved, so let us consider the simpler



situations when p is parallel to E or antiparallel to E. In either case, the net
torque is zero, but there is a net force on the dipole if E 1s not uniform.

Figure 1.23 is self-explanatory. It is easily seen that

when p is parallel to E, the dipole has a net force in the

direction of increasing field. When p is antiparallel to E,

the net force on the dipole is in the direction of decreasing

field. In general, the force depends on the orientation of p

with respect to E.

This brings us to a common observation in frictional

electricity. A comb run through dry hair attracts pieces of

FIGURE 1.23 Electric force on a

paper. The comb, as we know, acquires charge through

dipole: (a) E parallel to p, (b) E

friction. But the paper is not charged. What then explains

antiparallel to p.
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the attractive force? Taking the clue from the preceding

Physics

discussion, the charged comb ‘polarizes’ the piece of paper, i.e., induces
a net dipole moment in the direction of field. Further, the electric field

due to the comb is not uniform. In this situation, it is easily seen that the



paper should move in the direction of the comb!

1.13 CONTINUOUS CHARGE DISTRIBUTION

We have so far dealt with charge configurations involving discrete charges
q,q,..,q.0nereason why we restricted to discrete charges is that the 1
2

n

mathematical treatment is simpler and does not involve calculus. For
many purposes, however, it is impractical to work in terms of discrete
charges and we need to work with continuous charge distributions. For
example, on the surface of a charged conductor, it is impractical to specify
the charge distribution in terms of the locations of the microscopic charged

constituents. It is more feasible to consider an area element A S (Fig. 1.24)
on the surface of the conductor (which is very small on the macroscopic
scale but big enough to include a very large number of electrons) and

specify the charge A Q on that element. We then define a surface charge
density o at the area element by QO



We can do this at different points on the conductor and thus arrive at
a continuous function o, called the surface charge density. The surface
charge density o so defined ignores the quantisation of charge and the

discontinuity in charge distribution at the microscopic level*. ¢ represents
macroscopic surface charge density, which in a sense, is a smoothed out
average of the microscopic charge density over an area element A S which,
as said before, 1s large microscopically but small macroscopically. The units
for ¢ are C/m2.

Similar considerations apply for a line charge distribution and a volume
FIGURE 1.24

charge distribution. The /inear charge density A of a wire 1s defined by
Definition of linear,

Q

surface and volume
A

A

(1.24)

[

charge densities.
In each case, the

where A/ is a small line element of wire on the macroscopic scale that,
element (A, AS, A V') however, includes a large number of microscopic



charged constituents,
chosen is small on

and A Q is the charge contained in that line element. The units for A are the
macroscopic

C/m. The volume charge density (sometimes simply called charge density)
scale but contains

1s defined in a similar manner:
a very large number

of microscopic

0

p
A

constituents.

A

(1.25)

14

where A Q is the charge included in the macroscopically small volume
element A V that includes a large number of microscopic charged
constituents. The units for p are C/m3.

The notion of continuous charge distribution is similar to that we



adopt for continuous mass distribution in mechanics. When we refer to

* At the microscopic level, charge distribution is discontinuous, because
they are 32

discrete charges separated by intervening space where there is no charge.
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the density of a liquid, we are referring to its macroscopic density. We
regard it as a continuous fluid and ignore its discrete molecular
constitution.

The field due to a continuous charge distribution can be obtained in
much the same way as for a system of discrete charges, Eq. (1.10). Suppose
a continuous charge distribution in space has a charge density p. Choose
any convenient origin O and let the position vector of any point in the
charge distribution be r. The charge density p may vary from point to

point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size A V. The charge in a volume element A V'is pA V.

Now, consider any general point P (inside or outside the distribution)

with position vector R (Fig. 1.24). Electric field due to the charge pA V'is
given by Coulomb’s law: 1

pAV

AE =



(1.26)

dmte

]/J

0

where 7' is the distance between the charge element and P, and "r’ is a unit
vector in the direction from the charge element to P. By the superposition
principle, the total electric field due to the charge

distribution 1s obtained by summing over electric fields due to different



volume elements:

(1.27)
all
V

(1%

A

!

r
0

Note that p, 7', “r" all can vary from point to point. In a strict mathematical
method, we should let A ¥—0 and the sum then becomes an integral; but
we omit that discussion here, for simplicity. In short,



using Coulomb’s law and the superposition principle, electric field can
be determined for any charge distribution, discrete or continuous or part
discrete and part continuous.

1.14 GAUSS’S LAW

As a simple application of the notion of electric flux, let us consider the

total flux through a sphere of radius », which encloses a point charge g at its
centre. Divide the sphere into small area elements, as shown in Fig. 1.25.

The flux through an area element AS is

q

Ap=EiAS=

ri AS

2

(1.28)

4 ¢

Tr

0

where we have used Coulomb’s law for the electric field due to a single
charge g. The unit vector

r is along the radius vector from the centre to

the area element. Now, since the normal to a sphere at every point is



along the radius vector at that point, the area element AS and "r have the
same direction. Therefore, ¢

FIGURE 1.25 Flux

Ap =

AS

through a sphere

2

dre r

(1.29)

0

enclosing a point

since the magnitude of a unit vector is 1.
charge ¢ at its centre.

The total flux through the sphere is obtained by adding up flux
33

through all the different area elements:
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q
o=

AS



all S

4ner
0
Since each area element of the sphere is at the same

distance » from the charge,

FIGURE 1.26 Calculation of the

2

flux of uniform electric field
4

all S

TEr



dne r

0

0

through the surface of a cylinder.

Now S, the total area of the sphere, equals 4w 2. Thus,

q
q
2
(P:

X4mr=

dner

(1.30)

0

0

Equation (1.30) is a simple illustration of a general result of
electrostatics called Gauss’s law.

We state Gauss s law without proof:

Electric flux through a closed surface S



= q/e

(1.31)

0

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is
zero 1f no charge is enclosed by the surface. We can see that explicitly in
the simple situation of Fig. 1.26.

Here the electric field is uniform and we are considering a closed

cylindrical surface, with its axis parallel to the uniform field E. The total
flux ¢ through the surface is ¢ = ¢ + ¢ + ¢ , where ¢ and ¢ represent 1

2

3

1

2

the flux through the surfaces 1 and 2 (of circular cross-section) of the
cylinder and ¢ is the flux through the curved cylindrical part of the

3

closed surface. Now the normal to the surface 3 at every point is
perpendicular to E, so by definition of flux, ¢ = 0. Further, the outward 3
normal to 2 is along E while the outward normal to 1 is opposite to E.

Therefore,



o=—ES,p=+ES
1

1

where S 1s the area of circular cross-section. Thus, the total flux is zero, as
expected by Gauss’s law. Thus, whenever you find that the net electric flux
through a closed surface is zero, we conclude that the total charge

contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in
general, and not only for the simple cases we have considered above. Let
us note some important points regarding this law:

(1) Gauss’s law is true for any closed surface, no matter what its shape

or size.

(i1) The term g on the right side of Gauss’s law, Eq. (1.31), includes the sum
of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(111) In the situation when the surface is so chosen that there are some

charges inside and some outside, the electric field [whose flux appears



on the left side of Eq. (1.31)] is due to all the charges, both inside and
outside S. The term g on the right side of Gauss’s law, however, 34

represents only the total charge inside S.
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(iv) The surface that we choose for the application of Gauss’s law is called
the Gaussian surface. You may choose any Gaussian surface and

apply Gauss’s law. However, take care not to let the Gaussian surface
pass through any discrete charge. This is because electric field due

to a system of discrete charges is not well defined at the location of
any charge. (As you go close to the charge, the field grows without
any bound.) However, the Gaussian surface can pass through a
continuous charge distribution.

(v) Gauss’s law is often useful towards a much easier calculation of the

electrostatic field when the system has some symmetry. This is



facilitated by the choice of a suitable Gaussian surface.

(vi) Finally, Gauss’s law is based on the inverse square dependence on
distance contained in the Coulomb’s law. Any violation of Gauss’s
law will indicate departure from the inverse square law.

Example 1.11 The electric field components in Fig. 1.27 are
E=0x1/2, E=E=0, in which a = 800 N/C m1/2. Calculate (a) the x
y

z

flux through the cube, and (b) the charge within the cube. Assume
that a = 0.1 m.

FIGURE 1.27

Solution

(a) Since the electric field has only an x component, for faces
perpendicular to x direction, the angle between E and AS i1s

+ 1/2. Therefore, the flux ¢ = E. AS is separately zero for each face of the
cube except the two shaded ones. Now the magnitude of the electric field at
the left face is

E=ax12=aal/2
L
( x = a at the left face).

The magnitude of electric field at the right face is



E=ax12=a2a)l/2

R

( x =2 a at the right face).

E

The corresponding fluxes are
XAMPLE

¢=E.AS=ASE-"n=EAScosO=—FEAS, since 6 = 180°
L
L
L
L
L
L

=—Fa?2

L

1.11
¢=EAS=EAScosO=FEAS, since 0 =0°
R

R



=Fa?2

R

Net flux through the cube
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=ot+o=Fa2-Fa2=a2(E-E)=0a2[(2a)l/2—-al/2]

R S - - I o R~

—aa52(2-)
1

=800 (0.1)52(2-)
1

1.11

=1.05Nm2 C-1



(b) We can use Gauss’s law to find the total charge ¢ inside the cube.
We have ¢ = g/ or g = ¢¢ . Therefore,

0

0

XAMPLE

E

g =1.05x8.854 x 10-12 C=9.27 x 10-12 C.

Example 1.12 An electric field is uniform, and in the positive x
direction for positive x, and uniform with the same magnitude but in
the negative x direction for negative x. It is given that E = 200 "i N/C

for x> 0 and E =-200 "i N/C for x <0. A right circular cylinder of length
20 cm and radius 5 cm has its centre at the origin and its axis along the x-
axis so that one face is at x = +10 cm and the other is at x = —10 cm (Fig.
1.28). (a) What is the net outward flux through each flat face? (b) What is
the flux through the side of the cylinder?

(c) What is the net outward flux through the cylinder? (d) What is the
net charge inside the cylinder?
Solution

(a) We can see from the figure that on the left face E and AS are parallel.
Therefore, the outward flux is ¢ = E. AS =— 200 "iiAS

L

=+ 200 A S, since "iIAS = — AS



=+200 x 1 (0.05)2=+1.57 Nm2 C-1

On the right face, E and AS are parallel and therefore
¢=E.AS=+1.57Nm2 C-I.

R

(b) For any point on the side of the cylinder E is perpendicular to

AS and hence E. AS = 0. Therefore, the flux out of the side of the cylinder
1S Zero.

(c)
Net outward flux through the cylinder

¢=157+157+0=3.14 Nm2 C-1

FIGURE 1.28

(d) The net charge within the cylinder can be found by using Gauss’s
1.12

law which gives

g=co

0

=3.14 x 8.854 x 10-12 C

XAMPLE

=2.78 x10-11 C

36
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1.15 APPLICATIONS OF GAUSS’S LAW

The electric field due to a general charge distribution is, as seen above,
given by Eq. (1.27). In practice, except for some special cases, the
summation (or integration) involved in this equation cannot be carried
out to give electric field at every point in

space. For some symmetric charge

configurations, however, it is possible to

obtain the electric field in a simple way using

the Gauss’s law. This is best understood by

some examples.

1.15.1 Field due to an infinitely

long straight uniformly

charged wire

Consider an infinitely long thin straight wire

with uniform linear charge density A. The wire

1s obviously an axis of symmetry. Suppose we

take the radial vector from O to P and rotate it



around the wire. The points P, P’, P” so
obtained are completely equivalent with
respect to the charged wire. This implies that
the electric field must have the same magnitude
at these points. The direction of electric field at
every point must be radial (outward if A > 0,
inward if A < 0). This is clear from Fig. 1.29.
Consider a pair of line elements P and P

1

2

of the wire, as shown. The electric fields
produced by the two elements of the pair when
summed give a resultant electric field which

1s radial (the components normal to the radial
vector cancel). This is true for any such pair
and hence the total field at any point P is
radial. Finally, since the wire is infinite,
electric field does not depend on the position
of P along the length of the wire. In short, the

electric field is everywhere radial in the plane



cutting the wire normally, and its magnitude
depends only on the radial distance r.

To calculate the field, imagine a cylindrical
Gaussian surface, as shown in the Fig. 1.29(b).
Since the field is everywhere radial, flux
through the two ends of the cylindrical
Gaussian surface is zero. At the cylindrical
FIGURE 1.29 (a) Electric field due to an

part of the surface, E is normal to the surface
infinitely long thin straight wire is radial,

at every point, and its magnitude is constant,
(b) The Gaussian surface for a long thin

since it depends only on 7. The surface area
wire of uniform linear charge density.

of the curved part is 2x 7/, where [ 1s the length
37

of the cylinder.
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Flux through the Gaussian surface



flux through the curved cylindrical part of the surface

Ex2mrl

The surface includes charge equal to A /. Gauss’s law then gives
Ex2nri=A1/€0

A

1.e.,

E=2ner

0

Vectorially, E at any point is given by

(1.32)

2ner

0

where *

n is the radial unit vector in the plane normal to the wire passing

through the point. E is directed outward if A is positive and inward if A is
negative.



Note that when we write a vector A as a scalar multiplied by a unit

vector, 1.€., as A = 4 "a , the scalar 4 is an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector "a if 4 > 0 and opposite to "a if 4 < (0. When we want to restrict to
non-negative values, we use the symbol A and call it the modulus of A .

Thus, A>0.
Also note that though only the charge enclosed by the surface (A /)

was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.

Without this assumption, we cannot take E to be normal to the curved
part of the cylindrical Gaussian surface. However, Eq. (1.32) is
approximately true for electric field around the central portions of a long
wire, where the end effects may be ignored.

1.15.2 Field due to a uniformly charged infinite plane sheet

Let o be the uniform surface charge density of an infinite plane sheet

(Fig. 1.30). We take the x-axis normal to the given plane. By symmetry, the
electric field will not depend on y and z coordinates and its direction at
every point must be parallel to the x-direction.

We can take the Gaussian surface to be a
rectangular parallelepiped of cross sectional area

A, as shown. (A cylindrical surface will also do.) As
seen from the figure, only the two faces 1 and 2 will

contribute to the flux; electric field lines are parallel



to the other faces and they, therefore, do not
contribute to the total flux.

The unit vector normal to surface 1 1s in —x
direction while the unit vector normal to surface 2
is in the + x direction. Therefore, flux E.AS through
both the surfaces are equal and add up. Therefore
FIGURE 1.30 Gaussian surface for a

the net flux through the Gaussian surface is 2 EA.
uniformly charged infinite plane sheet.

The charge enclosed by the closed surface is ¢ 4.
38

Therefore by Gauss’s law,
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2EA=0cA/€0

or, £ = 0/2¢0

Vectorically,



n
(1.33)

2¢0

where ”

n is a unit vector normal to the plane and going away from it.

E is directed away from the plate if ¢ 1s positive and toward the plate if ¢ is
negative. Note that the above application of the Gauss’ law has brought out
an additional fact: £ is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the
middle regions of the planar sheet, away from the ends.

1.15.3 Field due to a uniformly charged thin spherical shell Let 6 be the
uniform surface charge density of a thin spherical shell of radius R (Fig.
1.31). The situation has obvious spherical symmetry. The field at any point
P, outside or inside, can depend only on 7 (the radial distance from the
centre of the shell to the point) and must be radial (i.e., along the radius
vector).

(i) Field outside the shell: Consider a point P outside the
shell with radius vector r. To calculate E at P, we take the
Gaussian surface to be a sphere of radius 7 and with centre
O, passing through P. All points on this sphere are equivalent
relative to the given charged configuration. (That is what we
mean by spherical symmetry.) The electric field at each point

of the Gaussian surface, therefore, has the same magnitude



E and is along the radius vector at each point. Thus, E and
AS at every point are parallel and the flux through each

element is £ A S. Summing over all A S, the flux through the Gaussian
surface is £ X 4 w r 2. The charge enclosed is 6 X 4 © R 2. By Gauss’s law

c

2
Ex4nr2=
4R

€0

R

Or, E=

er
dmer
0

0

where g =4 n R 2 o is the total charge on the spherical shell.



Vectorially,

FIGURE 1.31 Gaussian
2

(1.34)

dne r

surfaces for a point with
0

(@r>R,(b)r<R.

The electric field is directed outward if ¢ > 0 and inward if

g < 0. This, however, is exactly the field produced by a charge

g placed at the centre O. Thus for points outside the shell, the field due to a
uniformly charged shell is as if the entire charge of the shell is concentrated

at its centre.

(ii) Field inside the shell: In Fig. 1.31(b), the point P is inside the shell. The
Gaussian surface is again a sphere through P centred at O.
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The flux through the Gaussian surface, calculated as before, is

E x4 wr2. However, in this case, the Gaussian surface encloses no charge.
Gauss’s law then gives ExX4mnr2 =0

e, E=0(r<R)
(1.35)
that 1s, the field due to a uniformly charged thin shell is zero at all points

inside the shell*. This important result is a direct consequence of Gauss’s
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/ 7 2 dependence in Coulomb’s law.

Example 1.13 An early model for an atom considered it to have a
positively charged point nucleus of charge Ze, surrounded by a

uniform density of negative charge up to a radius R. The atom as a



whole 1s neutral. For this model, what 1s the electric field at a distance
r from the nucleus?

FIGURE 1.32

Solution The charge distribution for this model of the atom is as
shown in Fig. 1.32. The total negative charge in the uniform spherical

charge distribution of radius R must be — Z e, since the atom (nucleus of
charge Z e + negative charge) is neutral. This immediately gives us the
negative charge density p, since we must have

3
4R

p=0—-"Ze

3 Ze
orp=-—
3

4R

To find the electric field E(r) at a point P which is a distance » away from
the nucleus, we use Gauss’s law. Because of the spherical symmetry of the
charge distribution, the magnitude of the electric

field E(r) depends only on the radial distance, no matter what the direction
of r. Its direction is along (or opposite to) the radius vector r from the
origin to the point P. The obvious Gaussian surface is a spherical surface
centred at the nucleus. We consider two situations,



1.13
namely, » <R and r > R.

(1) » <R : The electric flux ¢ enclosed by the spherical surfaceis o = E (r)
X4nmr?2

XAMPLE
E
where E ( r) 1s the magnitude of the electric field at r. This is because

* Compare this with a uniform mass shell discussed in Section 8.5 of Class
X140

Textbook of Physics.
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the field at any point on the spherical Gaussian surface has the

same direction as the normal to the surface there, and has the same
magnitude at all points on the surface.

The charge ¢ enclosed by the Gaussian surface is the positive nuclear
charge and the negative charge within the sphere of radius r,

3

4nr

le,g=Ze+



3

Substituting for the charge density p obtained earlier, we have

Gauss’s law then gives,

/e
(1

r)
E(r)=

r<R



R)

0

The electric field is directed radially outward.

E

(i1) » > R: In this case, the total charge enclosed by the Gaussian XAMPLE
spherical surface is zero since the atom is neutral. Thus, from Gauss’s
law,

E(r)yx4nr2=00rE(r)=0;r>R

1.13

At r =R, both cases give the same result: £ = 0.

ON SYMMETRY OPERATIONS

In Physics, we often encounter systems with various symmetries.
Consideration of these symmetries helps one arrive at results much faster
than otherwise by a straightforward calculation. Consider, for example an
infinite uniform sheet of charge (surface charge density o) along the y- z
plane. This system is unchanged if (a) translated parallel to the y- z plane in
any direction, (b) rotated about the x-axis through any angle. As the system
is unchanged under such symmetry operation, so must its properties be. In
particular, in this example, the electric field E must be unchanged.

Translation symmetry along the y-axis shows that the electric field must be
the same at a point (0, y, 0) as at (0, y, 0). Similarly translational symmetry
along the z-axis 1

2

shows that the electric field at two point (0, 0, z ) and (0, 0, z ) must be the
same. By 1



2

using rotation symmetry around the x-axis, we can conclude that E must be
perpendicular to the y- z plane, that is, it must be parallel to the x-direction.

Try to think of a symmetry now which will tell you that the magnitude of
the electric field is a constant, independent of the x-coordinate. It thus turns
out that the magnitude of the electric field due to a uniformly charged
infinite conducting sheet is the same at all points in space. The direction,
however, is opposite of each other on either side of the sheet.

Compare this with the effort needed to arrive at this result by a direct
calculation using Coulomb’s law.
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SUMMARY

1.

Electric and magnetic forces determine the properties of atoms,
molecules and bulk matter.

2.

From simple experiments on frictional electricity, one can infer that
there are two types of charges in nature; and that like charges repel
and unlike charges attract. By convention, the charge on a glass rod
rubbed with silk is positive; that on a plastic rod rubbed with fur is
then negative.

3.



Conductors allow movement of electric charge through them, insulators
do not. In metals, the mobile charges are electrons; in electrolytes

both positive and negative ions are mobile.

4.

Electric charge has three basic properties: quantisation, additivity

and conservation.

Quantisation of electric charge means that total charge ( g) of a body

is always an integral multiple of a basic quantum of charge ( e) i.e.,

g =n e, where n =0, %1, £2, £3, .... Proton and electron have charges

+ e, — e, respectively. For macroscopic charges for which 7 is a very large
number, quantisation of charge can be ignored.

Additivity of electric charges means that the total charge of a system

is the algebraic sum (i.e., the sum taking into account proper signs)

of all individual charges in the system.

Conservation of electric charges means that the total charge of an
isolated system remains unchanged with time. This means that when
bodies are charged through friction, there is a transfer of electric charge
from one body to another, but no creation or destruction of charge.

5.

Coulomb’s Law: The mutual electrostatic force between two point

charges g and g is proportional to the product g ¢ and inversely 1



2

12

proportional to the square of the distance r separating them.
21

Mathematically,

k(qgq)

F = force on ¢ due to

12

21

r2l

1

where “r is a unit vector in the direction from ¢ to g and k =
21

1



2

4 ¢

w0

is the constant of proportionality.

In ST units, the unit of charge is coulomb. The experimental value of
the constant ¢ 1s

0

e=28.854 x 10-12 C2 N-1 m-2

0

The approximate value of £ is

k=9 %109 Nm2 C-2

6.

The ratio of electric force and gravitational force between a proton
and an electron is

2

ke

39

=2.4x10

Gmm



p
7.

Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not affected by
the presence of a third (or more) additional charge(s). For

an assembly of charges g, ¢, ¢, ..., the force on any charge, say g , 1s 1
2

3

1
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the vector sum of the force on ¢ due to ¢ , the force on g dueto g, 1
2

1

3

and so on. For each pair, the force is given by the Coulomb’s law for
two charges stated earlier.

8.

The electric field E at a point due to a charge configuration is the

force on a small positive test charge g placed at the point divided by



the magnitude of the charge. Electric field due to a point charge g has a
magnitude | g|[/4ne r 2; it 1s radially outwards from ¢, if ¢ 1s positive, 0

and radially inwards if g is negative. Like Coulomb force, electric field also
satisfies superposition principle.

9.

An electric field line is a curve drawn in such a way that the tangent

at each point on the curve gives the direction of electric field at that
point. The relative closeness of field lines indicates the relative strength
of electric field at different points; they crowd near each other in regions
of strong electric field and are far apart where the electric field is

weak. In regions of constant electric field, the field lines are uniformly
spaced parallel straight lines.

10. Some of the important properties of field lines are: (i) Field lines are
continuous curves without any breaks. (i1) Two field lines cannot cross
each other. (ii1) Electrostatic field lines start at positive charges and

end at negative charges —they cannot form closed loops.

11. An electric dipole is a pair of equal and opposite charges g and — ¢
separated by some distance 2 a. Its dipole moment vector p has magnitude
2 ga and 1s in the direction of the dipole axis from — g to g.

12. Field of an electric dipole in its equatorial plane (i.e., the plane
perpendicular to its axis and passing through its centre) at a distance

r from the centre:



23/2

4 ¢

(atr)

I

forr>>a

3

4¢

nr

0

Dipole electric field on the axis at a distance » from the centre:

2pr



22
4¢

n(r—a)

[}

for

r>>a

The 1/ r 3 dependence of dipole electric fields should be noted in contrast to
the 1/ 2 dependence of electric field due to a point charge.

13. In a uniform electric field E, a dipole experiences a torque t given by 1

but experiences no net force.



14. The flux Ao of electric field E through a small area element AS is given
by

Ap =E. AS

The vector area element AS is

AS=AS"n

where A S is the magnitude of the area element and ”
n is normal to the

area element, which can be considered planar for sufficiently small A S.
43

Physics

For an area element of a closed surface, *

n is taken to be the direction

of outward normal, by convention.

15. Gauss's law: The flux of electric field through any closed surface Sis 1/
¢ times the total charge enclosed by S. The law is especially useful 0

in determining electric field E, when the source distribution has simple
symmetry:

(1) Thin infinitely long straight wire of uniform linear charge density A

A



2¢

T

r

0

where r 1s the perpendicular distance of the point from the wire and
n is the radial unit vector in the plane normal to the wire passing
through the point.

(ii) Infinite thin plane sheet of uniform surface charge density ¢

2¢0
where ~
n is a unit vector normal to the plane, outward on either side.

(111) Thin spherical shell of uniform surface charge density 6



r
0

E=0

(r<R)

where 7 is the distance of the point from the centre of the shell and R
the radius of the shell. g is the total charge of the shell: ¢ = 4n R2c.
The electric field outside the shell is as though the total charge is
concentrated at the centre. The same result is true for a solid sphere
of uniform volume charge density. The field is zero at all points inside
the shell

Physical quantity

Symbol

Dimensions

Unit



Remarks

Vector area element
AS

[L2]

m?2

AS=AS"n
Electric field

E

[MLT-3A—1]

V m-1
Electric flux

¢
[ML3 T-3A—1]

Vm
Ap =E. AS
Dipole moment

P
[LTA]



Cm

Vector directed
from negative to
positive charge
Charge density
linear

A

[L—-1 TA]
Cm-1
Charge/length
surface

c

[L-2 TA]
Cm-2

Charge/area



volume

P

[L-3 TA]

Cm-3

Charge/volume

44

Electric Charges

and Fields

POINTS TO PONDER

1.

You might wonder why the protons, all carrying positive charges, are
compactly residing inside the nucleus. Why do they not fly away? You
will learn that there is a third kind of a fundamental force, called the
strong force which holds them together. The range of distance where
this force is effective is, however, very small ~10-14 m. This is precisely
the size of the nucleus. Also the electrons are not allowed to sit on

top of the protons, i.e. inside the nucleus, due to the laws of quantum

mechanics. This gives the atoms their structure as they exist in nature.

2.



Coulomb force and gravitational force follow the same inverse-square
law. But gravitational force has only one sign (always attractive), while
Coulomb force can be of both signs (attractive and repulsive), allowing
possibility of cancellation of electric forces. This is how gravity, despite
being a much weaker force, can be a dominating and more pervasive
force in nature.

3.

The constant of proportionality £ in Coulomb’s law is a matter of

choice if the unit of charge is to be defined using Coulomb’s law. In SI
units, however, what is defined is the unit of current (A) via its magnetic
effect (Ampere’s law) and the unit of charge (coulomb) 1s simply defined

by (1C =1 A's). In this case, the value of & is no longer arbitrarys; it is
approximately 9 x 109 N m2 C-2.

4.

The rather large value of £, i.e., the large size of the unit of charge (1C)
from the point of view of electric effects arises because (as mentioned in
point 3 already) the unit of charge is defined in terms of

magnetic forces (forces on current—carrying wires) which are generally
much weaker than the electric forces. Thus while 1 ampere is a unit
of reasonable size for magnetic effects, 1 C =1 A's, is too big a unit for

electric effects.



5.

The additive property of charge is not an ‘obvious’ property. It is related
to the fact that electric charge has no direction associated with it;
charge is a scalar.

6.

Charge is not only a scalar (or invariant) under rotation; it is also
invariant for frames of reference in relative motion. This is not always
true for every scalar. For example, kinetic energy is a scalar under
rotation, but is not invariant for frames of reference in relative

motion.

7.

Conservation of total charge of an isolated system is a property
independent of the scalar nature of charge noted in point 6.
Conservation refers to invariance in time in a given frame of reference.
A quantity may be scalar but not conserved (like kinetic energy in an
inelastic collision). On the other hand, one can have conserved vector
quantity (e.g., angular momentum of an isolated system).

8.

Quantisation of electric charge is a basic (unexplained) law of nature;

interestingly, there is no analogous law on quantisation of mass.



9.

Superposition principle should not be regarded as ‘obvious’, or equated
with the law of addition of vectors. It says two things: force on one
charge due to another charge is unaffected by the presence of other
charges, and there are no additional three-body, four-body, etc., forces
which arise only when there are more than two charges.

10. The electric field due to a discrete charge configuration is not defined
at the locations of the discrete charges. For continuous volume charge
distribution, it is defined at any point in the distribution. For a surface
charge distribution, electric field is discontinuous across the surface.
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11. The electric field due to a charge configuration with total charge zero
is not zero; but for distances large compared to the size of

the configuration, its field falls off faster than 1/ r 2, typical of field due to a
single charge. An electric dipole is the simplest example of this fact.

EXERCISES

1.1

What is the force between two small charged spheres having
charges of 2 x 10-7C and 3 x 10-7C placed 30 cm apart in air?

1.2



The electrostatic force on a small sphere of charge 0.4 uC due to
another small sphere of charge — 0.8 puC in air is 0.2 N. (a) What is
the distance between the two spheres? (b) What is the force on the
second sphere due to the first?

1.3

Check that the ratio ke 2/ G m m 1s dimensionless. Look up a Table e
'z

of Physical Constants and determine the value of this ratio. What
does the ratio signify?

1.4

(a) Explain the meaning of the statement ‘electric charge of a body
1s quantised’.

(b) Why can one ignore quantisation of electric charge when dealing
with macroscopic 1.e., large scale charges?

1.5

When a glass rod is rubbed with a silk cloth, charges appear on
both. A similar phenomenon is observed with many other pairs of
bodies. Explain how this observation is consistent with the law of
conservation of charge.

1.6



Four point charges g =2 uC, g =-5 uC, g =2 puC, and g = -5 nC are A
B

C

D

located at the corners of a square ABCD of side 10 cm. What is the
force on a charge of 1 puC placed at the centre of the square?

1.7

(a) An electrostatic field line is a continuous curve. That is, a field
line cannot have sudden breaks. Why not?

(b) Explain why two field lines never cross each other at any point?
1.8

Two point charges ¢ = 3 pC and g = -3 pC are located 20 cm apart A
B

n vacuum.

(a) What is the electric field at the midpoint O of the line AB joining
the two charges?

(b) If a negative test charge of magnitude 1.5 X 10-9 C is placed at
this point, what is the force experienced by the test charge?

1.9

A system has two charges g =2.5 x 10-7 Cand g =-2.5 x 10-7 C



A

B

located at points A: (0, 0, —15 cm) and B: (0,0, +15 cm), respectively.
What are the total charge and electric dipole moment of the system?
1.10

An electric dipole with dipole moment 4 < 109 C m 1s aligned at 30°
with the direction of a uniform electric field of magnitude 5 x 104 NC-1.
Calculate the magnitude of the torque acting on the dipole.

1.11

A polythene piece rubbed with wool is found to have a negative
charge of 3 x 10-7 C.

(a) Estimate the number of electrons transferred (from which to
which?)

(b) Is there a transfer of mass from wool to polythene?

1.12

(a) Two insulated charged copper spheres A and B have their centres
46

separated by a distance of 50 cm. What is the mutual force of
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electrostatic repulsion if the charge on each is 6.5 x 10—7 C? The
radii of A and B are negligible compared to the distance of
separation.

(b) What is the force of repulsion if each sphere is charged double
the above amount, and the distance between them is halved?

1.13

Suppose the spheres A and B in Exercise 1.12 have identical sizes.
A third sphere of the same size but uncharged is brought in contact
with the first, then brought in contact with the second, and finally
removed from both. What is the new force of repulsion between A
and B?

1.14

Figure 1.33 shows tracks of three charged particles in a uniform
electrostatic field. Give the signs of the three charges. Which particle
has the highest charge to mass ratio?

FIGURE 1.33

1.15

Consider a uniform electric field E =3 x 103 1 N/C. (a) What is the flux of
this field through a square of 10 cm on a side whose plane is parallel to the
yz plane? (b) What is the flux through the same

square if the normal to its plane makes a 60° angle with the x-axis?



1.16

What is the net flux of the uniform electric field of Exercise 1.15
through a cube of side 20 cm oriented so that its faces are parallel
to the coordinate planes?

1.17

Careful measurement of the electric field at the surface of a black
box indicates that the net outward flux through the surface of the
box is 8.0 X 103 Nm2/C. (a) What is the net charge inside the box?
(b) If the net outward flux through the surface of the box were zero,
could you conclude that there were no charges inside the box? Why
or Why not?

1.18

A point charge +10 pC is a distance 5 cm directly above the centre
of a square of side 10 cm, as shown in Fig. 1.34. What is the
magnitude of the electric flux through the square? ( Hint: Think of
the square as one face of a cube with edge 10 cm.)
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1.19



A point charge of 2.0 uC is at the centre of a cubic Gaussian
surface 9.0 cm on edge. What is the net electric flux through the
surface?

1.20

A point charge causes an electric flux of —1.0 x 103 Nm2/C to pass
through a spherical Gaussian surface of 10.0 cm radius centred on
the charge. (a) If the radius of the Gaussian surface were doubled,
how much flux would pass through the surface? (b) What is the
value of the point charge?

1.21

A conducting sphere of radius 10 cm has an unknown charge. If
the electric field 20 cm from the centre of the sphere is 1.5 x 103 N/C
and points radially inward, what is the net charge on the sphere?
1.22

A uniformly charged conducting sphere of 2.4 m diameter has a
surface charge density of 80.0 uC/m2. (a) Find the charge on the
sphere. (b) What is the total electric flux leaving the surface of the
sphere?

1.23

An infinite line charge produces a field of 9 x 104 N/C at a distance



of 2 cm. Calculate the linear charge density.

1.24

Two large, thin metal plates are parallel and close to each other. On
their inner faces, the plates have surface charge densities of opposite
signs and of magnitude 17.0 x 10-22 C/m2. What is E: (a) in the outer
region of the first plate, (b) in the outer region of the second plate,

and (c) between the plates?

ADDITIONAL EXERCISES

1.25

An oil drop of 12 excess electrons is held stationary under a constant
electric field of 2.55 x 104 NC-1 in Millikan’s oil drop experiment. The
density of the oil is 1.26 g cm—3. Estimate the radius of the drop.
(g=981ms2;e=1.60x10-19 C).

1.26

Which among the curves shown in Fig. 1.35 cannot possibly

represent electrostatic field lines?
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FIGURE 1.35

1.27

In a certain region of space, electric field is along the z-direction
throughout. The magnitude of electric field is, however, not constant
but increases uniformly along the positive z-direction, at the rate of
105 NC-1 per metre. What are the force and torque experienced by a
system having a total dipole moment equal to 10—7 Cm in the negative
z-direction ?

1.28

(a) A conductor A with a cavity as shown in Fig. 1.36(a) is given a
charge (. Show that the entire charge must appear on the outer
surface of the conductor. (b) Another conductor B with charge ¢ is
inserted into the cavity keeping B insulated from A. Show that the

total charge on the outside surface of A is Q + g [Fig. 1.36(b)]. (c) A
sensitive instrument is to be shielded from the strong electrostatic fields in
its environment. Suggest a possible way.

FIGURE 1.36

1.29



A hollow charged conductor has a tiny hole cut into its surface.
Show that the electric field in the hole is (c/2¢ ) ~

n , where ”

n is the

0

unit vector in the outward normal direction, and o is the surface
charge density near the hole.

1.30

Obtain the formula for the electric field due to a long thin wire of
uniform linear charge density A without using Gauss’s law. [ Hint:
Use Coulomb’s law directly and evaluate the necessary integral. |
1.31

It is now believed that protons and neutrons (which constitute nuclei
of ordinary matter) are themselves built out of more elementary units
called quarks. A proton and a neutron consist of three quarks each.
Two types of quarks, the so called ‘up’ quark (denoted by u) of charge

+ (2/3) e, and the ‘down’ quark (denoted by d) of charge (—1/3) e, together
with electrons build up ordinary matter. (Quarks of other types have also
been found which give rise to different unusual

varieties of matter.) Suggest a possible quark composition of a
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proton and neutron.
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1.32

(a) Consider an arbitrary electrostatic field configuration. A small
test charge is placed at a null point (i.e., where E = 0) of the
configuration. Show that the equilibrium of the test charge is
necessarily unstable.

(b) Verify this result for the simple configuration of two charges of
the same magnitude and sign placed a certain distance apart.

1.33

A particle of mass m and charge (— g) enters the region between the two
charged plates initially moving along x-axis with speed v (like x particle 1
in Fig. 1.33). The length of plate is L and an uniform

electric field £ is maintained between the plates. Show that the
vertical deflection of the particle at the far edge of the plate is
qEL2/(2mv2).

X

Compare this motion with motion of a projectile in gravitational field
discussed in Section 4.10 of Class XI Textbook of Physics.

1.34

Suppose that the particle in Exercise in 1.33 is an electron projected



with velocity v =2.0 X 106 m s—1. If E between the plates separated x
by 0.5 cm is 9.1 x 102 N/C, where will the electron strike the upper
plate? (| e/=1.6 x 10-19 C, m = 9.1 x 10-31 kg.)

e

50

Chapter Two

ELECTROSTATIC

POTENTIAL AND

CAPACITANCE

2.1 INTRODUCTION

In Chapters 6 and 8 (Class XI), the notion of potential energy was
introduced. When an external force does work in taking a body from a
point to another against a force like spring force or gravitational force,
that work gets stored as potential energy of the body. When the external
force is removed, the body moves, gaining kinetic energy and losing

an equal amount of potential energy. The sum of kinetic and

potential energies is thus conserved. Forces of this kind are called
conservative forces. Spring force and gravitational force are examples of
conservative forces.

Coulomb force between two (stationary) charges, like the gravitational



force, is also a conservative force. This is not surprising, since both have
inverse-square dependence on distance and differ mainly in the
proportionality constants — the masses in the gravitational law are
replaced by charges in Coulomb’s law. Thus, like the potential energy of
a mass in a gravitational field, we can define electrostatic potential energy
of a charge in an electrostatic field.

Consider an electrostatic field E due to some charge configuration.

First, for simplicity, consider the field E due to a charge O placed at the
origin. Now, imagine that we bring a test charge g from a point R to a point
P against the repulsive force on it due to the charge Q. With reference

Physics

to Fig. 2.1, this will happen if O and g are both positive
or both negative. For definiteness, let us take O, g > 0.
Two remarks may be made here. First, we assume

that the test charge ¢ is so small that it does not disturb
the original configuration, namely the charge Q at the
origin (or else, we keep Q fixed at the origin by some
unspecified force). Second, in bringing the charge g from
FIGURE 2.1 A test charge g (> 0) is

R to P, we apply an external force F just enough to

moved from the point R to the



ext

point P against the repulsive

counter the repulsive electric force F (i.e, F =—F).

E

ext

E

force on it by the charge O (> 0)

This means there is no net force on or acceleration of

placed at the origin.

the charge ¢ when it is brought from R to P, 1.e., it is

brought with infinitesimally slow constant speed. In

this situation, work done by the external force is the negative of the work
done by the electric force, and gets fully stored in the form of potential

energy of the charge g. If the external force is removed on reaching P, the
electric force will take the charge away from Q — the stored energy

(potential energy) at P is used to provide kinetic energy to the charge ¢ in
such a way that the sum of the kinetic and potential energies is conserved.

Thus, work done by external forces in moving a charge g from R to P is



fFCr

ext

!

d

[FCr

E

(2.1)

R

This work done 1s against electrostatic repulsive force and gets stored

as potential energy.

At every point in electric field, a particle with charge g possesses a
certain electrostatic potential energy, this work done increases its potential
energy by an amount equal to potential energy difference between points
R and P.

Thus, potential energy difference

AU=U-U=W

(2.2)



R

RP

( Note here that this displacement is in an opposite sense to the electric
force and hence work done by electric field is negative, i.e. , —W

)

RP

Therefore, we can define electric potential energy difference between

two points as the work required to be done by an external force in moving

(without accelerating ) charge ¢ from one point to another for electric field
of any arbitrary charge configuration.

Two important comments may be made at this stage:

(1) The right side of Eq. (2.2) depends only on the initial and final positions
of the charge. It means that the work done by an electrostatic field in
moving a charge from one point to another depends only on the initial

and the final points and is independent of the path taken to go from
one point to the other. This is the fundamental characteristic of a
conservative force. The concept of the potential energy would not be
meaningful if the work depended on the path. The path-independence
of work done by an electrostatic field can be proved using the
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Coulomb’s law. We omit this proof here.
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(11) Equation (2.2) defines potential energy difference in terms
of the physically meaningful quantity work. Clearly,
potential energy so defined is undetermined to within an
additive constant. What this means is that the actual value
of potential energy is not physically significant; it is only
the difference of potential energy that is significant. We can
always add an arbitrary constant a to potential energy at
every point, since this will not change the potential energy
difference:

(U+to)—(U+t)=U-U

P

R



R

Put it differently, there is a freedom in choosing the point
where potential energy is zero. A convenient choice is to have
electrostatic potential energy zero at infinity. With this choice,
if we take the point R at infinity, we get from Eq. (2.2)

Count Alessandro Volta

COUNT ALESSANDRO VOLTA (1745 —-1827)

(1745 - 1827) Italian

w
=U-U=U

o
(2.3)
P
P

0
P

physicist, professor at
Since the point P is arbitrary, Eq. (2.3) provides us with a
Pavia. Volta established

definition of potential energy of a charge ¢ at any point.



that the animal electri-

Potential energy of charge q at a point (in the presence of field
city observed by Luigi

due to any charge configuration) is the work done by the
Galvani, 1737-1798, in

experiments with frog

external force (equal and opposite to the electric force) in
muscle tissue placed in

bringing the charge q from infinity to that point.

contact with dissimilar

22E

metals, was not due to

LECTROSTATIC POTENTIAL

any exceptional property

Consider any general static charge configuration. We define
of animal tissues but

potential energy of a test charge ¢ in terms of the work done
was also generated

whenever any wet body

on the charge ¢g. This work is obviously proportional to ¢, since was
sandwiched between



the force at any point is gE, where E is the electric field at that dissimilar
metals. This point due to the given charge configuration. It is, therefore,

led him to develop the
convenient to divide the work by the amount of charge ¢, so
first voltaic pile, or
that the resulting quantity is independent of ¢. In other words,
battery, consisting of a
work done per unit test charge is characteristic of the electric
large stack of moist disks
field associated with the charge configuration. This leads to
of cardboard (electrolyte) sandwiched
the idea of electrostatic potential /" due to a given charge
between disks of metal
configuration. From Eq. (2.1), we get:
(electrodes).
Work done by external force in bringing a unit positive
charge from point R to P

U-U
=V-V

P



(2.4)

where V and V are the electrostatic potentials at P and R, respectively.
P

R

Note, as before, that it is not the actual value of potential but the potential
difference that is physically significant. If, as before, we choose the
potential to be zero at infinity, Eq. (2.4) implies:

Work done by an external force in bringing a unit positive charge
53

from infinity to a point = electrostatic potential ( /') at that point.
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In other words, the electrostatic potential ( V)



at any point in a region with electrostatic field is
the work done in bringing a unit positive

charge (without acceleration) from infinity to

that point.

The qualifying remarks made earlier regarding
potential energy also apply to the definition of
potential. To obtain the work done per unit test
charge, we should take an infinitesimal test charge
FIGURE 2.2 Work done on a test charge g

d g, obtain the work done 6 W in bringing it from
by the electrostatic field due to any given

infinity to the point and determine the ratio

charge configuration is independent

O W/ q. Also, the external force at every point of
of the path, and depends only on

the path is to be equal and opposite to the

its initial and final positions.

electrostatic force on the test charge at that point.
2.3 POTENTIAL DUE TO A POINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q



to be positive. We wish to determine the potential at any point P with
position vector r from the origin. For that we must
calculate the work done in bringing a unit positive
test charge from infinity to the point P. For O > 0,
the work done against the repulsive force on the
test charge is positive. Since work done is
independent of the path, we choose a convenient
path — along the radial direction from infinity to
the point P.

At some intermediate point P’ on the path, the
electrostatic force on a unit positive charge is
FIGURE 2.3 Work done in bringing a unit
positive test charge from infinity to the

0x1"

point P, against the repulsive force of

2

4¢

T

(2.5)



7 '

0

charge Q ( Q > 0), is the potential at P due to

the charge Q.

where “r’ is the unit vector along OP’. Work done

against this force from r' to r’' + Ar' is

0

The negative sign appears because for A »' <0, A W is positive . Total work
done (W) by the external force is obtained by integrating Eq. (2.6) from ' =

wtor =r,
r

r



(2.7)
e r'
Auer' oo

dner

0
0
0

This, by definition is the potential at P due to the charge QO

0
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Equation (2.8) is true for any

sign of the charge Q, though we
considered O > 0 in its derivation.
For 0 <0, V<0, i.e., work done (by
the external force) per unit positive
test charge in bringing it from
infinity to the point is negative. This
is equivalent to saying that work
done by the electrostatic force in
bringing the unit positive charge
form infinity to the point P is
positive. [This is as it should be,
since for O < 0, the force on a unit
positive test charge is attractive, so

that the electrostatic force and the



displacement (from infinity to P) are

FIGURE 2.4 Variation of potential ' with 7 [in units of

in the same direction.] Finally, we

( O/4ne ) m-1] (blue curve) and field with 7 [in units

0

note that Eq. (2.8) is consistent with

of ( O/4ne ) m-2] (black curve) for a point charge Q.

0

the choice that potential at infinity

be zero.

Figure (2.4) shows how the electrostatic potential ( o< 1/ 7 ) and the
electrostatic field (o< 1/ 72 ) varies with r.

Example 2.1

(a) Calculate the potential at a point P due to a charge of 4 x 10-7C
located 9 cm away.

(b) Hence obtain the work done in bringing a charge of 2 x 10-9 C
from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution

7



2

-2

410C

(a) V=

=9 x10 Nm C x
e r

0.09 m

0

=4x104V

(b)

4
W=qV=2x10Cx4x10V

E



XAMPLE

=8 x10-5J

No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along
2.1

r and another perpendicular to r. The work done corresponding to the later
will be zero.

2.4 POTENTIAL DUE TO AN ELECTRIC DIPOLE
As we learnt in the last chapter, an electric dipole consists of two charges

g and — g separated by a (small) distance 2 a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is ¢ x 2 a and
which points in the direction from — g to ¢ (Fig. 2.5). We also saw that the
electric field of a dipole at a point with position vector r depends not 55

just on the magnitude 7, but also on the angle between r and p. Further,
Physics

the field falls off, at large distance, not as

1/ r 2 (typical of field due to a single charge)

but as 1/ 3. We, now, determine the electric

potential due to a dipole and contrast it

with the potential due to a single charge.

As before, we take the origin at the

centre of the dipole. Now we know that the



electric field obeys the superposition
principle. Since potential is related to the
work done by the field, electrostatic
potential also follows the superposition
principle. Thus, the potential due to the
dipole is the sum of potentials due to the
charges g and — ¢

1

FIGURE 2.5 Quantities involved in the calculation
e r

r

(2.9)



2

of potential due to a dipole.

where r and r are the distances of the
1

2

point P from ¢ and — g, respectively.
Now, by geometry,

2

2

2

r=r+a—2 arcosd

1

2

2

2

r=r+a+?2arcosd

(2.10)

2

We take » much greater than a ( » >> a ) and retain terms only upto the first
order in a/r 2






2.11)

Similarly,

2 cos



(2.12)

Using the Binomial theorem and retaining terms upto the first order
in a/r ; we obtain,

-1/2

1

1

2 a cosf

1

a

114

14



+ cos0

[2.13(a)]

—-1/2

I



14

— cos0

[2.13(b)]

2

Using Egs. (2.9) and (2.13) and p = 2 ga, we get
q

2 a cosb

p cosO



(2.14)

4 ¢

4¢

Ty

0

0
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Now, p cos 0 =pC’r

Electrostatic Potential

and Capacitance

where “r is the unit vector along the position vector OP.

The electric potential of a dipole is then given by



r
0

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in

a/ r are negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (8 =0, 7 ) is given by

4¢

(2.16)



0

(Positive sign for 6 = 0, negative sign for 6 = m.) The potential in the
equatorial plane (06 = n/2) is zero.

The important contrasting features of electric potential of a dipole
from that due to a single charge are clear from Eqgs. (2.8) and (2.15):

(1) The potential due to a dipole depends not just on r but also on the angle
between the position vector r and the dipole moment vector p.

(It is, however, axially symmetric about p. That is, if you rotate the

position vector r about p, keeping 6 fixed, the points corresponding to P on
the cone so generated will have the same potential as at P.) (i1) The electric
dipole potential falls off, at large distance, as 1/ » 2, not as 1/ r,
characteristic of the potential due to a single charge. (You can refer to the
Fig. 2.5 for graphs of 1/ r 2 versus r and 1/ r versus r, drawn there in
another context.) 2.5 POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges ¢, ¢ ,..., g with position vectorsr, r,..., 1

2

n

1

2

r relative to some origin (Fig. 2.6). The potential J at P due to the charge n

1

qis



1P

where 7 is the distance between g and P.
1P

1

Similarly, the potential V" at P due to ¢ and
2

2

V' due to g are given by

3

3



0

3P

where r and r are the distances of P from
2P

3P

charges ¢ and g , respectively; and so on for the



2

3

potential due to other charges. By the
FIGURE 2.6 Potential at a point due to a
superposition principle, the potential V" at P due
system of charges is the sum of potentials

to the total charge configuration is the algebraic
due to individual charges.

sum of the potentials due to the individual
charges

V=V+V+.+V

57

(2.17)

1

2

n
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4 ¢

(2.18)
0

1P

2P
nP

If we have a continuous charge distribution characterised by a charge



density p (r), we divide it, as before, into small volume elements each of
size A v and carrying a charge pA v. We then determine the potential due to
each volume element and sum (strictly speaking , integrate) over all such
contributions, and thus determine the potential due to the entire

distribution.
We have seen in Chapter 1 that for a uniformly charged spherical shell,

the electric field outside the shell is as if the entire charge is concentrated at
the centre. Thus, the potential outside the shell is given by 1

q
V=

IV

[2.19(a)]

4¢

where ¢ is the total charge on the shell and R its radius. The electric field
inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),
and, therefore, equals its value at the surface, which is

1

q



V=
[2.19(b)]

4 ¢

TR

0

Example 2.2 Two charges 3 x 10-8 C and -2 x 10-8 C are located

15 cm apart. At what point on the line joining the two charges is the
electric potential zero? Take the potential at infinity to be zero.
Solution Let us take the origin O at the location of the positive charge.

The line joining the two charges is taken to be the x-axis; the negative
charge is taken to be on the right side of the origin (Fig. 2.7).

FIGURE 2.7
Let P be the required point on the x-axis where the potential is zero.

If x 1s the x-coordinate of P, obviously x must be positive. (There is no
possibility of potentials due to the two charges adding up to zero for x <0.)
If x lies between O and A, we have

-8
-8
1

3 x10



2 x10

dme
x %10
(15 —x) x10

0

where x 1s in cm. That is,
3

2

15 —x

2.2



which gives x =9 cm.

If x lies on the extended line OA, the required condition is
3

2

XAMPLE

x—15
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E

which gives

XAMPLE

x=45cm

Thus, electric potential is zero at 9 cm and 45 cm away from the

positive charge on the side of the negative charge. Note that the

2.2



formula for potential used in the calculation required choosing
potential to be zero at infinity.

Example 2.3 Figures 2.8 (a) and (b) show the field lines of a positive
and negative point charge respectively.

http://sol.sci.uop.edu/~jfalward/electricpotential/electricpotential.html
Electric potential, equipotential surfaces: FIGURE 2.8

(a) Give the signs of the potential difference V—V; V- V.

P

Q

B

A

(b) Give the sign of the potential energy difference of a small negative
charge between the points Q and P; A and B.

(c) Give the sign of the work done by the field in moving a small
positive charge from Q to P.

(d) Give the sign of the work done by the external agency in moving
a small negative charge from B to A.

(e) Does the kinetic energy of a small negative charge increase or
decrease in going from B to A?

Solution

1



(a) As Vo<
, V>V .Thus, (V-V)is positive. Also Vis less negative » P

0
P

0
B

than V. Thus, V> Vor ( V- V) is positive.

SO R N N

(b) A small negative charge will be attracted towards positive charge.
The negative charge moves from higher potential energy to lower
potential energy. Therefore the sign of potential energy difference

of a small negative charge between Q and P 1s positive.

Similarly, (P.E.) > (P.E.) and hence sign of potential energy

A

B



differences is positive.

(c) In moving a small positive charge from Q to P, work has to be
done by an external agency against the electric field. Therefore,

E

work done by the field is negative.

XAMPLE

(d) In moving a small negative charge from B to A work has to be
done by the external agency. It is positive.

2.3

(e) Due to force of repulsion on the negative charge, velocity decreases
and hence the kinetic energy decreases in going from B to A.
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2.6 EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential

at all points on the surface. For a single charge ¢, the potential is given by
Eq. (2.8):



o

This shows that V' is a constant if 7 is constant . Thus, equipotential surfaces
of a single point charge are concentric spherical surfaces centred at the
charge.

Now the electric field lines for a single charge g are radial lines starting
from or ending at the charge, depending on whether g is positive or
negative.

Clearly, the electric field at every point is normal to the equipotential
surface passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would

have nonzero component along the surface. To move a unit test charge
against the direction of the component of the field, work would have to
be done. But this is in contradiction to the definition of an equipotential
FIGURE 2.9 For a

surface: there is no potential difference between any two points on the
single charge ¢

surface and no work is required to move a test charge on the surface.
(a) equipotential

The electric field must, therefore, be normal to the equipotential surface
surfaces are

at every point. Equipotential surfaces offer an alternative visual picture



spherical surfaces

in addition to the picture of electric field lines around a charge
centred at the

configuration.

charge, and

(b) electric field

lines are radial,

starting from the

charge if ¢ > 0.

FIGURE 2.10 Equipotential surfaces for a uniform electric field.

For a uniform electric field E, say, along the x -axis, the equipotential
surfaces are planes normal to the x -axis, i.e., planes parallel to the y- z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two
identical positive charges are shown in Fig. 2.11.

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,
60

(b) two identical positive charges.
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2.6.1 Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)



with potential values V' and V' + & V, where 6 V is the change in V in the
direction of the electric field E. Let P be a point on the surface B. 6 / is the
perpendicular distance of the

surface A from P. Imagine that a unit positive charge
is moved along this perpendicular from the surface B
to surface A against the electric field. The work done
in this process is [E|d /.

This work equals the potential difference

V—r.

A

B

Thus,

EoI=V—-(V+V)==0V

oV

ie., |[E=—

(2.20)

o/

Since 6 V'is negative, & V'=— |0 V]. we can rewrite
FIGURE 2.12 From the

Eq (2.20) as

potential to the field.



oV

oV

(2.21)

[

o/

We thus arrive at two important conclusions concerning the relation
between electric field and potential:

(1) Electric field is in the direction in which the potential decreases
Steepest.

(11) Its magnitude is given by the change in the magnitude of potential
per unit displacement normal to the equipotential surface at the point.
2.7 POTENTIAL ENERGY OF A SYSTEM OF CHARGES
Consider first the simple case of two charges g and g with position vector 1
2

r and r relative to some origin. Let us calculate the work done 1

2

(externally) in building up this configuration. This means that we consider



the charges ¢ and ¢ initially at infinity and determine the work done by 1
2

an external agency to bring the charges to the given locations. Suppose,
first the charge ¢ is brought from infinity to the point r . There is no 1

1

external field against which work needs to be done, so work done in
bringing g from infinity to r is zero. This charge produces a potential in 1
1

space given by

1

gl

V=

1

4 ¢

Ty

0

1P

where r 1s the distance of a point P in space from the location of ¢ .

1P

1



From the definition of potential, work done in bringing charge g from
2

infinity to the point r is g times the potential at r due to g : 2

2

2

q9

work done on g =
12

2
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where r is the distance between points 1 and 2.

12



Since electrostatic force 1s conservative, this work gets
stored in the form of potential energy of the system. Thus,
the potential energy of a system of two charges g and g is
1

2

FIGURE 2.13 Potential energy of a

1

q949

12

U=

system of charges ¢ and ¢ is

(2.22)

1

2

4¢

T

r

0
12

directly proportional to the product



Obviously, if ¢ was brought first to its present location and
of charges and inversely to the

2

g brought later, the potential energy U would be the same.
distance between them.

1

More generally, the potential energy expression,

Eq. (2.22), is unaltered whatever way the charges are brought to the
specified

locations, because of path-independence of work for electrostatic force.
Equation (2.22) is true for any sign of g and g . If g ¢ > 0, potential 1

2

12

energy is positive. This is as expected, since for like charges (g g > 0), 1 2
electrostatic force 1s repulsive and a positive amount of work is needed to
be done against this force to bring the charges from infinity to a finite
distance apart. For unlike charges ( ¢ ¢ < 0), the electrostatic force is 1 2
attractive. In that case, a positive amount of work is needed against this
force to take the charges from the given location to infinity. In other words,
a negative amount of work is needed for the reverse path (from infinity to

the present locations), so the potential energy is negative.



Equation (2.22) is easily generalised for a system of any number of
point charges. Let us calculate the potential energy of a system of three
charges g , g and g located atr , r, r , respectively. To bring ¢ first 1 2
3

12

3

1

from infinity to r , no work is required. Next we bring ¢ from infinity to 1
2

r . As before, work done in this step is

2

1

q49
12

qV(r)=

(2.23)

4 ¢



12

The charges g and ¢ produce a potential, which at any point P is 1
2

given by

1

1,2

4 ¢



(2.24)

0

1P

2P

Work done next in bringing g from infinity to the point r is g times 3
3

3

V

atr

1,2

q9

q49
13



(r)=

(2.25)

1,2

4 ¢

13

23

The total work done in assembling the charges

at the given locations is obtained by adding the work
done in different steps [Eq. (2.23) and Eq. (2.25)],

1

q9



949

q49
12

13

FIGURE 2.14 Potential energy of a

4¢

(2.26)

12



13

23

system of three charges is given by

Again, because of the conservative nature of the

Eq. (2.26), with the notation given

electrostatic force (or equivalently, the path

in the figure.

independence of work done), the final expression for

U, Eq. (2.26), 1s independent of the manner in which
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the configuration is assembled. The potential energy
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is characteristic of the present state of configuration, and not the way
the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square
ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to
put together this arrangement. (b) A charge ¢ is brought to the centre 0
E of the square, the four charges being held fixed at its corners. How

much extra work 1s needed to do this?



FIGURE 2.15

Solution

(a) Since the work done depends on the final arrangement of the
charges, and not on how they are put together, we calculate work
needed for one way of putting the charges at A, B, C and D. Suppose,
first the charge + ¢ is brought to A, and then the charges — ¢, + ¢, and
— g are brought to B, C and D, respectively. The total work needed can
be calculated in steps:

(1)

Work needed to bring charge + g to A when no charge is present
elsewhere: this is zero.

(i1) Work needed to bring — g to B when + g 1s at A. This is given by (charge
at B) x (electrostatic potential at B due to charge + g at A) 2



4ne d
4ne d
0
0

(111) Work needed to bring charge + g to C when + ¢ is at A and — g is at B.
This is given by (charge at C) x (potential at C due to charges at A and B)

tq
—q

drned2 4 ¢
nd

0



4¢

0

2

(iv) Work needed to bring — g to D when + g at A, —¢g at B, and + g at C.
This is given by (charge at D) x (potential at D due to charges at A,

E

B and C)

XAMPLE

Tq



4 ¢

nddned?2 4 ¢

ntd

0

0

0

24



drte d

0

2
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Add the work done in steps (1), (i1), (i11) and (iv). The total work
required is

2

—4q



(U
)+(1)+1-

+2 -

4 ¢

nd



(4-2)
4 ¢

nd

0

The work done depends only on the arrangement of the charges, and
not how they are assembled. By definition, this is the total
electrostatic energy of the charges.

(Students may try calculating same work/energy by taking charges

in any other order they desire and convince themselves that the energy
will remain the same.)

(b) The extra work necessary to bring a charge ¢ to the point E when
0

24

the four charges are at A, B, C and D is ¢ % (electrostatic potential at 0
E due to the charges at A, B, C and D). The electrostatic potential at

E is clearly zero since potential due to A and C is cancelled by that
XAMPLE

due to B and D. Hence no work is required to bring any charge to

E

point E.



2.8 POTENTIAL ENERGY IN AN EXTERNAL FIELD

2.8.1 Potential energy of a single charge

In Section 2.7, the source of the electric field was specified — the charges
and their locations - and the potential energy of the system of those charges
was determined. In this section, we ask a related but a distinct question.

What is the potential energy of a charge ¢ in a given field? This question
was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again to
clarify in what way it is different from the discussion in Section 2.7.

The main difference is that we are now concerned with the potential

energy of a charge (or charges) in an external field. The external field E is
not produced by the given charge(s) whose potential energy we wish to
calculate. E 1s produced by sources external to the given charge(s).The
external sources may be known, but often they are unknown or unspecified;
what is specified is the electric field E or the electrostatic potential 7 due to
the external sources. We assume that the charge g does not significantly
affect the sources producing the external field. This is true if g is very small,
or the external sources are held fixed by other unspecified forces. Even if ¢
is finite, its influence on the external sources may still be ignored in the
situation when very strong sources far away at infinity produce a finite field
E in the region of interest. Note again that we are interested in determining
the potential energy of a given charge ¢ (and later, a system of charges) in
the external field; we are not interested

in the potential energy of the sources producing the external electric field.
The external electric field E and the corresponding external potential
V' may vary from point to point. By definition, } at a point P is the work 64

done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in
bringing a charge ¢ from infinity to the point P in the external field is q V.

This work is stored in the form of potential energy of g. If the point P has
position vector r relative to some origin, we can write: Potential energy of ¢
at r in an external field

=qV(r)
(2.27)
where V(r) is the external potential at the point r.

Thus, if an electron with charge g = e = 1.6x10-19 C is accelerated by a
potential difference of A V=1 volt, it would gain energy of gA V'=1.6 x

10—-19J. This unit of energy is defined as 1 electron volt or 1€V, i.e., 1
eV=1.6 x 10—-19J. The units based on eV are most commonly used in
atomic, nuclear and particle physics, (1 keV =103eV =1.6 x 10-16J, 1
MeV

=106eV =1.6 x 10-13J, 1 GeV =109e¢V = 1.6 x 10-10J and 1 TeV =
1012eV

= 1.6 x 10-7J). [This has already been defined on Page 117, XI Physics
Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an

external field

Next, we ask: what is the potential energy of a system of two charges ¢g 1



and g located at r and r , respectively, in an external field? First, we 2

1

2

calculate the work done in bringing the charge ¢ from infinity tor .

1

1

Work done in this step is g V(r ), using Eq. (2.27). Next, we consider the 1
1

work done in bringing g to r . In this step, work is done not only against 2
2

the external field E but also against the field due to g .

1

Work done on ¢g against the external field

2

=q V(r)

2

2

Work done on ¢ against the field due to ¢

2

1



q49
12

=4 enro 12

where r

is the distance between g and g . We have made use of Egs.

12

1

2

(2.27) and (2.22). By the superposition principle for fields, we add up
the work done on ¢ against the two fields (E and that due to g ): 2
1

Work done in bringing g to r

2

2

q94

12

=qV(r)+

(2.28)



4¢

Tr

012

Thus,

Potential energy of the system

= the total work done in assembling the configuration
949

12

=qV@)tqgV(r)+

1

1

012
E

Example 2.5

XAMPLE



(a) Determine the electrostatic potential energy of a system consisting
of two charges 7 pC and -2 pC (and with no external field) placed

at (-9 cm, 0, 0) and (9 cm, 0, 0) respectively.

2.5

(b) How much work is required to separate the two charges infinitely
away from each other?
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(c) Suppose that the same system of charges is now placed in an

external electric field E=4 (1/r2); A =9 x 105 C m—2. What would the
electrostatic energy of the configuration be?

Solution
12
1

q9
7(2) 10~

(2)
12



=9 x10 x

4 ¢

=-0.71J.

0.18

0

b)Y WwW=U-U=0-U=0-(-0.7)=0.71J.

2

1

(c) The mutual interaction energy of the two charges remains
unchanged. In addition, there is the energy of interaction of the
two charges with the external electric field. We find,

7C



+ A4

1

(D2(2)

0.09m

0.09m

and the net electrostatic energy is

2.5

1)
—p
qV@)tqglV(r)
q9
7C
2C

12

+ A4

—0.71]



4¢

Tr

0.09 m

0.09 m

012

XAMPLE

=70—-20-0.7=49.3]

E

2.8.3 Potential energy of a dipole in an external field
Consider a dipole with charges g = + ¢ and g = — ¢ placed in a uniform 1
2

electric field E, as shown in Fig. 2.16.

As seen in the last chapter, in a uniform electric field,
the dipole experiences no net force; but experiences a
torque

T given by



T=pXE

(2.30)

which will tend to rotate it (unless p is parallel or
antiparallel to E). Suppose an external torque t

1s

ext

applied in such a manner that it just neutralises this
torque and rotates it in the plane of paper from angle 60
to angle 6

1 at an infinitesimal angular speed and without
angular acceleration. The amount of work done by the
external torque will be given by

01

01

W=

1(0d

) 0=

pE sin 0 db



FIGURE 2.16 Potential energy of a

ext

00

00

dipole in a uniform external field.

= pE (cosO — cos

0

01)

(2.31)

This work is stored as the potential energy of the system. We can then

associate potential energy U(0 ) with an inclination 0 of the dipole. Similar
to other potential energies, there is a freedom in choosing the angle where
the potential energy U is taken to be zero. A natural choice is to take = m /
2. (An explanation for it is provided towards the end of discussion.) 0

We can then write,

66



U (0) = pE cos
—cosl =-—pFE cosh=—

pCE

(2.32)
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This expression can alternately be understood also from Eq. (2.29).

We apply Eq. (2.29) to the present system of two charges + g and — g. The
potential energy expression then reads ' (0)

q
U
=q[V(r)=V(r)

2

(2.33)



4 ¢

TXx2a

0

Here, r and r denote the position vectors of + g and — g. Now, the 1
2

potential difference between positions r and r equals the work done 1
2

in bringing a unit positive charge against field from r to r . The 2

1

displacement parallel to the force is 2 a cosO. Thus, [ V(r )-V (r)] =
1

2

— E %2 a cosO . We thus obtain,

"(6)

2

2
q
q
U

=—pE cosb —



tX2a

41

2a
0

We note that U’ (0) differs from U(0 ) by a quantity which is just a constant
for a given dipole. Since a constant is insignificant for potential energy, we
can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).

We can now understand why we took 6 =n/2. In this case, the work
0

done against the external field E in bringing + ¢ and — g are equal and
opposite and cancel out, i.e., g [ V' (r) — V (r )]=0.

1

2

Example 2.6 A molecule of a substance has a permanent electric



dipole moment of magnitude 10-29 C m. A mole of this substance is
polarised (at low temperature) by applying a strong electrostatic field
of magnitude 106 V m—1. The direction of the field is suddenly changed
by an angle of 60°. Estimate the heat released by the substance in
aligning its dipoles along the new direction of the field. For simplicity,
assume 100% polarisation of the sample.

Solution Here, dipole moment of each molecules = 10-29 C m

As 1 mole of the substance contains 6 x 1023 molecules,

total dipole moment of all the molecules, p =6 x 1023 < 10-29 Cm

E

=6x10-6 Cm

XAMPLE

Initial potential energy, U = — pE cos 6 = —6x10—-6x106 cos 0°=—-6]

I

Final potential energy (when 6 = 60°), U =—-6 x 10—-6 x 106 cos 60° =-3 ]
f

Change in potential energy =-3 J — (—6J)=31]

2.6

So, there is loss in potential energy. This must be the energy released



by the substance in the form of heat in aligning its dipoles.

2.9 ELECTROSTATICS OF CONDUCTORS

Conductors and insulators were described briefly in Chapter 1.
Conductors contain mobile charge carriers. In metallic conductors, these
charge carriers are electrons. In a metal, the outer (valence) electrons

part away from their atoms and are free to move. These electrons are free
within the metal but not free to leave the metal. The free electrons form a
kind of ‘gas’; they collide with each other and with the ions, and move
randomly in different directions. In an external electric field, they drift
against the direction of the field. The positive ions made up of the nuclei
and the bound electrons remain held in their fixed positions. In electrolytic
67

conductors, the charge carriers are both positive and negative ions; but
Physics

the situation in this case is more involved — the movement of the charge
carriers is affected both by the external electric field as also by the
so-called chemical forces (see Chapter 3). We shall restrict our discussion
to metallic solid conductors. Let us note important results regarding
electrostatics of conductors.

1. Inside a conductor, electrostatic field is zero



Consider a conductor, neutral or charged. There may also be an external
electrostatic field. In the static situation, when there is no current inside
or on the surface of the conductor, the electric field is zero everywhere
inside the conductor. This fact can be taken as the defining property of a
conductor. A conductor has free electrons. As long as electric field is not
zero, the free charge carriers would experience force and drift. In the
static situation, the free charges have so distributed themselves that the

electric field is zero everywhere inside. Electrostatic field is zero inside a
conductor.

2. At the surface of a charged conductor, electrostatic field

must be normal to the surface at every point

If E were not normal to the surface, it would have some nonzero
component along the surface. Free charges on the surface of the conductor
would then experience force and move. In the static situation, therefore,

E should have no tangential component. Thus electrostatic field at the
surface of a charged conductor must be normal to the surface at every
point. (For a conductor without any surface charge density, field is zero
even at the surface.) See result 5.

3. The interior of a conductor can have no excess charge in
the static situation
A neutral conductor has equal amounts of positive and negative charges

in every small volume or surface element. When the conductor is charged,



the excess charge can reside only on the surface in the static situation.
This follows from the Gauss’s law. Consider any arbitrary volume element

v inside a conductor. On the closed surface S bounding the volume element
v, electrostatic field is zero. Thus the total electric flux through S

is zero. Hence, by Gauss’s law, there is no net charge enclosed by S. But the
surface S can be made as small as you like, 1.e., the volume v can be made
vanishingly small. This means there is no net charge at any point inside the
conductor, and any excess charge must reside at the surface.

4. Electrostatic potential is constant throughout the volume
of the conductor and has the same value (as inside) on
its surface

This follows from results 1 and 2 above. Since E = 0 inside the conductor
and has no tangential component on the surface, no work is done in moving
a small test charge within the conductor and on its surface. That

is, there is no potential difference between any two points inside or on
68

the surface of the conductor. Hence, the result. If the conductor is charged,
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electric field normal to the surface exists; this means potential will be
different for the surface and a point just outside the surface.

In a system of conductors of arbitrary size, shape and

charge configuration, each conductor is characterised by a constant
value of potential, but this constant may differ from one conductor to
the other.

5. Electric field at the surface of a charged conductor

e€n
(2.35)

0

where o is the surface charge density and ”



n is a unit vector normal

to the surface in the outward direction.

To derive the result, choose a pill box (a short cylinder) as the Gaussian
surface about any point P on the surface, as shown in Fig. 2.17. The pill
box is partly inside and partly outside the surface of the conductor. It
has a small area of cross section 8 S and negligible height.

Just inside the surface, the electrostatic field is zero; just outside, the
field is normal to the surface with magnitude E. Thus,

the contribution to the total flux through the pill box

comes only from the outside (circular) cross-section

of the pill box. This equals = E£6 S (positive for ¢ > 0,

negative for o <0), since over the small area 6 S, E

may be considered constant and E and d S are parallel

or antiparallel. The charge enclosed by the pill box

1s 60 S.

By Gauss’s law

coS

E6S=¢0



(2.36)

0

Including the fact that electric field is normal to the
FIGURE 2.17 The Gaussian surface

surface, we get the vector relation, Eq. (2.35), which
(a pill box) chosen to derive Eq. (2.35)

is true for both signs of 6. For 6 > 0, electric field is
for electric field at the surface of a

normal to the surface outward; for ¢ <0, electric field
charged conductor.

1s normal to the surface inward.

6. Electrostatic shielding

Consider a conductor with a cavity, with no charges inside the cavity. A

remarkable result is that the electric field inside the cavity is zero, whatever
be the size and shape of the cavity and whatever be the charge on the
conductor and the external fields in which it might be placed. We have

proved a simple case of this result already: the electric field inside a
charged spherical shell is zero. The proof of the result for the shell makes
use of the spherical symmetry of the shell (see Chapter 1). But the
vanishing of

electric field in the (charge-free) cavity of a conductor is, as mentioned
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above, a very general result. A related result is that even if the conductor
Physics

is charged or charges are induced on a neutral
conductor by an external field, all charges reside
only on the outer surface of a conductor with cavity.
The proofs of the results noted in Fig. 2.18 are
omitted here, but we note their important
implication. Whatever be the charge and field
configuration outside, any cavity in a conductor
remains shielded from outside electric influence: the
field inside the cavity is always zero. This is known
as electrostatic shielding. The effect can be made
use of in protecting sensitive instruments from
FIGURE 2.18 The electric field inside a

outside electrical influence. Figure 2.19 gives a
cavity of any conductor is zero. All

summary of the important electrostatic properties
charges reside only on the outer surface

of a conductor.

of a conductor with cavity. (There are no



charges placed in the cavity.)

FIGURE 2.19 Some important electrostatic properties of a conductor.
Example 2.7

(a) A comb run through one’s dry hair attracts small bits of paper.
Why?

What happens if the hair is wet or if it is a rainy day? (Remember,

a paper does not conduct electricity.)

(b) Ordinary rubber is an insulator. But special rubber tyres of
aircraft are made slightly conducting. Why is this necessary?

(c) Vehicles carrying inflammable materials usually have metallic
ropes touching the ground during motion. Why?

(d) A bird perches on a bare high power line, and nothing happens

to the bird. A man standing on the ground touches the same line

and gets a fatal shock. Why?

Solution

(a) This 1s because the comb gets charged by friction. The molecules
2.7

in the paper gets polarised by the charged comb, resulting in a

net force of attraction. If the hair is wet, or if it is rainy day, friction

between hair and the comb reduces. The comb does not get



XAMPLE

charged and thus it will not attract small bits of paper.
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E

(b) To enable them to conduct charge (produced by friction) to the
XAMPLE

ground; as too much of static electricity accumulated may result

in spark and result in fire.

2.7

(c) Reason similar to (b).

(d) Current passes only when there is difference in potential.

2.10 DIELECTRICS AND POLARISATION

Dielectrics are non-conducting substances. In contrast to conductors,
they have no (or negligible number of ) charge carriers. Recall from Section
2.9 what happens when a conductor is placed in an

external electric field. The free charge carriers move

and charge distribution in the conductor adjusts



itself in such a way that the electric field due to
induced charges opposes the external field within
the conductor. This happens until, in the static
situation, the two fields cancel each other and the
net electrostatic field in the conductor is zero. In a
dielectric, this free movement of charges is not
possible. It turns out that the external field induces
dipole moment by stretching or reorienting
molecules of the dielectric. The collective effect of all
the molecular dipole moments is net charges on the
surface of the dielectric which produce a field that
FIGURE 2.20 Difference in behaviour

of a conductor and a dielectric

opposes the external field. Unlike in a conductor,
in an external electric field.

however, the opposing field so induced does not
exactly cancel the external field. It only reduces it.
The extent of the effect depends on the

nature of the dielectric. To understand the

effect, we need to look at the charge



distribution of a dielectric at the

molecular level.

The molecules of a substance may be

polar or non-polar. In a non-polar
molecule, the centres of positive and
negative charges coincide. The molecule
then has no permanent (or intrinsic) dipole
moment. Examples of non-polar molecules
are oxygen (O ) and hydrogen (H )

2

2

molecules which, because of their
symmetry, have no dipole moment. On the
other hand, a polar molecule is one in which
the centres of positive and negative charges
are separated (even when there is no
FIGURE 2.21

external field). Such molecules have a
Some examples of polar

and non-polar molecules.



permanent dipole moment. An ionic
molecule such as HCI or a molecule of water
(H O) are examples of polar molecules.
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In an external electric field, the

positive and negative charges of a non-polar molecule are displaced in
opposite

directions. The displacement stops when
the external force on the constituent
charges of the molecule is balanced by
the restoring force (due to internal fields
in the molecule). The non-polar molecule
thus develops an induced dipole moment.
The dielectric is said to be polarised by
the external field. We consider only the
simple situation when the induced dipole
moment is in the direction of the field and
is proportional to the field strength.

(Substances for which this assumption



is true are called linear isotropic

dielectrics. ) The induced dipole moments

of different molecules add up giving a net

dipole moment of the dielectric in the

presence of the external field.

A dielectric with polar molecules also

develops a net dipole moment in an

external field, but for a different reason.

FIGURE 2.22 A dielectric develops a net dipole

In the absence of any external field, the

moment in an external electric field. (a) Non-polar

different permanent dipoles are oriented

molecules, (b) Polar molecules.

randomly due to thermal agitation; so

the total dipole moment is zero. When

an external field is applied, the individual dipole moments tend to align
with the field. When summed over all the molecules, there 1s then a net
dipole moment in the direction of the external field, i.e., the dielectric is
polarised. The extent of polarisation depends on the relative strength of

two mutually opposite factors: the dipole potential energy in the external



field tending to align the dipoles with the field and thermal energy tending
to disrupt the alignment. There may be, in addition, the ‘induced dipole
moment’ effect as for non-polar molecules, but generally the alignment
effect is more important for polar molecules.

Thus in either case, whether polar or non-polar, a dielectric develops

a net dipole moment in the presence of an external field. The dipole

moment per unit volume is called polarisation and is denoted by P. For
linear isotropic dielectrics, P=y E

(2.37)

e

where y is a constant characteristic of the dielectric and is known as the
e

electric susceptibility of the dielectric medium.

It is possible to relate y to the molecular properties of the substance,

e

but we shall not pursue that here.

The question is: how does the polarised dielectric modify the original
external field inside it? Let us consider, for simplicity, a rectangular
dielectric slab placed in a uniform external field E parallel to two of its 72
0

faces. The field causes a uniform polarisation P of the dielectric. Thus
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every volume element A v of the slab has a dipole moment

P A v in the direction of the field. The volume element A v is
macroscopically small but contains a very large number of molecular
dipoles. Anywhere inside the dielectric, the

volume element A v has no net charge (though it has net
dipole moment). This is, because, the positive charge of one
dipole sits close to the negative charge of the adjacent dipole.
However, at the surfaces of the dielectric normal to the
electric field, there is evidently a net charge density. As seen
in Fig 2.23, the positive ends of the dipoles remain
unneutralised at the right surface and the negative ends at
the left surface. The unbalanced charges are the induced
charges due to the external field.

Thus the polarised dielectric is equivalent to two charged
surfaces with induced surface charge densities, say ¢ p

and —c . Clearly, the field produced by these surface charges

p



opposes the external field. The total field in the dielectric

FIGURE 2.23 A uniformly

is, thereby, reduced from the case when no dielectric is

polarised dielectric amounts

present. We should note that the surface charge density

to induced surface charge

+oc arises from bound (not free charges) in the dielectric.

density, but no volume

P

charge density.

2.11 CAPACITORS AND CAPACITANCE

A capacitor is a system of two conductors separated by an insulator
(Fig. 2.24). The conductors have charges, say O and QO , and potentials 1
2

Vand V. Usually, in practice, the two conductors have charges Q

1

2

and — O, with potential difference V=V — J between them. We shall 1
2

consider only this kind of charge configuration of the capacitor. (Even a



single conductor can be used as a capacitor by assuming the other at
infinity.) The conductors may be so charged by connecting them to the

two terminals of a battery. Q is called the charge of the capacitor, though
this, in fact, is the charge on one of the conductors — the total charge of the
capacitor is zero.

The electric field in the region between the
conductors is proportional to the charge Q. That
is, if the charge on the capacitor is, say doubled,
the electric field will also be doubled at every point.
(This follows from the direct proportionality
between field and charge implied by Coulomb’s
law and the superposition principle.) Now,
potential difference V is the work done per unit
positive charge in taking a small test charge from
the conductor 2 to 1 against the field.

FIGURE 2.24 A system of two conductors
Consequently, V is also proportional to O, and
separated by an insulator forms a capacitor.

the ratio O/ V'is a constant:

0



(2.38)
4

The constant C is called the capacitance of the capacitor. C 1s independent
73

of Q or V, as stated above. The capacitance C depends only on the
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geometrical configuration (shape, size, separation) of the system of two
conductors. [As we shall see later, it also depends on the nature of the
insulator (dielectric) separating the two conductors.] The SI unit of
capacitance is 1 farad (=1 coulomb volt-1) or 1 F =1 C V—1. A capacitor
with fixed capacitance is symbolically shown as ---||--, while the one with

variable capacitance is shown as

Equation (2.38) shows that for large C, V' is small for a given Q. This means
a capacitor with large capacitance can hold large amount of charge Q at a
relatively small V. This is of practical importance. High potential difference
implies strong electric field around the conductors. A strong electric field
can 1onise the surrounding air and accelerate the charges so

produced to the oppositely charged plates, thereby neutralising the charge
on the capacitor plates, at least partly. In other words, the charge of the
capacitor leaks away due to the reduction in insulating power of the

intervening medium.



The maximum electric field that a dielectric medium can withstand
without breakdown (of its insulating property) is called its dielectric
strength; for air it is about 3 X 106 Vm—1. For a separation between
conductors of the order of 1 cm or so, this field corresponds to a potential
difference of 3 < 104 V between the conductors. Thus, for a capacitor to
store a large amount of charge without leaking, its capacitance should

be high enough so that the potential difference and hence the electric
field do not exceed the breakdown limits. Put differently, there is a limit
to the amount of charge that can be stored on a given capacitor without
significant leaking. In practice, a farad is a very big unit; the most common
units are its sub-multiples I uF=10-6 F, 1 nF =10-9F, 1 pF = 10-12 F,
etc. Besides its use in storing charge, a capacitor is a key element of most
ac circuits with important functions, as described in Chapter 7.

2.12 THE PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two large plane parallel conducting
plates separated by a small distance (Fig. 2.25). We first take the
intervening medium between the plates to be

vacuum. The effect of a dielectric medium between

the plates 1s discussed in the next section. Let 4 be

the area of each plate and d the separation between



them. The two plates have charges O and — Q. Since
d is much smaller than the linear dimension of the
plates ( d 2 << A), we can use the result on electric
field by an infinite plane sheet of uniform surface
charge density (Section 1.15). Plate 1 has surface
charge density 6 = O/ 4 and plate 2 has a surface
charge density —c. Using Eq. (1.33), the electric field
in different regions is:

Outer region I (region above the plate 1),

FIGURE 2.25 The parallel plate capacitor.

c

(0]
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(2.39)

2¢
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Outer region II (region below the plate 2),

(2.40)

2¢

2¢

0

0

In the inner region between the plates 1 and 2, the electric fields due
to the two charged plates add up, giving

c

(0]



Q

(2.41)
2¢

2¢

€A

0

0

The direction of electric field is from the positive to the negative plate.
Thus, the electric field is localised between the two plates and is
uniform throughout. For plates with finite area, this will not be true near
the outer boundaries of the plates. The field lines bend outward at the

edges — an effect called ‘fringing of the field’. By the same token, ¢ will not
http://micro.magnet.fsa.edu/electromag/java/capacitance/ Interactive Java



tutorial Factors affecting capacitance, capacitors in action be strictly
uniform on the entire plate. [ £ and o are related by Eq. (2.35).]

However, for d 2 << A4, these effects can be ignored in the regions
sufficiently far from the edges, and the field there is given by Eq. (2.41).
Now for uniform electric field, potential difference is simply the electric
field times the distance between the plates, that is, 1 Od

V=Ed=¢A

(2.42)

0

The capacitance C of the parallel plate capacitor is then

0
€A

(2.43)

Vv

d

which, as expected, depends only on the geometry of the system. For

typical values like 4 =1 m2, d =1 mm, we get



12

8.85x 10

CNm

=8.85 x10—F

(2.44)

3

10— m

(You can check that if 1F=1C V-1=1C (NC-1m)-1 =1 C2 N-Im-1.)
This shows that 1F is too big a unit in practice, as remarked earlier.
Another way of seeing the ‘bigness’ of 1F is to calculate the area of the
plates needed to have C = 1F for a separation of, say 1 cm:

Cd



=10m

—12

8.85 x

(2.45)

10

CNm

which is a plate about 30 km in length and breadth!

2.13 EFFECT OF DIELECTRIC ON CAPACITANCE



With the understanding of the behavior of dielectrics in an external field
developed in Section 2.10, let us see how the capacitance of a parallel
plate capacitor is modified when a dielectric is present. As before, we

have two large plates, each of area A4, separated by a distance d. The charge
on the plates 1s £ O, corresponding to the charge density +c (with 6 = O/ A).
When there is vacuum between the plates, o

E=

0
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and the potential difference V'is
0

V=Ed

0

0

The capacitance C in this case is

0

0
A
C



(2.46)

0

Consider next a dielectric inserted between the plates fully occupying
the intervening region. The dielectric is polarised by the field and, as
explained in Section 2.10, the effect is equivalent to two charged sheets
(at the surfaces of the dielectric normal to the field) with surface charge

densities 6 and —c . The electric field in the dielectric then corresponds

p

p

to the case when the net surface charge density on the plates is (¢ — G ).

)4
That 1s,
c—oP



(2.47)
0

so that the potential difference across the plates is

c—oP
V=Ed=
d

€

(2.48)

0

For linear dielectrics, we expect ¢ to be proportional to £, i.e., to ©.

p
0

Thus, (6 — 6 ) 1s proportional to ¢ and we can write

(2.49)
K

where K is a constant characteristic of the dielectric. Clearly, K > 1. We then
have



e K

Ae K

(2.50)

0

0

The capacitance C, with dielectric between the plates, is then

0
e KA

The product € K 1s called the permittivity of the medium and 1s 0

denoted by ¢



e=¢ekK

(2.52)

0

For vacuum K = 1 and ¢ = ¢ ; ¢ 1s called the permittivity of the vacuum.
0

0

The dimensionless ratio

€
K=¢
(2.53)
0

1s called the dielectric constant of the substance. As remarked before, from
Eq. (2.49), it is clear that K is greater than 1. From Egs. (2.46) and (2. 51) C

K=C
(2.54)
0

Thus, the dielectric constant of a substance is the factor (>1) by which
the capacitance increases from its vacuum value, when the dielectric is
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inserted fully between the plates of a capacitor. Though we arrived at
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Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any
type of capacitor and can, in fact, be viewed in general as a definition of
the dielectric constant of a substance.

ELECTRIC DISPLACEMENT

We have introduced the notion of dielectric constant and arrived at Eq.
(2.54), without giving the explicit relation between the induced charge
density ¢ and the polarisation P.

p

We take without proof the result that

c=PC" n
P
where *

n is a unit vector along the outward normal to the surface. Above equation
is general, true for any shape of the dielectric. For the slab in Fig. 2.23, P is
along "

n at the
right surface and opposite to ~
n at the left surface. Thus at the right surface, induced

charge density is positive and at the left surface, it is negative, as guessed
already in our qualitative discussion before. Putting the equation for electric
field in vector formo —C "~

CA:



Pn

En

€0
or(eE+P)C”
n=c

0

The quantity € E + P is called the electric displacement and is denoted by
D.Itisa0

vector quantity. Thus,
D=¢E+P,DC"
n=o,

0

The significance of D is this : in vacuum, E is related to the free charge
density G.

When a dielectric medium is present, the corresponding role is taken up by
D. For a dielectric medium, it is D not E that is directly related to free
charge density o, as seen in above equation. Since P is in the same direction
as E, all the three vectors P, E and D are parallel.

The ratio of the magnitudes of D and E is

D

og0



0

E

c—oP
Thus,
D=¢KE
0

andP=D-<¢E=¢(K-1)E

0

0

This gives for the electric susceptibility y defined in Eq. (2.37)
e

x=¢(K-1)

e

0

Example 2.8 A slab of material of dielectric constant K has the same area as
the plates of a parallel-plate capacitor but has a thickness (3/4) d, where d is
the separation of the plates. How is the capacitance E

XAMPLE
changed when the slab is inserted between the plates?

Solution Let £ = V'/ d be the electric field between the plates when 0



0

there is no dielectric and the potential difference is V. If the dielectric 0
2.8

1s now 1nserted, the electric field in the dielectric will be E=E / K.
0

The potential difference will then be
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1

E

3

0

V=E(d)+

(d)

04

K4

K+3

=Ed(+



4K

4 K

The potential difference decreases by the factor ( K + 3)/4 K while the 2.8
free charge Q on the plates remains unchanged. The capacitance

0

thus increases

XAMPLE

Q

4K Q

4K



K+3V

K+3

0

2.14 COMBINATION OF CAPACITORS

We can combine several capacitors of capacitance C, C,..., C to obtain 1
2

n

a system with some effective capacitance C. The effective capacitance
depends on the way the individual capacitors are combined. Two simple
possibilities are discussed below.

2.14.1 Capacitors in series

Figure 2.26 shows capacitors C and C combined in series.

1

2

The left plate of C and the right plate of C are connected to two 1

2

terminals of a battery and have charges Q and — Q,



respectively. It then follows that the right plate of C

1

has charge — Q and the left plate of C has charge Q.
2

If this was not so, the net charge on each capacitor
would not be zero. This would result in an electric
field in the conductor connecting C and C . Charge
1

2

would flow until the net charge on both C and C

1

2

1s zero and there 1is no electric field in the conductor
connecting C and C . Thus, in the series

1

2

combination, charges on the two plates (x Q) are the
same on each capacitor. The total potential drop V'

across the combination is the sum of the potential



drops V and V across C and C, respectively.
1
2
1
2

FIGURE 2.26 Combination of two

Q
Q

capacitors in series.

V=v+V=

(2.55)

1

\O)

a a



1.e.,

Now we can regard the combination as an
effective capacitor with charge O and potential
difference V. The effective capacitance of the

combination is

We compare Eq. (2.57) with Eq. (2.56), and

obtain



FIGURE 2.27 Combination of n
capacitors in series.

1

1

1

78

Electrostatic Potential

and Capacitance

The proof clearly goes through for any number of
capacitors arranged in a similar way. Equation (2.55),

for n capacitors arranged in series, generalises to

0



Q

Q
V=V+V+. . +V=

n
Following the same steps as for the case of two
capacitors, we get the general formula for effective

capacitance of a series combination of #n capacitors:
1

1



a a a a

(2.60)

1

2

3

n

2.14.2 Capacitors in parallel

Figure 2.28 (a) shows two capacitors arranged in

parallel. In this case, the same potential difference is



applied across both the capacitors. But the plate charges
(£ Q) on capacitor 1 and the plate charges (+ Q ) on the
1

2

capacitor 2 are not necessarily the same:
O0=Cr,0=CV

(2.61)

1

1

2

2

The equivalent capacitor is one with charge

0=0+0
(2.62)

1

2

and potential difference V.
og=Ccr=Ccv+cCcvr
(2.63)

1



2

The effective capacitance C is, from Eq. (2.63),
C=C+C

(2.64)

1

2

The general formula for effective capacitance C for
parallel combination of #n capacitors [Fig. 2.28 (b)]
FIGURE 2.28 Parallel combination of

follows similarly,

(a) two capacitors, (b) n capacitors.

0=0+0+..+0
(2.65)

1

2

n

ie,CV=CV+CV+..CV
(2.66)
1

2



n
which gives

C=C+C+..C

(2.67)

1

2

n

Example 2.9 A network of four 10 uF capacitors is connected to a 500 V
supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance
of the network and (b) the charge on each capacitor. (Note, the charge

on a capacitor 1s the charge on the plate with higher potential, equal

and opposite to the charge on the plate with lower potential.)

E

XAMPLE

2.9

FIGURE 2.29
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Solution

(a) In the given network, C', C and C are connected in series. The 1



2
3
effective capacitance C' of these three capacitors is given by
1

1

3
For C=C=C=10 pF, C"=(10/3) uF. The network has C" and C
1

2



3
4
connected in parallel. Thus, the equivalent capacitance C of the

network 1s

10

C=C+C=

+10

3
uF =13.3uF
(b) Clearly, from the figure, the charge on each of the capacitors, C, 1
C and C is the same, say Q. Let the charge on C be Q'. Now, since 2
3
4
the potential difference across AB is O/ C, across BC is O/ C, across 1
2
CD1s O/ C, we have

3



0

0
+
+

=500V

C

C

C

1

2

3

Also, O'/ C =500 V.

4

2.9

This gives for the given value of the capacitances,
10

-3

Q0 =500V x

uF=1.7%x10C and



3
XAMPLE

3

500 V

10F

5.0 10

C

2.15 ENERGY STORED IN A CAPACITOR

A capacitor, as we have seen above, is a system of two conductors with

charge Q and — Q. To determine the energy stored in this configuration,
consider 1nitially two uncharged conductors 1 and 2. Imagine next a process
of transferring charge from conductor 2 to conductor 1 bit by

bit, so that at the end, conductor 1 gets charge Q. By

charge conservation, conductor 2 has charge — Q at



the end (Fig 2.30).

In transferring positive charge from conductor 2

to conductor 1, work will be done externally, since at
any stage conductor 1 is at a higher potential than
conductor 2. To calculate the total work done, we first
calculate the work done in a small step involving
transfer of an infinitesimal (i.e., vanishingly small)
amount of charge. Consider the intermediate situation
when the conductors 1 and 2 have charges Q' and

— Q' respectively. At this stage, the potential difference
FIGURE 2.30 (a) Work done in a small

V" between conductors 1 to 2 1s Q'/ C, where C is the step of building
charge on conductor 1

capacitance of the system. Next imagine that a small
from Q' to Q' + 6 O'. (b) Total work done

charge 0 Q' is transferred from conductor 2 to 1. Work
in charging the capacitor may be

done in this step (8 "), resulting in charge Q' on
viewed as stored in the energy of

conductor 1 increasing to Q'+ & Q' is given by

electric field between the plates.



0’
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OW=V'SQ =

o Q'

(2.68)
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Since & Q' can be made as small as we like, Eq. (2.68) can be written as 1
2

2

o W=

[(Q'+30)-0Q']

(2.69)

2C

Equations (2.68) and (2.69) are identical because the term of second
order in & Q', 1.e., 8 Q' 2/2 C, is negligible, since & Q' is arbitrarily small.
The total work done ( ) 1s the sum of the small work (8 W) over the very

large number of steps involved in building the charge Q' from zero to Q.

W:



oW

sum over all steps
1

2

2

[(Q

+50)-0']
2C

(2.70)

sum over all steps
1

2

[6Q"-0}+{(200)-60"}
2

2



+{(B36Q0)— (200" } + ...
2C

2
2
+t{0-(0-00)}]
(2.71)

2

1

[O—0]=
(2.72)
2C

2C

The same result can be obtained directly from Eq. (2.68) by integration

Q
20



C2

2C

0

0

This is not surprising since integration is nothing but summation of
a large number of small terms.

We can write the final result, Eq. (2.72) in different ways

2

Q



=CV=0V

(2.73)

2C

2

2

Since electrostatic force is conservative, this work is stored in the form
of potential energy of the system. For the same reason, the final result for
potential energy [Eq. (2.73)] is independent of the manner in which the
charge configuration of the capacitor is built up. When the capacitor
discharges, this stored-up energy is released. It is possible to view the
potential energy of the capacitor as ‘stored’ in the electric field between
the plates. To see this, consider for simplicity, a parallel plate capacitor
[of area A(of each plate) and separation d between the plates].

Energy stored in the capacitor

2

2

10

(4o )



(2.74)
2C

2

€A

0

The surface charge density o is related to the electric field E between the
plates,

c
E=¢

(2.75)

0

From Egs. (2.74) and (2.75) , we get
Energy stored in the capacitor
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U=(1/2)

2

eExAd



(2.76)

0
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Note that Ad is the volume of the region between the plates (where
electric field alone exists). If we define energy density as energy stored
per unit volume of space, Eq (2.76) shows that

Energy density of electric field,

u=(1/2)e E2

(2.77)

0

Though we derived Eq. (2.77) for the case of a parallel plate capacitor,

the result on energy density of an electric field is, in fact, very general and
holds true for electric field due to any configuration of charges.

Example 2.10 (a) A 900 pF capacitor is charged by 100 V battery
[Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?
(b) The capacitor is disconnected from the battery and connected to

another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic energy
stored by the system?

FIGURE 2.31
Solution

(a) The charge on the capacitor is



O=CV=900%10-12F x 100 V=9 x 10-8 C

The energy stored by the capacitor is

=(12)CV2=01/72) 0V

=(1/2) x9 x 10-8C x 100 V=4.5 x 10-6 ]

(b) In the steady situation, the two capacitors have their positive
plates at the same potential, and their negative plates at the
same potential. Let the common potential difference be V'. The

charge on each capacitor is then Q' = CV'. By charge conservation, Q' =
Q/2. This implies V' = V/2. The total energy of the system is 1

1

6

2

o'V
ov
2.2510-



4

Thus in going from (a) to (b), though no charge is lost; the final
energy 1s only half the initial energy. Where has the remaining

2.10

energy gone'?

There 1s a transient period before the system settles to the

situation (b). During this period, a transient current flows from
XAMPLE

the first capacitor to the second. Energy is lost during this time
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2.16 VAN DE GRAAFF GENERATOR

This is a machine that can build up high voltages of the order of a few
million volts. The resulting large electric fields are used to accelerate
charged particles (electrons, protons, ions) to high energies needed for
experiments to probe the small scale structure of matter. The principle

underlying the machine is as follows.



http://www.coe.ufrj.br/~acmg/myvdg.html
http://amasce.com/emotor/vdg.html V

Suppose we have a large spherical conducting shell of radius R, on
an de Graaff generator

which we place a charge Q. This charge spreads itself uniformly all over the
sphere. As we have seen in Section 1.14, the field outside the sphere is just
that of a point charge Q at the centre; while the field inside the sphere
vanishes. So the potential outside is that of a point charge; and inside it is
constant, namely the value at the radius R. We thus have:

Potential inside conducting spherical shell of radius R carrying charge QO
= constant

1

Q

, principle and demonstration:

(2.78)

4 ¢

TR

0

Now, as shown in Fig. 2.32, let us suppose that in some way we

introduce a small sphere of radius r, carrying some charge ¢, into the large
one, and place it at the centre. The potential due to this new charge clearly
has the following values at the radii indicated:



Potential due to small sphere of radius r carrying charge ¢

1

q

at surface of small sphere
4 ¢

Tr

at large shell of radius R.

(2.79)

4¢

T R

0

Taking both charges g and Q into account we have for the total

potential /" and the potential difference the values

1

Oq



V(R)=

4 ¢

Oq
Vir)=

dne R

11

Vir)-V(R)=



(2.80)

4 ¢

T

R

0

Assume now that g is positive. We see that,
independent of the amount of charge Q that may have
accumulated on the larger sphere and even if it is
positive, the inner sphere is always at a higher

potential: the difference V ( » )— V' ( R) is positive. The potential due to Q is
constant upto radius R and so FIGURE 2.32 Illustrating the principle

cancels out in the difference!

of the electrostatic generator.

This means that if we now connect the smaller and
83

larger sphere by a wire, the charge g on the former
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will immediately flow onto the matter, even
though the charge O may be quite large. The
natural tendency is for positive charge to

move from higher to lower potential. Thus,



provided we are somehow able to introduce
the small charged sphere into the larger one,
we can in this way keep piling up larger and
larger amount of charge on the latter. The
potential (Eq. 2.78) at the outer sphere would
also keep rising, at least until we reach the
breakdown field of air.

This is the principle of the van de Graaff
generator. It is a machine capable of building
up potential difference of a few million volts,
and fields close to the breakdown field of air
which is about 3 x 106 V/m. A schematic
diagram of the van de Graaff generator is given
in Fig. 2.33. A large spherical conducting
FIGURE 2.33 Principle of construction
shell (of few metres radius) is supported at a
of Van de Graaff generator.

height several meters above the ground on

an insulating column. A long narrow endless

belt insulating material, like rubber or silk, is wound around two pulleys —



one at ground level, one at the centre of the shell. This belt is kept
continuously moving by a motor driving the lower pulley. It continuously
carries positive charge, sprayed on to it by a brush at ground level, to the
top. There it transfers its positive charge to another conducting brush
connected to the large shell. Thus positive charge is transferred to the
shell, where it spreads out uniformly on the outer surface. In this way,
voltage differences of as much as 6 or 8 million volts (with respect to
ground) can be built up.

SUMMARY

1.

Electrostatic force is a conservative force. Work done by an external
force (equal and opposite to the electrostatic force) in bringing a charge
g from a point R to a point P is J'— V', which is the difference in P

R

potential energy of charge g between the final and initial points.

2.

Potential at a point is the work done per unit charge (by an external
agency) in bringing a charge from infinity to that point. Potential at a
point is arbitrary to within an additive constant, since it is the potential

difference between two points which is physically significant. If potential



at infinity is chosen to be zero; potential at a point with position vector
r due to a point charge Q placed at the origin is given is given by 1

0

V(r)=4ner

0

3.

The electrostatic potential at a point with position vector r due to a

point dipole of dipole moment p placed at the origin is

0
Electrostatic Potential
and Capacitance

The result is true also for a dipole (with charges — g and g separated by 2 a)
for r >> a.



4.

For a charge configuration ¢ , ¢, ..., ¢ with position vectors r , 1

2

n

1

r,...r,the potential at a point P is given by the superposition principle 2
n

1



4 ¢

1P

2P

P

n

where r 1s the distance between g and P, as and so on.

1P

1

5.

An equipotential surface is a surface over which potential has a constant
value. For a point charge, concentric spheres centered at a location of

the charge are equipotential surfaces. The electric field E at a point is
perpendicular to the equipotential surface through the point. E is in the
direction of the steepest decrease of potential.

6.

Potential energy stored in a system of charges is the work done (by an



external agency) in assembling the charges at their locations. Potential
energy of two charges ¢ , g atr, r is given by 1
2

1

U=4ner

0

12

where 7 is distance between g and ¢ .

12

1

2

7.

The potential energy of a charge g in an external potential V(r) is gV(r).
The potential energy of a dipole moment p in a uniform electric field E

is —p.E.



8. Electrostatics field E is zero in the interior of a conductor; just outside
the surface of a charged conductor, E 1s normal to the surface given by ¢

E=
€ n where "n 1s the unit vector along the outward normal to the 0
surface and o is the surface charge density. Charges in a conductor can
reside only at its surface. Potential is constant within and on the surface
of a conductor. In a cavity within a conductor (with no charges), the
electric field is zero.

9.

A capacitor is a system of two conductors separated by an insulator. Its

capacitance is defined by C = Q/V, where O and —Q are the charges on the
two conductors and ¥ is the potential difference between them. C is
determined purely geometrically, by the shapes, sizes and relative positions
of the two conductors. The unit of capacitance is farad:,

1 F=1 CV -1. For a parallel plate capacitor (with vacuum between the

plates),
A
C=¢0d

where A4 is the area of each plate and d the separation between them.

10. If the medium between the plates of a capacitor is filled with an
insulating substance (dielectric), the electric field due to the charged plates



induces a net dipole moment in the dielectric. This effect, called
polarisation,

gives rise to a field in the opposite direction. The net electric field inside
the dielectric and hence the potential difference between the plates is
thus reduced. Consequently, the capacitance C increases from its value
C when there is no medium (vacuum),

0

C=KCO

where K is the dielectric constant of the insulating substance.
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11. For capacitors in the series combination, the total capacitance C is given
by 1

1
1
1
+
+
+ ..



a a a

3

In the parallel combination, the total capacitance C is:
C=C+C+C+..

1

2

3

where C', C, C ... are individual capacitances.

1

2

3

12. The energy U stored in a capacitor of capacitance C, with charge QO and
voltage V'is 2

1

1



2

2C

The electric energy density (energy per unit volume) in a region with
electric field is (1/2)e E2.

0

13. A Van de Graaff generator consists of a large spherical conducting shell
(a few metre in diameter). By means of a moving belt and suitable brushes,
charge is continuously transferred to the shell and potential difference

of the order of several million volts is built up, which can be used for
accelerating charged particles.

Physical quantity

Symbol

Dimensions

Unit



Remark

Potential

Qor/V

[M1 L2 T-3 A-1]

v

Potential difference is
physically significant
Capacitance

C

[M—1 L-2 T4 A2]

F

Polarisation

P

[L-2 AT]

C m-2

Dipole moment per unit



volume

Dielectric constant

K

[Dimensionless]

POINTS TO PONDER

1.

Electrostatics deals with forces between charges at rest. But if there is a
force on a charge, how can it be at rest? Thus, when we are talking of
electrostatic force between charges, it should be understood that each
charge is being kept at rest by some unspecified force that opposes the
net Coulomb force on the charge.

2.

A capacitor is so configured that it confines the electric field lines within
a small region of space. Thus, even though field may have considerable
strength, the potential difference between the two conductors of a
capacitor is small.

3.

Electric field is discontinuous across the surface of a spherical charged

)



shell. It 1s zero inside and

A

€ n outside. Electric potential is, however

0

continuous across the surface, equal to g/4ne R at the surface.
0

4.

The torque p % E on a dipole causes it to oscillate about E. Only if there is a
dissipative mechanism, the oscillations are damped and the dipole 86

eventually aligns with E.

Electrostatic Potential
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5.

Potential due to a charge ¢ at its own location is not defined — it is
infinite.

6.

In the expression gV (r) for potential energy of a charge g, V' (r) is the
potential due to external charges and not the potential due to g. As seen in
point 5, this expression will be ill-defined if ¥ (r) includes potential due to a
charge q itself.

7.

A cavity inside a conductor is shielded from outside electrical influences.



It is worth noting that electrostatic shielding does not work the other
way round; that is, if you put charges inside the cavity, the exterior of
the conductor is not shielded from the fields by the inside charges.
EXERCISES

2.1

Two charges 5 x 10-8 C and —3 % 10-8 C are located 16 cm apart. At
what point(s) on the line joining the two charges is the electric
potential zero? Take the potential at infinity to be zero.

2.2

A regular hexagon of side 10 cm has a charge 5 puC at each of its
vertices. Calculate the potential at the centre of the hexagon.

2.3

Two charges 2 uC and —2 uC are placed at points A and B 6 cm
apart.

(a)

Identify an equipotential surface of the system.

(b)

What is the direction of the electric field at every point on this
surface?

24



A spherical conductor of radius 12 cm has a charge of 1.6 x 10-7C
distributed uniformly on its surface. What is the electric field

(a)

inside the sphere

(b)

just outside the sphere

(c)

at a point 18 cm from the centre of the sphere?

2.5

A parallel plate capacitor with air between the plates has a
capacitance of 8 pF (1pF = 10-12 F). What will be the capacitance if
the distance between the plates is reduced by half, and the space
between them is filled with a substance of dielectric constant 67
2.6

Three capacitors each of capacitance 9 pF are connected in series.
(a)

What is the total capacitance of the combination?

(b)

What is the potential difference across each capacitor if the

combination is connected to a 120 V supply?



2.7

Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected

in parallel.

(a)

What is the total capacitance of the combination?

(b)

Determine the charge on each capacitor if the combination is
connected to a 100 V supply.

2.8

In a parallel plate capacitor with air between the plates, each plate

has an area of 6 x 10—3 m2 and the distance between the plates is 3 mm.
Calculate the capacitance of the capacitor. If this capacitor is
connected to a 100 V supply, what is the charge on each plate of

87

the capacitor?
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2.9

Explain what would happen if in the capacitor given in Exercise

2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted

between the plates,



(a)

while the voltage supply remained connected.

(b)

after the supply was disconnected.

2.10

A 12pF capacitor is connected to a S0V battery. How much
electrostatic energy is stored in the capacitor?

2.11

A 600pF capacitor is charged by a 200V supply. It is then
disconnected from the supply and is connected to another
uncharged 600 pF capacitor. How much electrostatic energy is lost
in the process?

ADDITIONAL EXERCISES

2.12

A charge of 8 mC is located at the origin. Calculate the work done in
taking a small charge of —2 X 10-9 C from a point P (0, 0, 3 cm) to a
point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

2.13

A cube of side b has a charge g at each of its vertices. Determine the
potential and electric field due to this charge array at the centre of the cube.

2.14



Two tiny spheres carrying charges 1.5 pC and 2.5 pC are located 30 cm
apart. Find the potential and electric field:

(a)

at the midpoint of the line joining the two charges, and

(b)

at a point 10 cm from this midpoint in a plane normal to the
line and passing through the midpoint.

2.15

A spherical conducting shell of inner radius  and outer radius r
1

2

has a charge Q.

(a)

A charge ¢ 1s placed at the centre of the shell. What is the
surface charge density on the inner and outer surfaces of the

shell?
(b)
Is the electric field inside a cavity (with no charge) zero, even if

the shell is not spherical, but has any irregular shape? Explain.

2.16



(a)

Show that the normal component of electrostatic field has a
discontinuity from one side of a charged surface to another
given by

c

(E-E)C"

€0

where ~

n is a unit vector normal to the surface at a point and

o is the surface charge density at that point. (The direction of
n is from side 1 to side 2.) Hence show that just outside a
conductor, the electric fieldis 6~

n/s.

0

(b)

Show that the tangential component of electrostatic field is



continuous from one side of a charged surface to another. [Hint:
For (a), use Gauss’s law. For, (b) use the fact that work done by
electrostatic field on a closed loop is zero.]

2.17

A long charged cylinder of linear charged density A is surrounded
by a hollow co-axial conducting cylinder. What is the electric field in
the space between the two cylinders?

2.18

In a hydrogen atom, the electron and proton are bound at a distance
88

of about 0.53 A:
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(a)

Estimate the potential energy of the system in eV, taking the

zero of the potential energy at infinite separation of the electron
from proton.

(b)

What is the minimum work required to free the electron, given

that its kinetic energy in the orbit is half the magnitude of



potential energy obtained in (a)?

(c)

What are the answers to (a) and (b) above if the zero of potential
energy is taken at 1.06 A separation?

2.19

If one of the two electrons of a H molecule is removed, we get a

2

hydrogen molecular ion H+. In the ground state of an H+, the two
2

2

protons are separated by roughly 1.5 A, and the electron is roughly
1 A from each proton. Determine the potential energy of the system.
Specify your choice of the zero of potential energy.

2.20

Two charged conducting spheres of radii a and b are connected to each
other by a wire. What is the ratio of electric fields at the surfaces of the two
spheres? Use the result obtained to explain why charge

density on the sharp and pointed ends of a conductor is higher
than on its flatter portions.

2.21



Two charges —g and +q are located at points (0, 0, — a) and (0, 0, a),
respectively.

(a)

What is the electrostatic potential at the points (0, 0, z) and
(x,,0)?

(b)

Obtain the dependence of potential on the distance r of a point
from the origin when / a >> 1.

(c)

How much work is done in moving a small test charge from the
point (5,0,0) to (—7,0,0) along the x-axis? Does the answer
change if the path of the test charge between the same points

is not along the x-axis?

2.22

Figure 2.34 shows a charge array known as an electric quadrupole.
For a point on the axis of the quadrupole, obtain the dependence

of potential on r for 7/ a >> 1, and contrast your results with that due to an
electric dipole, and an electric monopole (i.e., a single charge).

FIGURE 2.34
2.23

An electrical technician requires a capacitance of 2 uF in a circuit



across a potential difference of 1 kV. A large number of 1 puF capacitors
are available to him each of which can withstand a potential
difference of not more than 400 V. Suggest a possible arrangement
that requires the minimum number of capacitors.

2.24

What is the area of the plates of a 2 F parallel plate capacitor, given
that the separation between the plates is 0.5 cm? [You will realise
from your answer why ordinary capacitors are in the range of uF or
less. However, electrolytic capacitors do have a much larger
capacitance (0.1 F) because of very minute separation between the
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2.25

Obtain the equivalent capacitance of the network in Fig. 2.35. For a
300 V supply, determine the charge and voltage across each capacitor.
FIGURE 2.35

2.26

The plates of a parallel plate capacitor have an area of 90 cm2 each

and are separated by 2.5 mm. The capacitor is charged by connecting



it to a 400 V supply.

(a)

How much electrostatic energy is stored by the capacitor?

(b)

View this energy as stored in the electrostatic field between

the plates, and obtain the energy per unit volume u. Hence

arrive at a relation between u and the magnitude of electric

field E between the plates.

2.27

A 4 pF capacitor is charged by a 200 V supply. It is then disconnected
from the supply, and is connected to another uncharged 2 pF
capacitor. How much electrostatic energy of the first capacitor is
lost in the form of heat and electromagnetic radiation?

2.28

Show that the force on each plate of a parallel plate capacitor has a

magnitude equal to (Y2) QF, where Q is the charge on the capacitor, and £ is
the magnitude of electric field between the plates. Explain the origin of the
factor Y.

2.29
A spherical capacitor consists of two concentric spherical conductors,

held in position by suitable insulating supports (Fig. 2.36). Show
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FIGURE 2.36
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that the capacitance of a spherical capacitor is given by
4 ¢

Trr

where r

and 7 are the radii of outer and inner spheres,

1

2

respectively.

2.30

A spherical capacitor has an inner sphere of radius 12 cm and an
outer sphere of radius 13 cm. The outer sphere is earthed and the

inner sphere is given a charge of 2.5 uC. The space between the



concentric spheres is filled with a liquid of dielectric constant 32.
(a)

Determine the capacitance of the capacitor.

(b)

What is the potential of the inner sphere?

(c)

Compare the capacitance of this capacitor with that of an
isolated sphere of radius 12 cm. Explain why the latter is much
smaller.

2.31

Answer carefully:

(a)

Two large conducting spheres carrying charges O and Q are

1

2

brought close to each other. Is the magnitude of electrostatic
force between them exactly given by O Q /4ne r 2, where r is 1
2

0

the distance between their centres?



(b)

If Coulomb’s law involved 1/ 3 dependence (instead of 1/ r 2),
would Gauss’s law be still true ?

(c)

A small test charge is released at rest at a point in an
electrostatic field configuration. Will it travel along the field
line passing through that point?

(d)

What is the work done by the field of a nucleus in a complete
circular orbit of the electron? What if the orbit is elliptical?
(e)

We know that electric field is discontinuous across the surface
of a charged conductor. Is electric potential also discontinuous
there?

(f)

What meaning would you give to the capacitance of a single
conductor?

(2)

Guess a possible reason why water has a much greater

dielectric constant (= 80) than say, mica (= 6).



2.32

A cylindrical capacitor has two co-axial cylinders of length 15 cm
and radii 1.5 cm and 1.4 cm. The outer cylinder is earthed and the
inner cylinder is given a charge of 3.5 uC. Determine the capacitance
of the system and the potential of the inner cylinder. Neglect end
effects (1.e., bending of field lines at the ends).

2.33

A parallel plate capacitor is to be designed with a voltage rating

1 kV, using a material of dielectric constant 3 and dielectric strength
about 107 Vm—1. (Dielectric strength is the maximum electric field a
material can tolerate without breakdown, i.e., without starting to
conduct electricity through partial ionisation.) For safety, we should
like the field never to exceed, say 10% of the dielectric strength.
What minimum area of the plates is required to have a capacitance
of 50 pF?

2.34

Describe schematically the equipotential surfaces corresponding to
(a)

a constant electric field in the z-direction,

(b)



a field that uniformly increases in magnitude but remains in a
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(c)

a single positive charge at the origin, and

(d)

a uniform grid consisting of long equally spaced parallel charged
wires in a plane.

2.35

In a Van de Graaff type generator a spherical metal shell is to be a
15 x 106 V electrode. The dielectric strength of the gas surrounding
the electrode is 5 x 107 Vm—1. What is the minimum radius of the
spherical shell required? (You will learn from this exercise why one
cannot build an electrostatic generator using a very small shell
which requires a small charge to acquire a high potential.)

2.36

A small sphere of radius 7 and charge g is enclosed by a spherical 1
1

shell of radius » and charge g . Show that if g is positive, charge 2



2

1

will necessarily flow from the sphere to the shell (when the two are
connected by a wire) no matter what the charge g on the shell is.
2

2.37

Answer the following:

(a)

The top of the atmosphere is at about 400 kV with respect to

the surface of the earth, corresponding to an electric field that
decreases with altitude. Near the surface of the earth, the field

is about 100 Vm—1. Why then do we not get an electric shock as
we step out of our house into the open? (Assume the house to
be a steel cage so there is no field inside!)

(b)

A man fixes outside his house one evening a two metre high
insulating slab carrying on its top a large aluminium sheet of
area Im2. Will he get an electric shock if he touches the metal

sheet next morning?

(c)



The discharging current in the atmosphere due to the small
conductivity of air is known to be 1800 A on an average over
the globe. Why then does the atmosphere not discharge itself
completely in due course and become electrically neutral? In
other words, what keeps the atmosphere charged?

(d)

What are the forms of energy into which the electrical energy
of the atmosphere is dissipated during a lightning?

(Hint: The earth has an electric field of about 100 Vm-—1 at its
surface in the downward direction, corresponding to a surface
charge density = —10-9 C m—2. Due to the slight conductivity of
the atmosphere up to about 50 km (beyond which it is good
conductor), about + 1800 C 1s pumped every second into the
earth as a whole. The earth, however, does not get discharged
since thunderstorms and lightning occurring continually all
over the globe pump an equal amount of negative charge on
the earth.)

92

Chapter Three

CURRENT



ELECTRICITY
3.1 INTRODUCTION
In Chapter 1, all charges whether free or bound, were considered to be at
rest. Charges in motion constitute an electric current. Such currents occur
naturally in many situations. Lightning is one such phenomenon in
which charges flow from the clouds to the earth through the atmosphere,
sometimes with disastrous results. The flow of charges in lightning is not
steady, but in our everyday life we see many devices where charges flow
in a steady manner, like water flowing smoothly in a river. A torch and a
cell-driven clock are examples of such devices. In the present chapter, we
shall study some of the basic laws concerning steady electric currents.
3.2 ELECTRIC CURRENT
Imagine a small area held normal to the direction of flow of charges. Both
the positive and the negative charges may flow forward and backward
across the area. In a given time interval ¢, let g be the net amount ( i.e.,

+

forward minus backward) of positive charge that flows in the forward
direction across the area. Similarly, let g be the net amount of negative —
charge flowing across the area in the forward direction. The net amount

of charge flowing across the area in the forward direction in the time



interval ¢, then, is ¢ = g — g . This 1s proportional to ¢ for steady current +

Physics

and the quotient
q

=

(3.1)

4

is defined to be the current across the area in the forward direction. (If it
turn out to be a negative number, it implies a current in the backward
direction.)

Currents are not always steady and hence more generally, we define

the current as follows. Let A O be the net charge flowing across a cross-
section of a conductor during the time interval A ¢ [i.e., between times ¢ and
(t+ A ?)]. Then, the current at time ¢ across the cross-section of the
conductor 1s defined as the value of the ratio of A QO to A 7 in the limit of A ¢
tending to zero, ()

AQ

[t=1lim

A—0A

(3.2)



In SI units, the unit of current is ampere. An ampere is defined

through magnetic effects of currents that we will study in the following
chapter. An ampere is typically the order of magnitude of currents in
domestic appliances. An average lightning carries currents of the order
of tens of thousands of amperes and at the other extreme, currents in
our nerves are in microamperes.

3.3 ELECTRIC CURRENTS IN CONDUCTORS

An electric charge will experience a force if an electric field is applied. If it
is free to move, it will thus move contributing to a current. In nature, free
charged particles do exist like in upper strata of atmosphere called the

ionosphere. However, in atoms and molecules, the negatively charged
electrons and the positively charged nuclei are bound to each other and

are thus not free to move. Bulk matter is made up of many molecules, a
gram of water, for example, contains approximately 1022 molecules. These
molecules are so closely packed that the electrons are no longer attached

to individual nuclei. In some materials, the electrons will still be bound,
1.e., they will not accelerate even if an electric field is applied. In other
materials, notably metals, some of the electrons are practically free to move
within the bulk material. These materials, generally called conductors,
develop electric currents in them when an electric field is applied.

If we consider solid conductors, then of course the atoms are tightly



bound to each other so that the current is carried by the negatively
charged electrons. There are, however, other types of conductors like
electrolytic solutions where positive and negative charges both can move.
In our discussions, we will focus only on solid conductors so that the
current is carried by the negatively charged electrons in the background
of fixed positive ions.

Consider first the case when no electric field is present. The electrons
will be moving due to thermal motion during which they collide with the
fixed ions. An electron colliding with an ion emerges with the same speed
as before the collision. However, the direction of its velocity after the
collision is completely random. At a given time, there is no preferential
94

direction for the velocities of the electrons. Thus on the average, the
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number of electrons travelling in any direction will be equal to the number
of electrons travelling in the opposite direction. So, there will be no net
electric current.

Let us now see what happens to such a

piece of conductor if an electric field is applied.



To focus our thoughts, imagine the conductor

in the shape of a cylinder of radius R (Fig. 3.1).
Suppose we now take two thin circular discs
FIGURE 3.1 Charges + Q and — Q put at the ends
of a dielectric of the same radius and put

of a metallic cylinder. The electrons will drift
positive charge + Q distributed over one disc
because of the electric field created to

and similarly — Q at the other disc. We attach
neutralise the charges. The current thus

the two discs on the two flat surfaces of the

will stop after a while unless the charges + QO
cylinder. An electric field will be created and

and — Q are continuously replenished.

is directed from the positive towards the

negative charge. The electrons will be accelerated due to this field towards

+ (. They will thus move to neutralise the charges. The electrons, as long as
they are moving, will constitute an electric current. Hence in the situation
considered, there will be a current for a very short while and no

current thereafter.

We can also imagine a mechanism where the ends of the cylinder are



supplied with fresh charges to make up for any charges neutralised by
electrons moving inside the conductor. In that case, there will be a steady
electric field in the body of the conductor. This will result in a continuous
current rather than a current for a short period of time. Mechanisms,
which maintain a steady electric field are cells or batteries that we shall
study later in this chapter. In the next sections, we shall study the steady
current that results from a steady electric field in conductors.

3.4 OHM’S LAW

A basic law regarding flow of currents was discovered by G.S. Ohm in
1828, long before the physical mechanism responsible for flow of currents

was discovered. Imagine a conductor through which a current / 1s flowing
and let V be the potential difference between the ends of the conductor.

Then Ohm’s law states that
Vel

or, V=RI1

(3.3)

where the constant of proportionality R is called the resistance of the
conductor. The SI units of resistance is osm, and is denoted by the symbol
Q. The resistance R not only depends on the material of the conductor but
also on the dimensions of the conductor. The dependence of R on the
dimensions of the conductor can easily be determined as follows.

FIGURE 3.2



Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of
[lustrating the

length / and cross sectional area A [Fig. 3.2(a)]. Imagine placing two such
relation R = p // 4 for identical slabs side by side [Fig. 3.2(b)], so that the
length of the

a rectangular slab

combination is 2 /. The current flowing through the combination is the
of length / and area

of cross-section 4.

same as that flowing through either of the slabs. If ' is the potential
difference across the ends of the first slab, then V' is also the potential 95

difference across the ends of the second slab since the second slab is

Physics

identical to the first and the same current / flows through
both. The potential difference across the ends of the
combination is clearly sum of the potential difference

across the two individual slabs and hence equals 2 V. The



current through the combination is / and the resistance
)4

of the combination R is [from Eq. (3.3)],

C

58

2V

(3.4)

1

since V/I = R, the resistance of either of the slabs. Thus,
doubling the length of a conductor doubles the

(1787-

resistance. In general, then resistance is proportional to
length,

Ro<

(3.5)

Georg Simon Ohm (1787-



Next, imagine dividing the slab into two by cutting it
1854) German physicist,

lengthwise so that the slab can be considered as a
professor at Munich. Ohm

combination of two identical slabs of length / , but each
was led to his law by an

having a cross sectional area of 4/2 [Fig. 3.2(¢c)].
analogy between the

For a given voltage V across the slab, if / is the current
conduction of heat: the

through the entire slab, then clearly the current flowing
electric field is analogous to

through each of the two half-slabs is 7/2. Since the

the temperature gradient,

potential difference across the ends of the half-slabs is V,
GEORG SIMON OHM

and the electric current is

analogous to the heat flow.

1.e., the same as across the full slab, the resistance of each

of the half-slabs R is



[E—

(3.6)

(1/2)

1

Thus, halving the area of the cross-section of a conductor doubles

the resistance. In general, then the resistance R is inversely proportional to
the cross-sectional area, 1

R <

(3.7)

A

Combining Egs. (3.5) and (3.7), we have
[

R <

(3.8)



A

and hence for a given conductor

!
R=p
(3.9)
A

where the constant of proportionality p depends on the material of the
conductor but not on its dimensions. p is called resistivity.

Using the last equation, Ohm’s law reads

11

p

V=IXR=

(3.10)

A

Current per unit area (taken normal to the current), I/ A, is called current
density and 1s denoted by j. The SI units of the current density are A/m2.
Further, if E is the magnitude of uniform electric field in the conductor
whose length is /, then the potential difference J across its 96

ends is E/. Using these, the last equation reads
Current

Electricity



El=jpl
or, E=jp
(3.11)

The above relation for magnitudes E and j can indeed be cast in a vector
form. The current density, (which we have defined as the current through
unit area normal to the current) is also directed along E, and is also a vector
j (j E/E). Thus, the last equation can be written as, E = jp

(3.12)
o, =c E
(3.13)

where 6 =1/p is called the conductivity. Ohm’s law is often stated in an
equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we
will try to understand the origin of the Ohm’s law as arising from the

characteristics of the drift of electrons.

3.5 DRIFT OF ELECTRONS AND THE ORIGIN OF

RESISTIVITY

As remarked before, an electron will suffer collisions with the heavy fixed
ions, but after collision, it will emerge with the same speed but in random
directions. If we consider all the electrons, their average velocity will be

zero since their directions are random. Thus, if there are N electrons and the
velocity of the i th electron (=1, 2, 3, ... N)ata given time is v, theni I N

>v=0

I



N

(3.14)

i=1

Consider now the situation when an electric field is
present. Electrons will be accelerated due to this
field by

—e

E

a

(3.15)

m

where — e 1s the charge and m is the mass of an electron.
Consider again the i th electron at a given time ¢. This
electron would have had its last collision some time
before ¢, and let ¢ be the time elapsed after its last

i

collision. If v was its velocity immediately after the last
i

collision, then its velocity V at time ¢ is



I

(3.16)

m

FIGURE 3.3 A schematic picture of

since starting with its last collision it was accelerated
an electron moving from a point A to

(Fig. 3.3) with an acceleration given by Eq. (3.15) for a
another point B through repeated

time interval ¢ . The average velocity of the electrons at
i

collisions, and straight line travel



time 7 is the average of all the V ’s. The average of v ’s is i

l

between collisions (full lines). If an

zero [Eq. (3.14)] since immediately after any collision,

electric field is applied as shown, the

the direction of the velocity of an electron is completely

electron ends up at point B’ (dotted

random. The collisions of the electrons do not occur at

lines). A slight drift in a direction

regular intervals but at random times. Let us denote by

opposite the electric field is visible.

T, the average time between successive collisions. Then

97

at a given time, some of the electrons would have spent

Physics

time more than t and some less than 1. In other words, the time 7 in
i

Eq. (3.16) will be less than 1 for some and more than 1 for others as we go
through the values of i =1, 2 ..... N. The average value of 7 then i1s ©

I



(known as relaxation time). Thus, averaging Eq. (3.16) over the

N-electrons at any given time ¢ gives us for the average velocity vd e

d

(i)

(i)

(1
average
average

) average

m

e E



This last result is surprising. It tells us that the
electrons move with an average velocity which is
independent of time, although electrons are
accelerated. This is the phenomenon of drift and the
velocity v in Eq. (3.17) is called the drift velocity.

d

Because of the drift, there will be net transport of
charges across any area perpendicular to E. Consider
a planar area A4, located inside the conductor such that
FIGURE 3.4 Current in a metallic

the normal to the area is parallel to E

conductor. The magnitude of current

(Fig. 3.4). Then because of the drift, in an infinitesimal



density in a metal is the magnitude of

amount of time A ¢, all electrons to the left of the area at
charge contained in a cylinder of unit

distances upto |v |A ¢ would have crossed the area. If

d

area and length v .

d

n is the number of free electrons per unit volume in

the metal, then there are n A ¢ |v | 4 such electrons.

d

Since each electron carries a charge — e, the total charge transported across
this area A to the right in time A ¢t is — ne A|v |A t. E is directed towards the d
left and hence the total charge transported along E across the area is

negative of this. The amount of charge crossing the area 4 in time A 7 is by
definition [Eq. (3.2)] I A ¢, where [ is the magnitude of the current. Hence, /
At=+neAdvt

(3.18)

d

Substituting the value of |v | from Eq. (3.17)
d

2



e A
ITAt=
tnAtE
(3.19)
m

By definition 7 is related to the magnitude |j| of the current density by 7 = |j|
A4 (3.20)

Hence, from Eqgs.(3.19) and (3.20),
2

ne
j=
TE
(3.21)
m

The vector j 1s parallel to E and hence we can write Eq. (3.21) in the vector
form

2

ne
j =
E

(3.22)



m
Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s
98

law, if we identify the conductivity ¢ as
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2

ne

G =

T

(3.23)

m

We thus see that a very simple picture of electrical conduction
reproduces Ohm’s law. We have, of course, made assumptions that t

and n are constants, independent of £. We shall, in the next section, discuss
the limitations of Ohm’s law.

Example 3.1 (a) Estimate the average drift speed of conduction
electrons in a copper wire of cross-sectional area 1.0 x 10—7 m2 carrying
a current of 1.5 A. Assume that each copper atom contributes roughly
one conduction electron. The density of copper is 9.0 x 103 kg/m3,

and its atomic mass is 63.5 u. (b) Compare the drift speed obtained



above with, (1) thermal speeds of copper atoms at ordinary
temperatures, (i1) speed of propagation of electric field along the
conductor which causes the drift motion.

Solution

(a) The direction of drift velocity of conduction electrons is opposite
to the electric field direction, i.e., electrons drift in the direction

of increasing potential. The drift speed v is given by Eq. (3.18)

d

v=(1/neA)

d

Now,e=1.6 x10-19C, 4 =1.0 x 10-7m2, I = 1.5 A. The density of
conduction electrons, # is equal to the number of atoms per cubic metre
(assuming one conduction electron per Cu atom as is

reasonable from its valence electron count of one). A cubic metre

of copper has a mass 0of 9.0 x 103 kg. Since 6.0 x 1023 copper

atoms have a mass of 63.5 g,

23

6.0 x10

x 9.0 x10



63.5

=8.5 x 1028 m—3
which gives,

1.5

vd =

28

-19

—7

8.5 x10

x1.6 x10

x1.0 x10

=1.1 x10-3ms-1=1.1 mm s-1

(b) (1) At a temperature 7, the thermal speed* of a copper atom of mass M is
obtained from [<(1/2) Mv 2 >=(3/2) k T ] and 1s thus B

typically of the order of &

™

B

, Where k 1s the Boltzmann
B

constant. For copper at 300 K, this is about 2 x 102 m/s. This



figure indicates the random vibrational speeds of copper atoms

in a conductor. Note that the drift speed of electrons is much
smaller, about 10-5 times the typical thermal speed at ordinary

E

temperatures.

XAMPLE

(i1) An electric field travelling along the conductor has a speed of
an electromagnetic wave, namely equal to 3.0 X 108 m s—1

3.1

(You will learn about this in Chapter 8). The drift speed is, in
comparison, extremely small; smaller by a factor of 10-11.

* See Eq. (13.23) of Chapter 13 from Class XI book.
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Example 3.2

(a) In Example 3.1, the electron drift speed is estimated to be only a
few mm s—1 for currents in the range of a few amperes? How then
is current established almost the instant a circuit is closed?

(b) The electron drift arises due to the force experienced by electrons

in the electric field inside the conductor. But force should cause



acceleration. Why then do the electrons acquire a steady average

drift speed?

(c) If the electron drift speed is so small, and the electron’s charge is
small, how can we still obtain large amounts of current in a
conductor?

(d) When electrons drift in a metal from lower to higher potential,
does it mean that all the ‘free’ electrons of the metal are moving

in the same direction?

(e) Are the paths of electrons straight lines between successive
collisions (with the positive ions of the metal) in the (1) absence of
electric field, (i1) presence of electric field?

Solution

(a) Electric field is established throughout the circuit, almost instantly
(with the speed of light) causing at every point a local electron

drift. Establishment of a current does not have to wait for electrons
from one end of the conductor travelling to the other end. However,

it does take a little while for the current to reach its steady value.

(b) Each ‘free’ electron does accelerate, increasing its drift speed until
it collides with a positive ion of the metal. It loses its drift speed

after collision but starts to accelerate and increases its drift speed



again only to suffer a collision again and so on. On the average,
therefore, electrons acquire only a drift speed.

(c) Simple, because the electron number density is enormous,

3.2

~1029 m-3.

(d) By no means. The drift velocity is superposed over the large
random velocities of electrons.

XAMPLE

(e) In the absence of electric field, the paths are straight lines; in the
E

presence of electric field, the paths are, in general, curved.

3.5.1 Mobility

As we have seen, conductivity arises from mobile charge carriers. In
metals, these mobile charge carriers are electrons; in an ionised gas, they
are electrons and positive charged ions; in an electrolyte, these can be
both positive and negative ions.

An important quantity is the mobility p defined as the magnitude of
the drift velocity per unit electric field:

vd|

u:



(3.24)

E

The SI unit of mobility 1s m2/Vs and is 104 of the mobility in practical
units (cm2/Vs). Mobility is positive. From Eq. (3.17), we have

etk

100
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v

et



where 1 is the average collision time for electrons.

3.6 LIMITATIONS OF OHM’S LAW

Although Ohm’s law has been found valid over a large class
of materials, there do exist materials and devices used in

electric circuits where the proportionality of V" and / does not hold. The
deviations broadly are one or more of the following FIGURE 3.5 The
dashed line

types:

represents the linear Ohm’s

(a) V ceases to be proportional to 7 (Fig. 3.5).
law. The solid line is the voltage

(b) The relation between V and I depends on the sign of V. In V versus
current / for a good other words, if / is the current for a certain V, then
reversing conductor.

the direction of V keeping its magnitude fixed, does not

produce a current of the same magnitude as / in the opposite direction
(Fig. 3.6). This happens, for example, in a diode which we will study
in Chapter 14.

FIGURE 3.6 Characteristic curve

FIGURE 3.7 Variation of current

of a diode. Note the different

versus voltage for GaAs.



scales for negative and positive
values of the voltage and current.

(c) The relation between ¥ and / is not unique, i.€., there 1s more than one
value of V for the same current / (Fig. 3.7). A material exhibiting such
behaviour is GaAs.

Materials and devices not obeying Ohm’s law in the form of Eq. (3.3)
are actually widely used in electronic circuits. In this and a few
subsequent chapters, however, we will study the electrical currents in
materials that obey Ohm’s law.

3.7 RESISTIVITY OF VARIOUS MATERIALS

The resistivities of various common materials are listed in Table 3.1. The
101

materials are classified as conductors, semiconductors and insulators
Physics

depending on their resistivities, in an increasing order of their values.
Metals have low resistivities in the range of 10-8 Qm to 10—-6 Qm. At the
other end are insulators like ceramic, rubber and plastics having
resistivities 1018 times greater than metals or more. In between the two
are the semiconductors. These, however, have resistivities
characteristically decreasing with a rise in temperature. The resistivities

of semiconductors are also affected by presence of small amount of



impurities. This last feature is exploited in use of semiconductors for
electronic devices.

TABLE 3.1 RESISTIVITIES OF SOME MATERIALS

Material

Resistivity, p

Temperature coefficient

(2 m) at 0°C

of resistivity, a (°C) —1

I dp at0

°C

p dT
Conductors
Silver

1.6 x 10-8
0.0041
Copper

1.7 x 10-8

0.0068



Aluminium
2.7x10-8
0.0043
Tungsten
5.6 x 10-8
0.0045

Iron

10 x 10-8
0.0065
Platinum

1T x 10-8
0.0039
Mercury

98 x 10-8
0.0009
Nichrome
~100 x 10-8
0.0004
(alloy of Ni, Fe, Cr)

Manganin (alloy)



48 x 10-8

0.002 x 10-3
Semiconductors
Carbon (graphite)
3.5x10-5
—0.0005
Germanium

0.46

—0.05

Silicon

2300

—0.07
Insulators

Pure Water

2.5 x105

Glass

1010 -1014
Hard Rubber
1013 -1016

NaCl



~1014

Fused Quartz

~1016

Commercially produced resistors for domestic use or in laboratories

are of two major types: wire bound resistors and carbon resistors. Wire
bound resistors are made by winding the wires of an alloy, viz., manganin,
constantan, nichrome or similar ones. The choice of these materials is

dictated mostly by the fact that their resistivities are relatively insensitive to
temperature. These resistances are typically in the range of a fraction 102

of an ohm to a few hundred ohms.
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Resistors in the higher range are made mostly from carbon. Carbon
resistors are compact, inexpensive and thus find extensive use in electronic
circuits. Carbon resistors are small in size and hence their values are
given using a colour code.

TABLE 3.2 RESISTOR COLOUR CODES

Colour

Number

Multiplier

Tolerance (%)

Black

0

1

Brown



101
Red

2

102
Orange
3

103
Yellow
4

104

QGreen

105
Blue
6

106
Violet
7

107



Gray

108

White

109

Gold

10-1

5

Silver

10-2

10

No colour

20

The resistors have a set of co-axial coloured rings

on them whose significance are listed in Table 3.2. The
first two bands from the end indicate the first two
significant figures of the resistance in ohms. The third
band indicates the decimal multiplier (as listed in Table

3.2). The last band stands for tolerance or possible



variation in percentage about the indicated values.
Sometimes, this last band is absent and that indicates

a tolerance of 20% (Fig. 3.8). For example, if the four
colours are orange, blue, yellow and gold, the resistance
value 1s 36 x 104 Q, with a tolerence value of 5%.

3.8

TEMPERATURE DEPENDENCE OF
RESISTIVITY

The resistivity of a material is found to be dependent on
the temperature. Different materials do not exhibit the
same dependence on temperatures. Over a limited range
FIGURE 3.8 Colour coded resistors

(a) (22 x 102 Q) £ 10%,

of temperatures, that is not too large, the resistivity of a
(b) (47 x 10 Q) £ 5%.

metallic conductor is approximately given by,
p=p[l+a(7-T)]

(3.26)

T

0



0

where p is the resistivity at a temperature 7 and p is the same at a

T

0

reference temperature 7 . o is called the temperature coefficient of 0

103

resistivity, and from Eq. (3.26), the dimension of a is (Temperature)—1.
Physics

For metals, a is positive and values of a for some metals at 7= 0°C are 0
listed in Table 3.1.

The relation of Eq. (3.26) implies that a graph of p plotted against 7’

T

would be a straight line. At temperatures much lower than 0°C, the graph,
however, deviates considerably from a straight line (Fig. 3.9).

Equation (3.26) thus, can be used approximately over a limited range

of T around any reference temperature 7', where the graph can be 0
approximated as a straight line.

FIGURE 3.9

FIGURE 3.10 Resistivity

FIGURE 3.11



Resistivity p of

p of nichrome as a

Temperature dependence

T

T

copper as a function

function of absolute

of resistivity for a typical

of temperature 7.

temperature 7.

semiconductor.

Some materials like Nichrome (which is an alloy of nickel, iron and
chromium) exhibit a very weak dependence of resistivity with temperature
(Fig. 3.10). Manganin and constantan have similar properties. These
materials are thus widely used in wire bound standard resistors since
their resistance values would change very little with temperatures.
Unlike metals, the resistivities of semiconductors decrease with
increasing temperatures. A typical dependence is shown in Fig. 3.11.
We can qualitatively understand the temperature dependence of

resistivity, in the light of our derivation of Eq. (3.23). From this equation,



resistivity of a material is given by
1

m

p::
2

onet
(3.27)

p thus depends inversely both on the number # of free electrons per unit
volume and on the average time t between collisions. As we increase
temperature, average speed of the electrons, which act as the carriers of

current, increases resulting in more frequent collisions. The average time
of collisions t, thus decreases with temperature.

In a metal, 7 is not dependent on temperature to any appreciable

extent and thus the decrease in the value of t with rise in temperature
causes p to increase as we have observed.

For insulators and semiconductors, however, n increases with
temperature. This increase more than compensates any decrease in T in
104

Eq.(3.23) so that for such materials, p decreases with temperature.
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Example 3.3 An electric toaster uses nichrome for its heating
element. When a negligibly small current passes through it, its
resistance at room temperature (27.0 °C) 1s found to be 75.3 Q. When
the toaster is connected to a 230 V supply, the current settles, after

a few seconds, to a steady value of 2.68 A. What is the steady
temperature of the nichrome element? The temperature coefficient

of resistance of nichrome averaged over the temperature range
involved, is 1.70 x 104 °C-1.

Solution When the current through the element is very small, heating
effects can be ignored and the temperature 7 of the element is the

1

same as room temperature. When the toaster is connected to the
supply, its initial current will be slightly higher than its steady value
of 2.68 A. But due to heating effect of the current, the temperature
will rise. This will cause an increase in resistance and a slight
decrease in current. In a few seconds, a steady state will be reached
when temperature will rise no further, and both the resistance of the
element and the current drawn will achieve steady values. The
resistance R at the steady temperature 7'1s

2



230V

=85.8Q

2

2.68A

Using the relation
R=R[l+a(T-T)]
2

1

2

1

with a =1.70 x 104 °C-1, we get
(85.8 —75.3)

E

T-T=

=820 °C



(75.3) x1.70 %10

XAMPLE

that 1s, 7= (820 + 27.0) °C = 847 °C

2

Thus, the steady temperature of the heating element (when heating
3.3

effect due to the current equals heat loss to the surroundings) is
847 °C.

Example 3.4 The resistance of the platinum wire of a platinum
resistance thermometer at the ice point is 5 € and at steam point is
5.23 Q. When the thermometer is inserted in a hot bath, the resistance
of the platinum wire 1s 5.795 Q. Calculate the temperature of the
bath.

Solution R=5 Q, R

=5.23Q and R=5.795 Q

0

100



%100,
R=R(l+tat)
t

0

XAMPLE

5.795 =5

x100
523-5
3.4

0.795



x100 = 345.65 °C

0.23

3.9 ELECTRICAL ENERGY, POWER

Consider a conductor with end points A and B, in which a current 7 is

105

flowing from A to B. The electric potential at A and B are denoted by V' (A)
Physics

and V' (B) respectively. Since current is flowing from A to B, V' (A) > V' (B)
and the potential difference across AB is V= V(A) — V(B) > 0.

In a time interval A ¢, an amount of charge A Q =1 A t travels from A to B.
The potential energy of the charge at A, by definition, was Q ¥ (A) and
similarly at B, it is Q V(B). Thus, change in its potential energy A U is pot A
U = Final potential energy — Initial potential energy

pot

=AQI(V(B)-V(A)]=-A0V

=—IVAt<O0

(3.28)

If charges moved without collisions through the conductor, their

kinetic energy would also change so that the total energy 1s unchanged.
Conservation of total energy would then imply that,

AK=-AU

(3.29)



pot

that 1s,

AK=1IVAt>0

(3.30)

Thus, in case charges were moving freely through the conductor under
the action of electric field, their kinetic energy would increase as they
move. We have, however, seen earlier that on the average, charge carriers
do not move with acceleration but with a steady drift velocity. This is
because of the collisions with ions and atoms during transit. During
collisions, the energy gained by the charges thus is shared with the atoms.
The atoms vibrate more vigorously, 1.e., the conductor heats up. Thus,

in an actual conductor, an amount of energy dissipated as heat in the
conductor during the time interval A ¢ is,

AW=IVAt

(3.31)

The energy dissipated per unit time is the power dissipated

P=A W/A t and we have,

P=1V

(3.32)

Using Ohm’s law V' = IR, we get



P=I2R=V2R
(3.33)

as the power loss (“ohmic loss”) in a conductor of resistance R carrying a
current /. It 1s this power which heats up, for example, the coil of an electric
bulb to incandescence, radiating out heat and light.

Where does the power come from? As we have
reasoned before, we need an external source to keep
a steady current through the conductor. It is clearly
this source which must supply this power. In the
simple circuit shown with a cell (Fig.3.12), it is the
chemical energy of the cell which supplies this power
for as long as it can.

The expressions for power, Egs. (3.32) and (3.33),
FIGURE 3.12 Heat is produced in the

resistor R which is connected across

show the dependence of the power dissipated in a
the terminals of a cell. The energy

resistor R on the current through it and the voltage
dissipated in the resistor R comes from

across it.

the chemical energy of the electrolyte.



Equation (3.33) has an important application to

power transmission. Electrical power is transmitted
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from power stations to homes and factories, which
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may be hundreds of miles away, via transmission cables. One obviously
wants to minimise the power loss in the transmission cables connecting
the power stations to homes and factories. We shall see now how this

can be achieved. Consider a device R, to which a power P is to be delivered
via transmission cables having a resistance R to be dissipated by it finally.

c
If V'is the voltage across R and [/ the current through it, then P = V'[
(3.34)

The connecting wires from the power station to the device has a finite
resistance R . The power dissipated in the connecting wires, which is
c

wasted 1s P with

P=12R



PR

(3.35)
2
4

from Eq. (3.32). Thus, to drive a device of power P, the power wasted in the
connecting wires is inversely proportional to ¥ 2. The transmission cables
from power stations are hundreds of miles long and their resistance R is ¢
considerable. To reduce P, these wires carry current at enormous values ¢

of V and this is the reason for the high voltage danger signs on transmission
lines — a common sight as we move away from populated areas. Using
electricity at such voltages is not safe and hence at the other end, a device

called a transformer lowers the voltage to a value suitable for use.
3.10 COMBINATION OF RESISTORS - SERIES AND

PARALLEL

The current through a single resistor R across which there is a potential
difference V is given by Ohm’s law I = V/R. Resistors are sometimes joined
together and there are simple rules for calculation of equivalent resistance
of such combination.

FIGURE 3.13 A series combination of two resistor R and R .



1
2

Two resistors are said to be in series if only one of their end points is joined
(Fig. 3.13). If a third resistor is joined with the series combination of the
two (Fig. 3.14), then all three are said to be in series. Clearly, we

can extend this definition to series combination of any number of resistors.
FIGURE 3.14 A series combination of three resistors R , R, R .

1

2

3

Two or more resistors are said to be in parallel if one end of all the
resistors is joined together and similarly the other ends joined together
(Fig. 3.15).
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FIGURE 3.15 Two resistors R and R connected in parallel.

1

2

Physics

Consider two resistors R and R 1n series. The charge which leaves R

1

2



1

must be entering R . Since current measures the rate of flow of charge, 2
this means that the same current / flows through R and R . By Ohm’s law: /
2

Potential difference across R =V =I1R , and

1

1

1

Potential difference across R=V=1R .

2

2

2

The potential difference J across the combination is ¥+ V. Hence, 1

2

V=V+V=I(R+R)

(3.36)

1

2



This is as if the combination had an equivalent resistance R , which

eq

by Ohm’s law is

2

If we had three resistors connected in series, then similarly
V=IR+IR+IR=I(R+R+R).

(3.38)

1

2



This obviously can be extended to a series combination of any number
n of resistors R , R ....., R . The equivalent resistance R is 1

2

n

eq

R=R+R+...+R

(3.39)

eq

1

2

n

Consider now the parallel combination of two resistors (Fig. 3.15).
The charge that flows in at A from the left flows out partly through R 1
and partly through R . The currents /, I, I shown in the figure are the 2
1

2

rates of flow of charge at the points indicated. Hence,

I=1+1

(3.40)

1



2

The potential difference between A and B is given by the Ohm’s law
appliedto R 1

V=IR

(3.41)

1

1

Also, Ohm’s law applied to R gives

2

V=IR

(3.42)

L I=1+1=



1

2
If the combination was replaced by an equivalent resistance R , we
eq

would have, by Ohm’s law



(3.44)

eq

Hence,

(3.45)

eq

1

2

We can easily see how this extends to three resistors in parallel
(Fig. 3.16).

108

FIGURE 3.16 Parallel combination of three resistors R , R and R .

1



2

3

Current

Electricity

Exactly as before
I=1+1+1

(3.46)

1

2

3

and applying Ohm’s law to R , R and R we get,
1

2

3
V=IR,V=IR,V=IR
(3.47)

1

1



3

3

So that
1

1

1

[=I+1+1=V

(3.48)



3

An equivalent resistance R that replaces the combination, would be
eq

such that

Vv

I=R

(3.49)

eq

and hence

1

N™ ™ X



(3.50)

eq

1

2

3

We can reason similarly for any number of resistors in parallel. The
equivalent resistance of n resistors R ,R ..., Ris 1

2

n

N™ ™ X



(3.51)

eq

1

2

n

These formulae for equivalent resistances can be used to find out
currents and voltages in more complicated circuits. Consider for example,
the circuit in Fig. (3.17), where there are three resistors R, Rand R .
1

2

3

R and R are in parallel and hence we can

2

3

replace them by an equivalent 23

Req between

point B and C with

1

1



23

RR

23

or, R

eq
R+ R

(3.52)



3
The circuit now has R and 23
R

in series

1

eq

and hence their combination can be
replaced by an equivalent resistance 123
Req

FIGURE 3.17 A combination of three resistors R ,
with

1

Rand R . R, R are in parallel with an

2

3

2

3

123

23



=R+R

(3.53)

equivalent resistance 23
R

. R and 23

R

are in

eq

eq

eq

eq

If the voltage between A and C is V, the
series with an equivalent resistance 123
Req .

current / is given by

V

V



123

R+ RR

R+ R

eq

(2

3)

V(R+R

2

3)
=RR+RR+
(3.54)

RR
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3.11 CELLS, EMF, INTERNAL RESISTANCE
We have already mentioned that a simple device to maintain a steady
current in an electric circuit is the electrolytic cell. Basically a cell has
two electrodes, called the positive (P) and the negative (N), as shown in
Fig. 3.18. They are immersed in an electrolytic solution. Dipped in the
solution, the electrodes exchange charges with the electrolyte. The
positive electrode has a potential difference V' (V> 0) between

+

+
itself and the electrolyte solution immediately adjacent to it marked

A in the figure. Similarly, the negative electrode develops a negative



potential — ( V') ( V"> 0) relative to the electrolyte adjacent to it,

marked as B in the figure. When there is no current, the electrolyte
has the same potential throughout, so that the potential difference
between Pand N is V— (— V') = V' + V. This difference is called the

+

electromotive force (emf) of the cell and is denoted by €. Thus
e=V+1V>0
(3.55)

4
Note that € is, actually, a potential difference and not a force. The
name emf, however, is used because of historical reasons, and was
given at a time when the phenomenon was not understood properly.
To understand the significance of €, consider a resistor R

connected across the cell (Fig. 3.18). A current [ flows across R



from C to D. As explained before, a steady current is maintained
because current flows from N to P through the electrolyte. Clearly,
across the electrolyte the same current flows through the electrolyte
FIGURE 3.18 (a) Sketch of

but from N to P, whereas through R, it flows from P to N.

an electrolyte cell with

The electrolyte through which a current flows has a finite

positive terminal P and

resistance r, called the internal resistance. Consider first the negative
terminal N. The

gap between the electrodes

situation when R is infinite so that /= V/ R = 0, where V' is the is
exaggerated for clarity. A potential difference between P and N. Now,

and B are points in the

)= Potential difference between P and A
electrolyte typically close to

+ Potential difference between A and B

P and N. (b) the symbol for

+ Potential difference between B and N
a cell, + referring to P and

=&



(3.56)

— referring to the N

Thus, emf ¢ is the potential difference between the positive and
electrode. Electrical

negative electrodes in an open circuit, i.e., when no current is
connections to the cell are

flowing through the cell.

made at P and N.

If however R is finite, / is not zero. In that case the potential difference
between Pand Nis V=V+V-1Ir

=g—1Ir
(3.57)

Note the negative sign in the expression ( / r ) for the potential difference
between A and B. This is because the current / flows from B to A in the
electrolyte.

In practical calculations, internal resistances of cells in the circuit

may be neglected when the current 7 is such that € >> [ . The actual values
of the internal resistances of cells vary from cell to cell. The internal
resistance of dry cells, however, is much higher than the common 110

electrolytic cells.



Current
Electricity

We also observe that since V' 1s the potential difference across R, we have
from Ohm’s law

V=IR

(3.58)

Combining Egs. (3.57) and (3.58), we get

IR=¢-1Ir

€

Or, =

(3.59)

R+r

The maximum current that can be drawn from a cell is for R = 0 and
itis/

= ¢/ r. However, in most cells the maximum allowed current is
max

much lower than this to prevent permanent damage to the cell.
CHARGES IN CLOUDS

In olden days lightning was considered as an atmospheric flash of
supernatural origin.



It was believed to be the great weapon of Gods. But today the phenomenon
of lightning can be explained scientifically by elementary principles of
physics.

Atmospheric electricity arises due to the separation of electric charges. In
the 1onosphere and magnetosphere strong electric current is generated from
the solar-terrestrial interaction. In the lower atmosphere the current is
weaker and 1s maintained by thunderstorm.

There are ice particles in the clouds, which grow, collide, fracture and break
apart.

The smaller particles acquire positive charge and the larger ones negative
charge. These charged particles get separated by updrafts in the clouds and
gravity. The upper portion of the cloud becomes positively charged and the
middle negatively charged, leading to dipole structure. Sometimes a very
weak positive charge is found near the base of the cloud. The ground is
positively charged at the time of thunderstorm development. Also cosmic
and radioactive radiations ionise air into positive and negative ions and air
becomes (weakly) electrically conductive. The separation of charges
produce tremendous amount of electrical potential within the cloud as well
as between the cloud and ground. This can amount to millions of volts and
eventually the electrical resistance in the air breaks down and lightning
flash begins and thousands of amperes of current flows. The electric field is
of the order of 105 V/m. A lightning flash is composed of a series of strokes
with an average of about four and the duration of each flash is about 30
seconds. The average peak power per stroke is about 1012 watts.

During fair weather also there is charge in the atmosphere. The fair weather
electric field arises due to the existence of a surface charge density at
ground and an atmospheric conductivity as well as due to the flow of
current from the ionosphere to the earth’s surface, which is of the order of
picoampere square metre. The surface charge density at ground is negative;
the electric field is directed downward. Over land the average electric field
is about 120 Vm, which corresponds to a surface charge density of —1.2 x
10-9 C/m2. Over the entire earth’s surface, the total negative charge
amount to about 600 kC. An equal positive charge exists in the atmosphere.
This electric field is not noticeable in daily life. The reason why it is not



noticed is that virtually everything, including our bodies, is conductor
compared to air.
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Example 3.5 A network of resistors is connected to a 16 V battery
with internal resistance of 1€2, as shown in Fig. 3.19: (a) Compute
the equivalent resistance of the network. (b) Obtain the current in
each resistor. (c) Obtain the voltage drops V', V'and V.

AB

BC

CD

FIGURE 3.19

Solution

(a) The network is a simple series and parallel combination of
resistors. First the two 4Q resistors in parallel are equivalent to a
resistor =[(4 x 4)/(4 +4)] Q=2 Q.

In the same way, the 12 Q and 6 Q resistors in parallel are
equivalent to a resistor of

[(12 % 6)/(12+6)] Q=4 Q.

The equivalent resistance R of the network is obtained by

combining these resistors (2 €2 and 4 Q) with 1 Q in series,



that is,
R=2Q+4Q+1Q=7Q.

(b) The total current / in the circuit is

=2A

R+r

(7+1) Q

Consider the resistors between A and B. If / 1s the current in one
1

of the 4 Q resistors and / the current in the other,

2

Ix4=1x%x4

1

2

that is, / = I, which is otherwise obvious from the symmetry of 1
2

the two arms. But / +/=17=2 A. Thus,



that 1s, current in each 4 Q resistor is 1 A. Current in 1 Q resistor
between B and C would be 2 A.

Now, consider the resistances between C and D. If / is the current
3

in the 12 Q resistor, and / in the 6 Q resistor,

4

Ix12=1Ix6,1e.,1=21

3

4

4

3

But, /+I=1=2A

3

4



Thus, I =



3 A4
3 A
that is, the current in the 12 Q resistor is (2/3) A, while the current
in the 6 Q resistor is (4/3) A.
3.5
(c) The voltage drop across AB is
V=Ix4=1Ax4Q=4YV,
AB
1
XAMPLE
This can also be obtained by multiplying the total current between
112
E
A and B by the equivalent resistance between A and B, that is,
Current
Electricity
V=2Ax2Q=4V

AB



The voltage drop across BC is
V=2Ax1Q=2V
BC
Finally, the voltage drop across CD is
2
V=12Qx1=12Q %
CD
3
3 A=8V.
This can alternately be obtained by multiplying total current
between C and D by the equivalent resistance between C and D,
that 1s,
E
V=2Ax4Q=8V
XAMPLE
CD
Note that the total voltage drop across ADis4V+2V+8V=14V.
Thus, the terminal voltage of the battery is 14 V, while its emf'is 16 V.
3.5

The loss of the voltage (= 2 V) is accounted for by the internal resistance



1 Q of the battery [2Ax 1 Q=2 V].

3.12 CELLS IN SERIES AND IN PARALLEL

Like resistors, cells can be combined together in an electric circuit. And
like resistors, one can, for calculating currents and voltages in a circuit,
replace a combination of cells by an equivalent cell.

FIGURE 3.20 Two cells of emf’s € and € in the series. », » are their 1
2

1

2

internal resistances. For connections across A and C, the combination
can be considered as one cell of emf € and an internal resistance r .

eq

eq

Consider first two cells in series (Fig. 3.20), where one terminal of the
two cells is joined together leaving the other terminal in either cell free.
€ , € are the emf’s of the two cells and 7, r their internal resistances, 1

2

1

2

respectively.



Let V (A), V' (B), V' (C) be the potentials at points A, B and C shown in Fig.
3.20. Then V (A) — V (B) is the potential difference between the positive and
negative terminals of the first cell. We have already calculated it in Eq.
(3.57) and hence,

14
=VA)-VB)=¢-Ir
(3.60)

AB

1

1

Similarly,

v
=VB)-V(C)=¢e—-1Ir
(3.61)

BC

2

2

Hence, the potential difference between the terminals A and C of the

combination is

%



=V (A)-V(C=V

A-VB + VB-VC

AC

()
O 0O

0
113

=(et+te—Ir+r

(3.62)

1

2)

(12)

Physics

If we wish to replace the combination by a single cell between A and
C of emf ¢ and internal resistance » , we would have
eq

eq

V=e-1Ir

(3.63)



AC

eq

eq

Comparing the last two equations, we get

e=¢egte

(3.64)

eq

1

2

andr=r+r

(3.65)

eq

1

2

In Fig.3.20, we had connected the negative electrode of the first to the
positive electrode of the second. If instead we connect the two negatives,
Eq. (3.61) would change to V= —¢ — Ir and we will get

BC

2



E=€g—¢

>¢€)

(3.66)

eq

1

2 (el

2

The rule for series combination clearly can be extended to any number
of cells:

(1) The equivalent emf of a series combination of n cells is just the sum of
their individual emf’s, and

(i1) The equivalent internal resistance of a series combination of n cells is
just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive

electrode. If in the combination, the current leaves any cell from

the negative electrode, the emf of the cell enters the expression

for € with a negative sign, as in Eq. (3.66).

eq

Next, consider a parallel combination of the cells (Fig. 3.21).

I and I are the currents leaving the positive electrodes of the 1



2

cells. At the point B, 7 and / flow in whereas the current / flows 1
1

2

out. Since as much charge flows in as out, we have

I=1+1

(3.67)

FIGURE 3.21 Two cells in

1

2

parallel. For connections

Let V( B) and V' ( B ) be the potentials at B and B , respectively.
1

2

1

2

across A and C, the

Then, considering the first cell, the potential difference across its
combination can be

terminals is V' ( B) — V ( B ). Hence, from Eq. (3.57) 1



2

replaced by one cell of emf

€

Vv

and internal resistances

=V(B-VB=¢-1Ir

(3.68)

1)

(2)111

eq

r whose values are given in

eq

Points B and B are connected exactly similarly to the second
1

2

Egs. (3.64) and (3.65).

cell. Hence considering the second cell, we also have
V=V(B-VB=¢—1Ir

(3.69)

1)



(2)222
Combining the last three equations

I1=1+1



1
2

Hence, V is given by,



erter
rr
12
21

12

r+r

r+r

(3.71)

1

2

1

2

If we want to replace the combination by a single cell, between B and
1

B, of emf € and internal resistance » , we would have

2
eq

eq
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V=e-1Ir
(3.72)

eq

eq

Current

Electricity

The last two equations should be the same and hence
er

er

12

21



eq
r+r
(3.73)

GUST

rr

12

eq

r+r

(3.74)

A

1

2

v

We can put these equations in a simpler way,
ROBER

1

1



(3.75)

eq

€
€

KIRCHHOFF (1824 — 1887)

eq



(3.76)

eq

1

2

In Fig. (3.21), we had joined the positive terminals
Gustav Robert Kirchhoff

together and similarly the two negative ones, so that the
(1824 — 1887) German

currents / , I flow out of positive terminals. If the negative 1
2

physicist, professor at

terminal of the second is connected to positive terminal
Heidelberg and at

of the first, Egs. (3.75) and (3.76) would still be valid with
Berlin. Mainly known for

€ — —¢€

2

2



his development of

Equations (3.75) and (3.76) can be extended easily.
spectroscopy, he also

If there an n cells of emf €, . . . € and of internal resistances
made many important

1

n

r,...rrespectively, connected in parallel, the
contributions to mathe—

1

n

combination is equivalent to a single cell of emf & and
matical physics, among

eq

internal resistance » , such that

them, his first and

eq

second rules for circuits.

1

1



+L+

(3.77)

eq

+L+



(3.78)

eq

n
3.13 KIRCHHOFF’S RULES

Electric circuits generally consist of a number of resistors and cells
interconnected sometimes in a complicated way. The formulae we have
derived earlier for series and parallel combinations of resistors are not
always sufficient to determine all the currents and potential differences

in the circuit. Two rules, called Kirchhoff's rules, are very useful for
analysis of electric circuits.

Given a circuit, we start by labelling currents in each resistor by a

symbol, say /, and a directed arrow to indicate that a current / flows along
the resistor in the direction indicated. If ultimately / is determined to be
positive, the actual current in the resistor is in the direction of the arrow. If /
turns out to be negative, the current actually flows in a direction opposite to
the arrow. Similarly, for each source (i.e., cell or some other source of
electrical power) the positive and negative electrodes are labelled

as well as a directed arrow with a symbol for the current flowing through
115

the cell. This will tell us the potential difference, V=V (P)—-V (N)=¢—-1r
Physics



[Eq. (3.57) between the positive terminal P and the negative terminal N; /
here is the current flowing from N to P through the cell]. If, while labelling
the current / through the cell one goes from P to N,

then of course

V=e+Ir

(3.79)

Having clarified labelling, we now state the rules

and the proof:

(a) Junction rule: At any junction, the sum of the

currents entering the junction is equal to the

sum of currents leaving the junction (Fig. 3.22).

This applies equally well if instead of a junction of

several lines, we consider a point in a line.

The proof of this rule follows from the fact that

when currents are steady, there is no accumulation

FIGURE 3.22 At junction a the current

of charges at any junction or at any point in a line.

leaving is / + I and current entering is / .

1

2



3

Thus, the total current flowing in, (which is the rate
The junction rule says / =1+ [ . At point

3

1

2

at which charge flows into the junction), must equal
h current entering is / . There is only one

1

the total current flowing out.

current leaving h and by junction rule

(b) Loop rule: The algebraic sum of changes in
that will also be / . For the loops ‘ahdcba’

1

and ‘ahdefga’, the loop rules give —30 / —

potential around any closed loop involving

1

4171+45=0and-307+217-80=0.

resistors and cells in the loop is zero (Fig. 3.22).

3



1

2

This rule is also obvious, since electric potential is

dependent on the location of the point. Thus starting with any point if we
come back to the same point, the total change must be zero. In a closed
loop, we do come back to the starting point and hence the rule.

Example 3.6 A battery of 10 V and negligible internal resistance is
connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 Q (Fig. 3.23). Determine

the equivalent resistance of the network and the current along each
edge of the cube.

3.6

XAMPLE

116
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FIGURE 3.23

Current

Electricity

Solution The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the

problem which we can exploit to obtain the equivalent resistance of



the network.

The paths AA’, AD and AB are obviously symmetrically placed in the
network. Thus, the current in each must be the same, say, /. Further,
at the corners A’, B and D, the incoming current / must split equally
into the two outgoing branches. In this manner, the current in all

the 12 edges of the cube are easily written down in terms of 7, using
Kirchhoff’s first rule and the symmetry in the problem.

Next take a closed loop, say, ABCC'EA, and apply Kirchhoft’s second
rule:

—IR—(1/2)IR—IR +¢=0

where R is the resistance of each edge and € the emf of battery. Thus,
e=5IR

http://www.phys.hawaii.edu/~teb/optics/java/kirch3/ Similation for
application of Kirchhoff 2

The equivalent resistance R of the network is

eq

€



eq

E

317

6

XAMPLE

For R=1Q, R=(5/6) Q and for ¢ = 10 V, the total current (=3 /) in eq
the network is

3I=10V/(5/6) Q=12 A,1e,I=4A

3.6

The current flowing in each edge can now be read off from the

Fig. 3.23.

It should be noted that because of the symmetry of the network, the

great power of Kirchhoft’s rules has not been very apparent in Example 3.6.
In a general network, there will be no such simplification due to
symmetry, and only by application of Kirchhoff’s rules to junctions and
closed loops (as many as necessary to solve the unknowns in the network)
isr

can we handle the problem. This will be illustrated in Example 3.7.

ules:

Example 3.7 Determine the current in each branch of the network



shown in Fig. 3.24.

E

XAMPLE

3.7

FIGURE 3.24
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Solution Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff’s rules. To reduce
the number of unknowns at the outset, the first rule of Kirchhoff is
used at every junction to assign the unknown current in each branch.
We then have three unknowns 7/, 7 and 7 which can be found by 1

2

3

applying the second rule of Kirchhoft to three different closed loops.
Kirchhoff’s second rule for the closed loop ADCA gives,
10-4(1-1)+2(I+1-1)-1=0

[3.80(a)]

1

2



1

1
thatis,7/-61-21=10
1

2

3

For the closed loop ABCA, we get
10-471-2(1I+1)-1=0
2

2

3

1

thatis, /+ 61+ 21=10
[3.80(b)]

1

2

3

For the closed loop BCDEB, we get



5-2(I+1)-2(I+I-1)=0

2

3

2

3

1

thatis,2/—-41-41=-5

[3.80(c)]

1

2

3

Equations (3.80 a, b, ¢) are three simultaneous equations in three
unknowns. These can be solved by the usual method to give
5

7

I1=25A,1=

A I=1



3
8

The currents in the various branches of the network are

AB :
A, CA:2

A,DEB: 1

1

AD: 1
A,CD:0A,BC:2
A

8



2

It is easily verified that Kirchhoft’s second rule applied to the
remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second

rule for every closed loop of the network. For example, the total voltage
3.7

drop over the closed loop BADEB

5

15

XAMPLE



E

equal to zero, as required by Kirchhoftf’s second rule.

3.14 WHEATSTONE BRIDGE

As an application of Kirchhoft’s rules consider the circuit shown in
Fig. 3.25, which is called the Wheatstone bridge. The bridge has

four resistors R, R, R and R . Across one pair of diagonally opposite 1
2

3

4

points (A and C in the figure) a source is connected. This (i.e. , AC) is
called the battery arm. Between the other two vertices, B and D, a
galvanometer G (which is a device to detect currents) is connected. This

line, shown as BD in the figure, is called the galvanometer arm.

For simplicity, we assume that the cell has no internal resistance. In
general there will be currents flowing across all the resistors as well as a
current / through G. Of special interest, is the case of a balanced bridge g
where the resistors are such that /= 0. We can easily get the balance g
condition, such that there is no current through G. In this case, the

118

Kirchhoff’s junction rule applied to junctions D and B (see the figure)

Current
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immediately gives us the relations / =7 and / =1 . Next, we apply 1
3

2

4

Kirchhoft’s loop rule to closed loops ADBA and CBDC. The first
loop gives

—IR+0+IR=0([=0)

(3.81)

1

1

2

2

g

and the second loop gives, uponusing /=1,1=13
1

4

2

IR+0-IR=0

(3.82)



1
3
From Eq. (3.81), we obtain,
1

R

2
1
whereas from Eq. (3.82), we obtain,
1

R



2

3

Hence, we obtain the condition
R

R

FIGURE 3.25

2

4

[3.83(a)]

R

R

1

3

This last equation relating the four resistors is called the balance
condition for the galvanometer to give zero or null deflection.

The Wheatstone bridge and its balance condition provide a practical

method for determination of an unknown resistance. Let us suppose we



have an unknown resistance, which we insert in the fourth arm; R is
4

thus not known. Keeping known resistances R and R in the first and 1
2

second arm of the bridge, we go on varying R till the galvanometer shows 3
a null deflection. The bridge then is balanced, and from the balance
condition the value of the unknown resistance R is given by,

4

R2

R=R

4

3R

[3.83(b)]

1

A practical device using this principle is called the meter bridge. It
will be discussed in the next section.

Example 3.8 The four arms of a Wheatstone bridge (Fig. 3.26) have
the following resistances:

AB =100Q, BC =10Q, CD = 5Q, and DA = 60Q.

E



XAMPLE

3.8

FIGURE 3.26
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A galvanometer of 15€2 resistance is connected across BD. Calculate
the current through the galvanometer when a potential difference of
10 V is maintained across AC.

Solution Considering the mesh BADB, we have
100/+157-607=0

1

g

2

or20/+371-1271=0

[3.84(a)]

1

g

2

Considering the mesh BCDB, we have

10(1-1)=151-5(1+1)=0



g
10/-307-571=0
1

g

2

21-61-1=0
[3.84(b)]

1

g

2

Considering the mesh ADCEA,
60/+5(I+1)=10
2

2

g
657/+5171=10



2

g

137/+71=2

[3.84(c)]

2

g

Multiplying Eq. (3.84b) by 10
20/-607-107=0
[3.84(d)]

1

g

2

From Egs. (3.84d) and (3.84a) we have
631-21=0

g

2

I1=3151

[3.84(¢)]



Substituting the value of / into Eq. [3.84(c)], we get
2

3.8

133B1.51)+1=2

g

g

410.571=2

g
XAMPLE

1=4.87 mA.

g

3.15 METER BRIDGE

The meter bridge is shown in Fig. 3.27. It consists of
a wire of length 1 m and of uniform cross sectional
area stretched taut and clamped between two thick
metallic strips bent at right angles, as shown. The
metallic strip has two gaps across which resistors can
be connected. The end points where the wire 1s

clamped are connected to a cell through a key. One



end of a galvanometer is connected to the metallic

FIGURE 3.27 A meter bridge. Wire AC

strip midway between the two gaps. The other end of

is 1 m long. R is a resistance to be

the galvanometer is connected to a ‘jockey’. The jockey

measured and S is a standard

is essentially a metallic rod whose one end has a

resistance.

knife-edge which can slide over the wire to make

electrical connection.

R is an unknown resistance whose value we want to determine. It is
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connected across one of the gaps. Across the other gap, we connect a
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standard known resistance S. The jockey is connected to some point D
on the wire, a distance / cm from the end A. The jockey can be moved
along the wire. The portion AD of the wire has a resistance R /, where cm
R is the resistance of the wire per unit centimetre. The portion DC of c¢m

the wire similarly has a resistance R (100- /).



cm
The four arms AB, BC, DA and CD [with resistances R, S, R [ and cm

R (100- 7))] obviously form a Wheatstone bridge with AC as the battery cm
arm and BD the galvanometer arm. If the jockey is moved along the wire,
then there will be one position where the galvanometer will show no
current. Let the distance of the jockey from the end A at the balance

point be /= [ . The four resistances of the bridge at the balance point then 1
are R, S, R [ and R (100— /). The balance condition, Eq. [3.83(a)]

cm

1

cm

1

gives

cm 1



(3.85)

cm (100 —

Thus, once we have found out / , the unknown resistance R is known 1

in terms of the standard known resistance S by

/1

R=S

(3.86)

100171

By choosing various values of S, we would get various values of /, 1

and calculate R each time. An error in measurement of / would naturally /

result in an error in R. It can be shown that the percentage error in R can be
minimised by adjusting the balance point near the middle of the bridge, 1.e.,



when [ is close to 50 cm. ( This requires a suitable choice /

of S.)

Example 3.9 In a metre bridge (Fig. 3.27), the null point is found at a
distance of 33.7 cm from A. If now a resistance of 12€2 is connected in

parallel with S, the null point occurs at 51.9 cm. Determine the values of R
and S.

Solution From the first balance point, we get
R

33.7

(3.87)
S
66.3

After S is connected in parallel with a resistance of 12€2 , the resistance
across the gap changes from S to S, where eq

12§

S

eq
S+12

and hence the new balance condition now gives



51.9
R

R(S+12)

48.1

128

(3.88)

eq

E

Substituting the value of R/ S from Eq. (3.87), we get
XAMPLE

51.9

S+12

33.7

48.1

12



66.3

3.9

which gives § = 13.5€Q. Using the value of R/ S above, we get R = 6.86 Q.
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3.16 POTENTIOMETER

This is a versatile instrument. It is basically a long piece of uniform wire,
sometimes a few meters in length across which a standard cell is
connected. In actual design, the wire is sometimes cut in several pieces
placed side by side and connected at the ends by thick metal strip.

(Fig. 3.28). In the figure, the wires run from A to C. The small vertical
portions are the thick metal strips connecting the various sections of

the wire.

A current / flows through the wire which can be varied by a variable

resistance (rheostat, R) in the circuit. Since the wire is uniform, the potential
difference between A and any point at a distance / from A is € ( [)=¢ [

(3.89)

where ¢ is the potential drop per unit length.

Figure 3.28 (a) shows an application of the potentiometer to compare

the emf of two cells of emf € and € . The points marked 1, 2, 3 form a two

1



2

way key. Consider first a position of the key where 1 and 3 are connected
so that the galvanometer is connected to € . The jockey
1

is moved along the wire till at a point N , at a distance /
1

1

from A, there is no deflection in the galvanometer. We
can apply Kirchhoff’s loop rule to the closed loop

AN G31A and get,

1

el+0—-e=0

(3.90)

1

1

Similarly, if another emf ¢ is balanced against / (AN )

2

2

2

el+0—-e=0



(3.91)
2
2

From the last two equations

This simple mechanism thus allows one to compare

the emf’s of any two sources. In practice one of the cells
is chosen as a standard cell whose emf is known to a
high degree of accuracy. The emf of the other cell is then
easily calculated from Eq. (3.92).

We can also use a potentiometer to measure internal



resistance of a cell [Fig. 3.28 (b)]. For this the cell (emf¢)
whose internal resistance ( r) is to be determined is
connected across a resistance box through a key K , as
2

FIGURE 3.28 A potentiometer. G is

shown in the figure. With key K open, balance is

2

a galvanometer and R a variable

obtained at length / (AN ). Then,

1

1

resistance (rheostat). 1, 2, 3 are

e=¢/

[3.93(a)]

terminals of a two way key

1

(a) circuit for comparing emfs of two

When key K is closed, the cell sends a current ( /)

2

cells; (b) circuit for determining



through the resistance box ( R). If V' is the terminal
internal resistance of a cell.

potential difference of the cell and balance is obtained at
length [/ (AN ),

2

2
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V=ol

[3.93(b)]

2

Current

Electricity

So, we havee /V=1/1

[3.94(a)]

1

2

But,e=1(r + R)and V= IR. This gives
e/V=(r+tR)/R

[3.94(b)]

From Eq. [3.94(a)] and [3.94(b)] we have



(R+rY R=1/1
1

2

(3.95)

2

Using Eq. (3.95) we can find the internal resistance of a given cell.

The potentiometer has the advantage that it draws no current from

the voltage source being measured. As such it is unaffected by the internal
resistance of the source.

Example 3.10 A resistance of R Q draws current from a

potentiometer. The potentiometer has a total r esistance R €2



0

(Fig. 3.29). A voltage V' is supplied to the potentiometer. Derive an
expression for the voltage across R when the sliding contact is in the
middle of the potentiometer.

FIGURE 3.29

Solution While the slide is in the middle of the potentiometer only
half of its resistance ( R /2) will be between the points A and B. Hence, 0
the total resistance between A and B, say, R , will be given by the

1

following expression:

1

1

RR



R+2R

0

The total resistance between A and C will be sum of resistance between
AandBandBand C,1e., R+ R /2

1

0

.. The current flowing through the potentiometer will be

Vv

2V

R+R/2

2R+R



0
XAMPLE

The voltage V' taken from the potentiometer will be the product of

1
current / and resistance R ,

1

3.10

2V

~
I

IR=

2R+R



123

Physics

Substituting for R , we have a
1

2V

R xR

R xR

R+2R

+RO0

R+2R



2 VR

3.10
VI12R+R+2R
0

or V'

2 VR

XAMPLE

1:

4 R

0

SUMMARY

1.

Current through a given area of a conductor is the net charge passing

per unit time through the area.

2.



To maintain a steady current, we must have a closed circuit in which

an external agency moves electric charge from lower to higher potential
energy. The work done per unit charge by the source in taking the
charge from lower to higher potential energy (i.e., from one terminal

of the source to the other) is called the electromotive force, or emf, of the
source. Note that the emf is not a force; it is the voltage difference between
the two terminals of a source in open circuit.

3.

Ohm's law: The electric current / flowing through a substance is
proportional to the voltage J across its ends, 1.e., V' o< [ or V' = RI, where R
is called the resistance of the substance. The unit of resistance is ohm: 1€ =
1 VA-I.

4.

The resistance R of a conductor depends on its length / and constant cross-
sectional area 4 through the relation, p /

R=4

where p, called resistivity is a property of the material and depends on
temperature and pressure.

5.

Electrical resistivity of substances varies over a very wide range. Metals
have low resistivity, in the range of 10—8 Q m to 10-6 Q m. Insulators like
glass and rubber have 1022 to 1024 times greater resistivity.

Semiconductors like S1 and Ge lie roughly in the middle range of

resistivity on a logarithmic scale.



6.

In most substances, the carriers of current are electrons; in some
cases, for example, 10nic crystals and electrolytic liquids, positive and
negative ions carry the electric current.

7.

Current density j gives the amount of charge flowing per second per unit
area normal to the flow, j =ng v d

where 7 is the number density (number per unit volume) of charge
carriers each of charge g, and v is the drift velocity of the charge d

carriers. For electrons ¢ = —e. If j is normal to a cross-sectional area A and
1s constant over the area, the magnitude of the current / through the area is
nev A.
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8.

Using £ = V/I, I = nev 4, and Ohm’s law, one obtains
d

2

ek



m
The proportionality between the force eE on the electrons in a metal
due to the external field £ and the drift velocity v (not acceleration) d
can be understood, if we assume that the electrons suffer collisions
with ions in the metal, which deflect them randomly. If such collisions
occur on an average at a time interval T,

v=at =eEt/m

d

where a is the acceleration of the electron. This gives

net
9.
In the temperature range in which resistivity increases linearly with

temperature, the temperature coefficient of resistivity a. is defined as the
fractional increase in resistivity per unit increase in temperature.



10. Ohm’s law is obeyed by many substances, but it is not a fundamental
law of nature. It fails if
(a) V depends on I non-linearly.

(b) the relation between V and / depends on the sign of V for the same
absolute value of V.

(c) The relation between V and 7 is non-unique.

An example of (a) is when p increases with 7 (even if temperature 1s
kept fixed). A rectifier combines features (a) and (b). GaAs shows the
feature (c).

11. When a source of emf ¢ is connected to an external resistance R, the
voltage V across R is given by ext

€

V=IR=

R

ext

R+r

where r is the internal resistance of the source.

12. (a) Total resistance R of n resistors connected in series is given by R = R
..... +R



n

(b) Total resistance R of n resistors connected in parallel is given by 1
1

1

N™ ™ X

2

n

13. Kirchhoff's Rules —

(a) Junction Rule: At any junction of circuit elements, the sum of
currents entering the junction must equal the sum of currents
leaving it.

(b) Loop Rule: The algebraic sum of changes in potential around any



closed loop must be zero.
14. The Wheatstone bridge is an arrangement of four resistances — R , R , 1
2

R, R as shown in the text. The null-point condition is given by

3

~ X

2

4

using which the value of one resistance can be determined, knowing
the other three resistances.

15. The potentiometer i1s a device to compare potential differences. Since
the method involves a condition of no current flow, the device can be used
to measure potential difference; internal resistance of a cell and

compare emf’s of two sources.
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Physical Quantity
Symbol
Dimensions
Unit

Remark
Electric current
1

[A]

A

SI base unit
Charge

0 q

[TA]

C

Voltage, Electric
V

[M L2 T-3 A-1]

v



Work/charge
potential difference
Electromotive force
€

[M L2 T-3 A-1]

v

Work/charge
Resistance

R

[ML2T -3 A-2]
Q

R=VII
Resistivity

p

[M L3 T-3 A-2]
Qm

R=pl/A
Electrical

(@)

[M—1 L-3 T3 A2]



S

c=1/p
conductivity
Electric field
E

[MLT-3A-1]

Vm-1
Electric force
charge

ek

Drift speed

v

[L T-1]

m s—1



m
Relaxation time

T

[T]

S

Current density

J

[L-2A]

Am-2

current/area

Mobility

u

[ML3T-4A-1]

m2 V-1s -1

v/ E

d

POINTS TO PONDER

l.

Current 1s a scalar although we represent current with an arrow.

Currents do not obey the law of vector addition. That current is a



scalar also follows from it’s definition. The current / through an area of
cross-section is given by the scalar product of two vectors: /=j . AS

where j and AS are vectors.

2.

Refer to V-1 curves of a resistor and a diode as drawn in the text. A
resistor obeys Ohm’s law while a diode does not. The assertion that

V' = IR 1s a statement of Ohm’s law is not true. This equation defines
resistance and it may be applied to all conducting devices whether they
obey Ohm’s law or not. The Ohm’s law asserts that the plot of /

versus V' is linear i.e., R is independent of V.

Equation E = p j leads to another statement of Ohm s law, 1.e., a conducting
material obeys Ohm’s law when the resistivity of the material does not
depend on the magnitude and direction of applied

electric field.

3.

Homogeneous conductors like silver or semiconductors like pure
germanium or germanium containing impurities obey Ohm’s law
within some range of electric field values. If the field becomes too
strong, there are departures from Ohm’s law in all cases.

4.

Motion of conduction electrons in electric field E is the sum of (i)
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motion due to random collisions and (ii) that due to E. The motion
Current

Electricity

due to random collisions averages to zero and does not contribute to
v (Chapter 11, Textbook of Class XI). v, thus is only due to applied d
d

electric field on the electron.

5.

The relation j = p v should be applied to each type of charge carriers
separately. In a conducting wire, the total current and charge density arises
from both positive and negative charges:

i=pvtpv
+
+
p=p+p
+

Now in a neutral wire carrying electric current,



+
Further, v ~ 0 which gives

+
p=0
i=pv

Thus, the relation j = p v does not apply to the total current charge density.
6.

Kirchhoft’s junction rule is based on conservation of charge and the
outgoing currents add up and are equal to incoming current at a
junction. Bending or reorienting the wire does not change the validity
of Kirchhoft’s junction rule.

EXERCISES

3.1

The storage battery of a car has an emf of 12 V. If the internal
resistance of the battery is 0.4 €, what is the maximum current

that can be drawn from the battery?

3.2



A battery of emf 10 V and internal resistance 3 € is connected to a
resistor. If the current in the circuit is 0.5 A, what is the resistance
of the resistor? What is the terminal voltage of the battery when the
circuit is closed?

3.3

(a) Three resistors 1 Q, 2 Q, and 3 Q are combined in series. What
is the total resistance of the combination?

(b) If the combination is connected to a battery of emf 12 V and
negligible internal resistance, obtain the potential drop across

each resistor.

3.4

(a) Three resistors 2 Q, 4 Q and 5 Q are combined in parallel. What
is the total resistance of the combination?

(b) If the combination is connected to a battery of emf 20 V and
negligible internal resistance, determine the current through

each resistor, and the total current drawn from the battery.

3.5

At room temperature (27.0 °C) the resistance of a heating element
1s 100 Q. What is the temperature of the element if the resistance is

found to be 117 Q, given that the temperature coefficient of the



material of the resistor is 1.70 x 104 °C-1.

3.6

A negligibly small current is passed through a wire of length 15 m
and uniform cross-section 6.0 x 10—7 m2, and its resistance is
measured to be 5.0 Q. What is the resistivity of the material at the
temperature of the experiment?

3.7

A silver wire has a resistance of 2.1 Q at 27.5 °C, and a resistance
of 2.7 Q at 100 °C. Determine the temperature coefficient of
resistivity of silver.

3.8

A heating element using nichrome connected to a 230 V supply

127

draws an initial current of 3.2 A which settles after a few seconds to
Physics

a steady value of 2.8 A. What is the steady temperature of the heating
element if the room temperature 1s 27.0 °C? Temperature coefficient
of resistance of nichrome averaged over the temperature range
involved is 1.70 x 104 °C—1.

3.9



Determine the current in each branch of the network shown in

Fig. 3.30:

FIGURE 3.30

3.10

(a) In a metre bridge [Fig. 3.27], the balance point is found to be at
39.5 cm from the end 4, when the resistor Y 1s of 12.5 Q.
Determine the resistance of X. Why are the connections between
resistors in a Wheatstone or meter bridge made of thick copper
strips?

(b) Determine the balance point of the bridge above if X and Y are
interchanged.

(c) What happens if the galvanometer and cell are interchanged at
the balance point of the bridge? Would the galvanometer show

any current?

3.11

A storage battery of emf 8.0 V and internal resistance 0.5 € is being
charged by a 120 V dc supply using a series resistor of 15.5 Q. What
is the terminal voltage of the battery during charging? What is the
purpose of having a series resistor in the charging circuit?

3.12

In a potentiometer arrangement, a cell of emf 1.25 V gives a balance



point at 35.0 cm length of the wire. If the cell is replaced by another
cell and the balance point shifts to 63.0 cm, what is the emf of the
second cell?

3.13

The number density of free electrons in a copper conductor
estimated in Example 3.1 1s 8.5 x 1028 m—3. How long does an electron
take to drift from one end of a wire 3.0 m long to its other end? The
area of cross-section of the wire is 2.0 x 10—6 m2 and it is carrying a
current of 3.0 A.

ADDITIONAL EXERCISES

3.14

The earth’s surface has a negative surface charge density of 10-9 C
m-—2. The potential difference of 400 kV between the top of the
atmosphere and the surface results (due to the low conductivity of
the lower atmosphere) in a current of only 1800 A over the entire
128

globe. If there were no mechanism of sustaining atmospheric electric
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field, how much time (roughly) would be required to neutralise the



earth’s surface? (This never happens in practice because there is a
mechanism to replenish electric charges, namely the continual
thunderstorms and lightning in different parts of the globe). (Radius

of earth = 6.37 x 106 m.)

3.15

(a) Six lead-acid type of secondary cells each of emf 2.0 V and internal
resistance 0.015 Q are joined in series to provide a supply to a
resistance of 8.5 Q. What are the current drawn from the supply

and its terminal voltage?

(b) A secondary cell after long use has an emf of 1.9 V and a large
internal resistance of 380 2. What maximum current can be drawn
from the cell? Could the cell drive the starting motor of a car?

3.16

Two wires of equal length, one of aluminium and the other of copper
have the same resistance. Which of the two wires is lighter? Hence
explain why aluminium wires are preferred for overhead power cables.
(p=2.63 x10-8 Qm, p=1.72 x 10-8 Q m, Relative density of

Al

Cu

Al=2.7,0f Cu=8.9.)



3.17

What conclusion can you draw from the following observations on a
resistor made of alloy manganin?

Current

Voltage

Current

Voltage

A

A\

0.2
3.94
3.0
59.2
0.4
7.87
4.0
78.8

0.6



11.8

5.0

98.6

0.8

15.7

6.0

118.5

1.0

19.7

7.0

138.2

2.0

39.4

8.0

158.0

3.18

Answer the following questions:

(a) A steady current flows in a metallic conductor of nonuniform
cross-section. Which of these quantities is constant along the

conductor: current, current density, electric field, drift speed?



(b) Is Ohm’s law universally applicable for all conducting elements?
If not, give examples of elements which do not obey Ohm’s law.
(c) A low voltage supply from which one needs high currents must
have very low internal resistance. Why?

(d) A high tension (HT) supply of, say, 6 kV must have a very large
internal resistance. Why?

3.19

Choose the correct alternative:

(a) Alloys of metals usually have (greater/less) resistivity than that
of their constituent metals.

(b) Alloys usually have much (lower/higher) temperature
coefficients of resistance than pure metals.

(c) The resistivity of the alloy manganin is nearly independent of/
increases rapidly with increase of temperature.

(d) The resistivity of a typical insulator (e.g., amber) is greater than
that of a metal by a factor of the order of (1022/103).

3.20

(a) Given n resistors each of resistance R, how will you combine them to
get the (1) maximum (i1) minimum effective resistance?

What is the ratio of the maximum to minimum resistance?

(b) Given the resistances of 1 Q, 2 Q, 3 €, how will be combine them



to get an equivalent resistance of (1) (11/3) Q (i1) (11/5) €, (ii1) 6

Q, (iv) (6/11) Q?

(c) Determine the equivalent resistance of networks shown in

129

Fig. 3.31.
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FIGURE 3.31

3.21

Determine the current drawn from a 12V supply with internal
resistance 0.5€2 by the infinite network shown in Fig. 3.32. Each
resistor has 1€ resistance.

FIGURE 3.32

3.22

Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal
resistance 0.40 Q maintaining a potential drop across the resistor
wire AB. A standard cell which maintains a constant emf of 1.02 V
(for very moderate currents upto a few mA) gives a balance point at
67.3 cm length of the wire. To ensure very low currents drawn from
the standard cell, a very high resistance of 600 k€2 is put in series

with it, which is shorted close to the balance point. The standard



cell 1s then replaced by a cell of unknown emf € and the balance
point found similarly, turns out to be at 82.3 cm length of the wire.
FIGURE 3.33

(a) What is the value € ?
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(b) What purpose does the high resistance of 600 k€2 have?
Current

Electricity

(c) Is the balance point affected by this high resistance?

(d) Is the balance point affected by the internal resistance of the
driver cell?

(e) Would the method work in the above situation if the driver cell
of the potentiometer had an emf of 1.0V instead of 2.0V?

(f) Would the circuit work well for determining an extremely small
emf, say of the order of a few mV (such as the typical emf of a
thermo-couple)? If not, how will you modify the circuit?

3.23

Figure 3.34 shows a potentiometer circuit for comparison of two
resistances. The balance point with a standard resistor R = 10.0 Q

1s found to be 58.3 cm, while that with the unknown resistance X is



68.5 cm. Determine the value of X. What might you do if you failed
to find a balance point with the given cell of emf ¢ ?

FIGURE 3.34

3.24

Figure 3.35 shows a 2.0 V potentiometer used for the determination
of internal resistance of a 1.5 V cell. The balance point of the cell in
open circuit 1s 76.3 cm. When a resistor of 9.5 Q is used in the external
circuit of the cell, the balance point shifts to 64.8 cm length of the
potentiometer wire. Determine the internal resistance of the cell.
FIGURE 3.35
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Chapter Four

MOVING CHARGES

AND MAGNETISM

4.1 INTRODUCTION

Both Electricity and Magnetism have been known for more than 2000
years. However, it was only about 200 years ago, in 1820, that it was

realised that they were intimately related*. During a lecture demonstration
in the summer of 1820, the Danish physicist Hans Christian Oersted noticed
that a current in a straight wire caused a noticeable deflection in

a nearby magnetic compass needle. He investigated this phenomenon.



He found that the alignment of the needle is tangential to an imaginary
circle which has the straight wire as its centre and has its plane
perpendicular to the wire. This situation is depicted in Fig.4.1(a). It 1s
noticeable when the current is large and the needle sufficiently close to
the wire so that the earth’s magnetic field may be ignored. Reversing the
direction of the current reverses the orientation of the needle [Fig. 4.1(b)].
The deflection increases on increasing the current or bringing the needle
closer to the wire. Iron filings sprinkled around the wire arrange
themselves in concentric circles with the wire as the centre [Fig. 4.1(¢c)].
Oersted concluded that moving charges or currents produced a
magnetic field in the surrounding space.

Following this there was intense experimentation. In 1864, the laws
obeyed by electricity and magnetism were unified and formulated by

* See the box in Chapter 1, Page 3.

Moving Charges and

Magnetism



James Maxwell who then realised that light was electromagnetic waves.
Radio waves were discovered by Hertz, and produced by J.C.Bose and
G. Marconi by the end of the 19th century. A remarkable scientific and
technological progress has taken place in the 20th century. This is due to
our increased understanding of electromagnetism and the invention of
devices for production, amplification, transmission and detection of
electromagnetic waves.

FIGURE 4.1 The magnetic field due to a straight long current-carrying
wire. The wire is perpendicular to the plane of the paper. A ring of
compass needles surrounds the wire. The orientation of the needles is
shown when (a) the current emerges out of the plane of the paper,

(b) the current moves into the plane of the paper. (c) The arrangement of
iron filings around the wire. The darkened ends of the needle represent
north poles. The effect of the earth’s magnetic field is neglected.

In this chapter, we will see how magnetic field exerts

forces on moving charged particles, like electrons,

HANS CHRISTIAN OERSTED

protons, and current-carrying wires. We shall also learn

how currents produce magnetic fields. We shall see how

particles can be accelerated to very high energies in a



cyclotron. We shall study how currents and voltages are
detected by a galvanometer.

In this and subsequent Chapter on magnetism,

we adopt the following convention: A current or a

field (electric or magnetic) emerging out of the plane of the
paper is depicted by a dot (2). A current or a field going
into the plane of the paper is depicted by a cross ( ® )*.
Figures. 4.1(a) and 4.1(b) correspond to these two
Hans Christian Oersted

situations, respectively.

(1777-1851) Danish

physicist and chemist,

4.2 MAGNETIC FORCE

professor at Copenhagen.

He observed that a

4.2.1 Sources and fields

compass needle suffers a

1777-



Before we introduce the concept of a magnetic field B, we
deflection when placed

near a wire carrying an

shall recapitulate what we have learnt in Chapter 1 about
electric current. This

1

the electric field E. We have seen that the interaction
discovery gave the first

851

between two charges can be considered in two stages.
empirical evidence of a

The charge Q, the source of the field, produces an electric
connection between electric

)

field E, where

and magnetic phenomena.

* A dot appears like the tip of an arrow pointed at you, a cross is like the
feathered 133

tail of an arrow moving away from you.
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E=Q’'r/(4ne)r?2
4.1)

0

where “r 1s unit vector along r, and the field E is a vector field. A charge g
interacts with this field and experiences a force F given by

F=gE=qQ’r/(4ne)r2

(4.2)

0

As pointed out in the Chapter 1, the field E is not

just an artefact but has a physical role. It can convey
energy and momentum and is not established
instantaneously but takes finite time to propagate. The
concept of a field was specially stressed by Faraday and
was incorporated by Maxwell in his unification of

electricity and magnetism. In addition to depending on



)

each point in space, it can also vary with time, i.e., be a
82

Hendrik Antoon Lorentz

function of time. In our discussions in this chapter, we
9

(1853 — 1928) Dutch

will assume that the fields do not change with time.

1

theoretical physicist,

The field at a particular point can be due to one or
professor at Leiden. He

more charges. If there are more charges the fields add
53 -

investigated the

vectorially. You have already learnt in Chapter 1 that this
8

relationship between

is called the principle of superposition. Once the field is

(1



electricity, magnetism, and

mechanics. In order to

known, the force on a test charge is given by Eq. (4.2).
explain the observed effect

Just as static charges produce an electric field, the

of magnetic fields on

currents or moving charges produce (in addition) a
emitters of light (Zeeman

magnetic field, denoted by B (r), again a vector field. It
effect), he postulated the

has several basic properties identical to the electric field.
existence of electric charges

It is defined at each point in space (and can in addition
in the atom, for which he

depend on time). Experimentally, it is found to obey the
was awarded the Nobel Prize

in 1902. He derived a set of

principle of superposition: the magnetic field of several
transformation equations

sources is the vector addition of magnetic field of each



(known after him, as

individual source.

Lorentz transformation

equations) by some tangled

4.2.2 Magnetic Field, Lorentz Force

mathematical arguments,

Let us suppose that there is a point charge g (moving
but he was not aware that

with a velocity v and, located at r at a given time 7) in these equations hinge
on a

HENDRIK ANTOON LORENTZ

presence of both the electric field E (r) and the magnetic
new concept of space and

field B (r). The force on an electric charge g due to both of
time.

them can be written as

F=¢g[E@)+vxB(r)]=F

+F

(4.3)

electric

magnetic



This force was given first by H.A. Lorentz based on the extensive
experiments of Ampere and others. It is called the Lorentz force. You
have already studied in detail the force due to the electric field. If we
look at the interaction with the magnetic field, we find the following
features.

(1) It depends on ¢, v and B (charge of the particle, the velocity and the
magnetic field). Force on a negative charge is opposite to that on a positive
charge.

(i1) The magnetic force g [ v * B ] includes a vector product of velocity 134
and magnetic field. The vector product makes the force due to magnetic
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field vanish (become zero) if velocity and magnetic field are parallel

or antiparallel. The force acts in a (sideways) direction perpendicular

to both the velocity and the magnetic field.

Its direction is given by the screw rule or

right hand rule for vector (or cross) product

as illustrated in Fig. 4.2.

(111) The magnetic force is zero if charge is not

moving (as then |[v|=0). Only a moving

charge feels the magnetic force.



The expression for the magnetic force helps

us to define the unit of the magnetic field, if
one takes ¢, F and v, all to be unity in the force
equation F=¢g[vxB]=¢qgvBsin0"

n

FIGURE 4.2 The direction of the magnetic

, where 0

force acting on a charged particle. (a) The

is the angle between v and B [see Fig. 4.2 (a)].
force on a positively charged particle with

The magnitude of magnetic field B is 1 SI unit,
velocity v and making an angle 0 with the
when the force acting on a unit charge (1 C),
magnetic field B is given by the right-hand
moving perpendicular to B with a speed 1m/s,
rule. (b) A moving charged particle ¢ is

1s one newton.

deflected in an opposite sense to — g in the
Dimensionally, we have [ B] = [ F/gv] and the unit

presence of magnetic field.



of B are Newton second / (coulomb metre). This
unit is called fesla (T ) named after Nikola Tesla
(1856 — 1943). Tesla is a rather large unit. A smaller unit (non-SI) called

gauss (=104 tesla) is also often used. The earth’s magnetic field is about
3.6 x 105 T. Table 4.1 lists magnetic fields over a wide range in the
universe.

TABLE 4.1 ORDER OF MAGNITUDES OF MAGNETIC FIELDS IN
A VARIETY OF PHYSICAL SITUATIONS

Physical situation
Magnitude of B (in tesla)
Surface of a neutron star
108

Typical large field in a laboratory
1

Near a small bar magnet
10-2

On the earth’s surface
10-5

Human nerve fibre

10-10

Interstellar space



10-12

4.2.3 Magnetic force on a current-carrying conductor

We can extend the analysis for force due to magnetic field on a single
moving charge to a straight rod carrying current. Consider a rod of a

uniform cross-sectional area 4 and length /. We shall assume one kind of
mobile carriers as in a conductor (here electrons). Let the number density of
these mobile charge carriers in it be n. Then the total number of mobile
charge carriers in it is nA4l. For a steady current / in this 135

conducting rod, we may assume that each mobile carrier has an average
Physics

drift velocity v (see Chapter 3). In the presence of an external magnetic d
field B, the force on these carriers is:

F=(ndl)gvxB

d

where ¢ is the value of the charge on a carrier. Now ngv is the current d

density j and |( ng v )| 4 is the current / (see Chapter 3 for the discussion d
of current and current density). Thus,

F=[(ngev)Al]xB=[jAl]*xB
d
=J/1xB

(4.4)



where 1 is a vector of magnitude /, the length of the rod, and with a direction
identical to the current /. Note that the current / is not a vector. In the last
step leading to Eq. (4.4), we have transferred the vector sign from j to 1.

Equation (4.4) holds for a straight rod. In this equation, B is the external
magnetic field. It is not the field produced by the current-carrying rod. If the
wire has an arbitrary shape we can calculate the Lorentz force on it

by considering it as a collection of linear strips dl and summing

This summation can be converted to an integral in most cases.
ON PERMITTIVITY AND PERMEABILITY

In the universal law of gravitation, we say that any two point masses exert a
force on each other which is proportional to the product of the masses m , m
and mversely 1

2

proportional to the square of the distance » between them. We write it as F =
Gmm/r?2

1



2

where G is the universal constant of gravitation. Similarly in Coulomb’s
law of electrostatics we write the force between two point charges g , g ,
separated by a distance r as 1

2

F=kq q/r?2 where k is a constant of proportionality. In SI units, £ 1s taken
as 12

1/4me where € 1s the permittivity of the medium. Also in magnetism, we get
another constant, which in SI units, is taken as pu/4m where L is the
permeability of the medium.

Although G, € and p arise as proportionality constants, there is a difference
between gravitational force and electromagnetic force. While the
gravitational force does not depend on the intervening medium, the
electromagnetic force depends on the medium between the two charges or
magnets. Hence while G is a universal constant, € and pu depend on the
medium. They have different values for different media. The product eu
turns out to be related to the speed v of electromagnetic radiation in the
medium through ep =1/v 2.

Electric permittivity € is a physical quantity that describes how an electric
field affects and is affected by a medium. It is determined by the ability of a
material to polarise in response to an applied field, and thereby to cancel,
partially, the field inside the material.

Similarly, magnetic permeability p is the ability of a substance to acquire
magnetisation in magnetic fields. It is a measure of the extent to which
magnetic field can penetrate matter.

4.1
Example 4.1 A straight wire of mass 200 g and length 1.5 m carries

a current of 2 A. It is suspended in mid-air by a uniform horizontal



magnetic field B (Fig. 4.3). What is the magnitude of the magnetic
XAMPLE

field?

136

E

Moving Charges and

Magnetism

FIGURE 4.3

Solution From Eq. (4.4), we find that there is an upward force F, of
magnitude //B, . For mid-air suspension, this must be balanced by the force
due to gravity:

mg=1IB
mg
B=1I

E

http://www.phys.hawaii.edu/~teb/optics/java/partmagn/index.html
Interactive demonstration: Charged particles moving in a magnetic
field.

XAMPLE

0.2x9.8

=0.65T



2x1.5

Note that it would have been sufficient to specify m/ /, the mass per
4.1

unit length of the wire. The earth’s magnetic field is approximately
4 x 10-5 T and we have ignored it.

Example 4.2 If the magnetic field is parallel to the positive y-axis and the
charged particle is moving along the positive x-axis (Fig. 4.4), which way
would the Lorentz force be for (a) an electron (negative charge), (b) a
proton (positive charge).

E
FIGURE 4.4

XAMPLE

Solution The velocity v of particle is along the x-axis, while B, the
magnetic field is along the y-axis, so v x B is along the z-axis (screw 4.2

rule or right-hand thumb rule). So, (a) for electron it will be along — z

axis. (b) for a positive charge (proton) the force is along + z axis.

4.3 MOTION IN A MAGNETIC FIELD

We will now consider, in greater detail, the motion of a charge moving in

a magnetic field. We have learnt in Mechanics (see Class XI book, Chapter
6) that a force on a particle does work if the force has a component along
(or opposed to) the direction of motion of the particle. In the case of motion

137
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of a charge in a magnetic field, the magnetic force is
perpendicular to the velocity of the particle. So no work is done
and no change in the magnitude of the velocity is produced
(though the direction of momentum may be changed). [Notice

that this is unlike the force due to an electric field, g E, which can have a
component parallel (or antiparallel) to motion and thus can transfer energy
in addition to momentum. ]

We shall consider motion of a charged particle in a uniform
magnetic field. First consider the case of v perpendicular to B.

The perpendicular force, g v x B, acts as a centripetal force and produces a
circular motion perpendicular to the magnetic field.

The particle will describe a circle if v and B are perpendicular to each
other (Fig. 4.5).

If velocity has a component along B, this component
FIGURE 4.5 Circular motion

remains unchanged as the motion along the magnetic field will
not be affected by the magnetic field. The motion

in a plane perpendicular to B is as before a

circular one, thereby producing a helical motion

(Fig. 4.6).

You have already learnt in earlier classes



(See Class XI, Chapter 4) that if 7 is the radius
of the circular path of a particle, then a force of
m v 2/ r, acts perpendicular to the path towards
the centre of the circle, and is called the
centripetal force. If the velocity v is
perpendicular to the magnetic field B, the
magnetic force is perpendicular to both v and
B and acts like a centripetal force. It has a
magnitude g v B. Equating the two expressions
for centripetal force,

mv 2/ r=qv B, which gives

r=mv/qB

4.5)

FIGURE 4.6 Helical motion

for the radius of the circle described by the

charged particle. The larger the momentum,

the larger is the radius and bigger the circle described. If ® is the angular

frequency, then v = r. So,
w=2nv=qgB/m
[4.6(a)]



which is independent of the velocity or energy . Here v is the frequency of

rotation. The independence of v from energy has important application

in the design of a cyclotron (see Section 4.4.2).

The time taken for one revolution is 7= 2n/®w = 1/v. If there is a

component of the velocity parallel to the magnetic field (denoted by v ), it
I

will make the particle move along the field and the path of the particle

would be a helical one (Fig. 4.6). The distance moved along the magnetic

field in one rotation is called pitch p. Using Eq. [4.6 (a)], we have p=v T'=
2nmv/gB

[4.6(b)]
I
I

The radius of the circular component of motion is called the radius of
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the helix.
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Example 4.3 What is the radius of the path of an electron (mass

9 x 10-31 kg and charge 1.6 x 10—19 C) moving at a speed of 3 X107 m/s in

a magnetic field of 6 x 10—4 T perpendicular to it? What is its



frequency? Calculate its energy in keV. (1 eV =1.6 x 10-19 ).
E

Solution Using Eq. (4.5) we find

XAMPLE

r=mv/(gB)=9x10-31kgx3x107ms-1/(1.6x 10-19C x 6 x 10-4
T)

=26 %x10-2m=26 cm

v=v/2mr)=2x106 s—1=2x106 Hz =2 MHz.

4.3

E=0()mv2=_"2)9x10-31kg*x9x 1014 m2/s2 =40.5 x10-17]
~4x10-16J =2.5 ke V.

HELICAL MOTION OF CHARGED PARTICLES AND AURORA
BORIOLIS

In polar regions like Alaska and Northern Canada, a splendid display of
colours 1s seen in the sky. The appearance of dancing green pink lights 1s
fascinating, and equally puzzling. An explanation of this natural
phenomenon is now found in physics, in terms of what we have studied
here.

Consider a charged particle of mass m and charge g, entering a region of
magnetic field B with an initial velocity v. Let this velocity have a
component v parallel to the p magnetic field and a component v normal to
it. There is no force on a charged particle in n

the direction of the field. Hence the particle continues to travel with the
velocity v parallel p



to the field. The normal component v of the particle results in a Lorentz
force (v B)nn

which is perpendicular to both v and B. As seen in Section 4.3.1 the particle
thus has an

tendency to perform a circular motion in a plane perpendicular to the
magnetic field.

When this is coupled with the velocity parallel to the field, the resulting
trajectory will be a helix along the magnetic field line, as shown in Figure
(a) here. Even if the field line bends, the helically moving particle is trapped
and guided to move around the field line.

Since the Lorentz force is normal to the velocity of each point, the field
does no work on the particle and the magnitude of velocity remains the
same.

During a solar flare, a large number of electrons and protons are ejected
from the sun.

Some of them get trapped in the earth’s magnetic field and move in helical
paths along the field lines. The field lines come closer to each other near the
magnetic poles; see figure (b).

Hence the density of charges increases near the poles. These particles
collide with atoms and molecules of the atmosphere. Excited oxygen atoms
emit green light and excited nitrogen atoms emits pink light. This
phenomenon is called Aurora Boriolis in physics.
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4.4

MOTION IN COMBINED ELECTRIC AND MAGNETIC

FIELDS



4.4.1 Velocity selector

You know that a charge ¢ moving with velocity v in presence of both
electric and magnetic fields experiences a force given by Eq. (4.3), that is, F
=q(E+vxB)=F+F

E

B

We shall consider the simple case in which electric and magnetic
fields are perpendicular to each other and also perpendicular to

the velocity of the particle, as shown in Fig. 4.7. We have,

A

E=FE,,
jB=Bkv=vi

A

F=gE=qEjF=qvxB=q ("

A

vi X BK)

A



=—qB ]
E

B

Therefore, F=¢q ( EVvB) "~

j-
Thus, electric and magnetic forces are in opposite directions as

shown in the figure. Suppose, we adjust the value of E and B such that
magnitude of the two forces are equal. Then, total force on the charge is
zero and the charge will move in the fields undeflected.

FIGURE 4.7

This happens when,

E

qE=qgvBorv=

4.7)

B

This condition can be used to select charged particles of a particular
velocity out of a beam containing charges moving with different speeds

(irrespective of their charge and mass). The crossed £ and B fields,
therefore, serve as a velocity selector. Only particles with speed E/ B pass
undeflected through the region of crossed fields. This method was
employed by J. J. Thomson in 1897 to measure the charge to mass ratio



( e/ m) of an electron. The principle is also employed in Mass Spectrometer

a device that separates charged particles, usually ions, according to their
charge to mass ratio.

4.4.2 Cyclotron

The cyclotron is a machine to accelerate charged particles or ions to high
energies. It was invented by E.O. Lawrence and M.S. Livingston in 1934
to investigate nuclear structure. The cyclotron uses both electric and
magnetic fields in combination to increase the energy of charged particles.
As the fields are perpendicular to each other they are called crossed

fields. Cyclotron uses the fact that the frequency of revolution of the
charged particle in a magnetic field is independent of its energy. The
particles move most of the time inside two semicircular disc-like metal

containers, D and D , which are called dees as they look like the letter 1
2
Cyclotron

Interactive demonstration:



http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=50

D. Figure 4.8 shows a schematic view of the cyclotron. Inside the metal
boxes the particle is shielded and is not acted on by the electric field. The
magnetic field, however, acts on the particle and makes it go round in a
circular path inside a dee. Every time the particle moves from one dee to
another it is acted upon by the electric field. The sign of the electric field
is changed alternately in tune with the circular motion of the particle.
This ensures that the particle is always accelerated by the electric field.
140

Each time the acceleration increases the energy of the particle. As energy
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increases, the radius of the circular path increases. So the path is a

spiral one.

The whole assembly is evacuated to minimise collisions between the
ions and the air molecules. A high frequency alternating voltage is applied
to the dees. In the sketch shown in Fig. 4.8, positive ions or positively
charged particles (e.g., protons) are released at the centre P. They move

in a semicircular path in one of the dees and arrive in the gap between



the dees in a time interval 7/2; where 7, the period of revolution, is given by
Eq. (4.6), 1

orv=

c

2n

(4.8)

m

This frequency is called the cyclotron frequency for obvious reasons
and is denoted by v .

C

The frequency v of the applied voltage is adjusted so that the polarity
a

of the dees is reversed in the same time that it takes the 1ons to complete



one half of the revolution. The requirement v = v is called the resonance a
c

condition. The phase of the supply is adjusted so that when the positive ions
arrive at the edge of D, D is at a lower 1

2

potential and the ions are accelerated across the
gap. Inside the dees the particles travel in a region
free of the electric field. The increase in their
kinetic energy is gV each time they cross from
one dee to another ( V refers to the voltage across
the dees at that time). From Eq. (4.5), it is clear
that the radius of their path goes on increasing
each time their kinetic energy increases. The ions
are repeatedly accelerated across the dees until
they have the required energy to have a radius
approximately that of the dees. They are then
deflected by a magnetic field and leave the system
via an exit slit. From Eq. (4.5) we have,

qBR

y=

(4.9)



m
where R is the radius of the trajectory at exit, and
equals the radius of a dee.

Hence, the kinetic energy of the ions is,
FIGURE 4.8 A schematic sketch of the
cyclotron. There is a source of charged

2

2

2

1

qBR

2

my =

(4.10)

particles or ions at P which move in a

2

2m

circular fashion in the dees, D and D , on

1

2



account of a uniform perpendicular

The operation of the cyclotron is based on the

magnetic field B. An alternating voltage

fact that the time for one revolution of an ion is

source accelerates these ions to high

independent of its speed or radius of its orbit.

speeds. The ions are eventually ‘extracted’

The cyclotron is used to bombard nuclei with

at the exit port.
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energetic particles, so accelerated by it, and study
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the resulting nuclear reactions. It is also used to implant ions into solids
and modify their properties or even synthesise new materials. It is used
in hospitals to produce radioactive substances which can be used in
diagnosis and treatment.

Example 4.4 A cyclotron’s oscillator frequency is 10 MHz. What
should be the operating magnetic field for accelerating protons? If

the radius of its ‘dees’ 1s 60 cm, what is the kinetic energy (in MeV) of

the proton beam produced by the accelerator.



(e=1.60x10-19C,m=1.67 x 10-27 kg, 1 MeV =1.6 x 10-13)).
P

Solution The oscillator frequency should be same as proton’s
cyclotron frequency.

Using Egs. (4.5) and [4.6(a)] we have
B=2nmv/q=63x1.67%x10-27x107 /(1.6 x 10-19)=0.66 T
4.4

Final velocity of protons is

v=rx2nv=0.6mx 6.3 x107=3.78 x 107 m/s.

XAMPLE

E=%mv2=1.67x10-27 %143 x 1014/ (2 x 1.6 x 10-13) =7 MeV.
E

ACCELERATORS IN INDIA

India has been an early entrant in the area of accelerator-based research.
The vision of Dr. Meghnath Saha created a 37" Cyclotron in the Saha
Institute of Nuclear Physics in Kolkata in 1953. This was soon followed by
a series of Cockroft-Walton type of accelerators established in Tata Institute
of Fundamental Research (TIFR), Mumbai, Aligarh Muslim University
(AMU), Aligarh, Bose Institute, Kolkata and Andhra University, Waltair.

The sixties saw the commissioning of a number of Van de Graaff
accelerators: a 5.5 MV

terminal machine in Bhabha Atomic Research Centre (BARC), Mumbai
(1963); a 2 MV terminal machine in Indian Institute of Technology (IIT),
Kanpur; a 400 kV terminal machine in Banaras Hindu University (BHU),



Varanasi; and Punjabi University, Patiala. One 66 cm Cyclotron donated by
the Rochester University of USA was commissioned in Panjab University,
Chandigarh. A small electron accelerator was also established in University
of Pune, Pune.

In a major initiative taken in the seventies and eighties, a Variable Energy
Cyclotron was built indigenously in Variable Energy Cyclotron Centre
(VECC), Kolkata; 2 MV Tandem Van de Graaft accelerator was developed
and built in BARC and a 14 MV Tandem Pelletron accelerator was installed
in TIFR.

This was soon followed by a 15 MV Tandem Pelletron established by
University Grants Commission (UGC), as an inter-university facility in
Inter-University Accelerator Centre (IUAC), New Delhi; a 3 MV Tandem
Pelletron in Institute of Physics, Bhubaneshwar; and two 1.7 MV
Tandetrons in Atomic Minerals Directorate for Exploration and Research,
Hyderabad and Indira Gandhi Centre for Atomic Research, Kalpakkam.
Both TIFR and IUAC are augmenting their facilities with the addition of
superconducting LINAC modules to accelerate the 1ons to higher energies.

Besides these ion accelerators, the Department of Atomic Energy (DAE)
has developed many electron accelerators. A 2 GeV Synchrotron Radiation
Source is being built in Raja Ramanna Centre for Advanced Technologies,
Indore.

The Department of Atomic Energy is considering Accelerator Driven
Systems (ADS) for power production and fissile material breeding as future
options.
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4.5

MAGNETIC FIELD DUE TO A CURRENT ELEMENT,



BIOT-SAVART LAW

All magnetic fields that we know are due to currents (or moving charges)
and due to intrinsic magnetic moments of particles. Here, we shall study
the relation between current and the magnetic field it produces.

It is given by the Biot-Savart’s law. Figure 4.9 shows a finite

conductor XY carrying current /. Consider an infinitesimal

element d / of the conductor. The magnetic field dB due to this element is to
be determined at a point P which is at a distance » from it. Let 0 be the angle
between dl and the displacement vector

r. According to Biot-Savart’s law, the magnitude of the magnetic

field dB is proportional to the current /, the element length |dl|, and
inversely proportional to the square of the distance r. Its direction* is
perpendicular to the plane containing dl and r .

Thus, in vector notation,
Idx

d



FIGURE 4.9 Illustration of
vl

the Biot-Savart law. The
Idlxr

0

current element 7 dl

3
[4.11(a)]
4

r

produces a field dB at a

where p /4n is a constant of proportionality. The above

distance r. The &® sign

0

expression holds when the medium is vacuum.

indicates that the
The magnitude of this field is,

field is perpendicular



to the plane of this

u/dlsind

0

page and directed

dB =

2

[4.11(b)]

4

r

into it.

where we have used the property of cross-product. Equation [4.11 (a)]
constitutes our basic equation for the magnetic field. The proportionality
constant in SI units has the exact value,

no

7

10—

Tm/A

41

[4.11(¢c)]



We call p the permeability of free space (or vacuum).

0

The Biot-Savart law for the magnetic field has certain similarities as

well as differences with the Coulomb’s law for the electrostatic field. Some
of these are:

(1) Both are long range, since both depend inversely on the square of
distance from the source to the point of interest. The principle of
superposition applies to both fields. [In this connection, note that

the magnetic field is /inear in the source I dl just as the electrostatic field is
linear in its source: the electric charge.]

(i1) The electrostatic field 1s produced by a scalar source, namely, the
electric charge. The magnetic field is produced by a vector source
IdlL

* The sense of dlxr is also given by the Right Hand Screw rule : Look at
the plane containing vectors dl and r. Imagine moving from the first vector
towards second vector. If the movement is anticlockwise, the resultant is
towards you. If it is 143

clockwise, the resultant is away from you.

Physics

(i11) The electrostatic field is along the displacement vector joining the
source and the field point. The magnetic field is perpendicular to the

plane containing the displacement vector r and the current element



IdlL
(iv) There 1s an angle dependence in the Biot-Savart law which is not
present in the electrostatic case. In Fig. 4.9, the magnetic field at any

point in the direction of dl (the dashed line) is zero. Along this line, 6 = 0,
sin 6 = 0 and from Eq. [4.11(a)], |dB| = 0.

There is an interesting relation between ¢ , the permittivity of free
0
space; U , the permeability of free space; and c, the speed of light in 0

vacuum:

ep



10—

O)
4

9 x10

82

(3x10)



c
We will discuss this connection further in Chapter 8 on the
electromagnetic waves. Since the speed of light in vacuum is constant,
the product u € is fixed in magnitude. Choosing the value of either € or
00

0

i , fixes the value of the other. In SI units, u is fixed to

0

0

be equal to

4n x 10-7 in magnitude.

Example 4.5 An element

Al=x

A i 1s placed at the origin and carries

a large current / = 10 A (Fig. 4.10). What is the magnetic field on the y-axis
at a distance of 0.5 m. Ax=1 cm.

FIGURE 4.10
Solution

ul/dlsinb6



0

dB|=

2

[using Eq. (4.11)]
4n

r

—2

Tm

dl=x
A=10m,/=10A,r=0.5m =y,
7

u /4

10—

0=90°,sin6=1
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dB =

=4 x10-8T
2
25 %10

The direction of the field is in the + z-direction. This is so since,

A

dl x

Ak

4.5



We remind you of the following cyclic property of cross-products,

A

ixj=k;jxk=i,kxi=jXAMPLE
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Note that the field is small in magnitude.
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Magnetism

In the next section, we shall use the Biot-Savart law to calculate the
magnetic field due to a circular loop.

4.6 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR
CURRENT LOOP

In this section, we shall evaluate the magnetic field due to a circular coil

along its axis. The evaluation entails summing up the effect of infinitesimal



current elements ( / dl) mentioned in the previous section.
We assume that the current / is steady and that the
evaluation is carried out in free space (i.e., vacuum).
Figure 4.11 depicts a circular loop carrying a steady
current /. The loop is placed in the y-z plane with its
centre at the origin O and has a radius R. The x-axis is

the axis of the loop. We wish to calculate the magnetic
field at the point P on this axis. Let x be the distance of

P from the centre O of the loop.

Consider a conducting element dl of the loop. This is
shown in Fig. 4.11. The magnitude d B of the magnetic
field due to d / is given by the Biot-Savart law [Eq. 4.11(a)],
uld

0

dB =

Ixr

(4.12)
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FIGURE 4.11 Magnetic field on the

Now 72 =x 2 + R 2 . Further, any element of the loop
axis of a current carrying circular

will be perpendicular to the displacement vector from
loop of radius R. Shown are the

the element to the axial point. For example, the element
magnetic field dB (due to a line

dl in Fig. 4.11 is in the y-z plane whereas the

element dl ) and its

displacement vector r from dl to the axial point P is in
components along and

the x-y plane. Hence | dl % r|=r dl. Thus, perpendicular to the axis.
u

d

11l

43 (2



x+R)

(4.13)

The direction of dB 1s shown in Fig. 4.11. It is perpendicular to the
plane formed by dl and r. It has an x-component dB and a component x

perpendicular to x-axis, dB.L. When the components perpendicular to the x-
axis are summed over, they cancel out and we obtain a null result.

For example, the dBL component due to dl is cancelled by the
contribution due to the diametrically opposite dl element, shown in

Fig. 4.11. Thus, only the x-component survives. The net contribution
along x-direction can be obtained by integrating d B =d B cos 0 over the x
loop. For Fig. 4.11,

R

cosO =

(4.14)
R)
From Egs. (4.13) and (4.14),

ud
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(x+R)

Physics

The summation of elements d / over the loop yields 2x R, the
circumference of the loop. Thus, the magnetic field at P due to entire
circular loop is

2

nwilR



(4.15)

2(x+R)3/2

2

2

As a special case of the above result, we may obtain the field at the centre

of the loop. Here x = 0, and we obtain,

w/

(4.16)

2R

The magnetic field lines due to a circular wire form closed loops and
are shown in Fig. 4.12. The direction of the magnetic field is given by

(another) right-hand thumb rule stated below:



Curl the palm of your right hand around the circular wire with the
fingers pointing in the direction of the current. The right-hand thumb
gives the direction of the magnetic field.

FIGURE 4.12 The magnetic field lines for a current loop. The direction of
the field is given by the right-hand thumb rule described in the text. The
upper side of the loop may be thought of as the north pole and the lower

side as the south pole of a magnet.

Example 4.6 A straight wire carrying a current of 12 A is bent into a
semicircular arc of radius 2.0 cm as shown in Fig. 4.13(a). Consider
the magnetic field B at the centre of the arc. (a) What is the magnetic
field due to the straight segments? (b) In what way the contribution
to B from the semicircle differs from that of a circular loop and in
what way does it resemble? (¢c) Would your answer be different if the
wire were bent into a semicircular arc of the same radius but in the
opposite way as shown in Fig. 4.13(b)?

4.6

XAMPLE
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E

FIGURE 4.13
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Solution

(a) dl and r for each element of the straight segments are parallel.
Therefore, dl x r = 0. Straight segments do not contribute to

IB.

(b) For all segments of the semicircular arc, dl x r are all parallel to E
each other (into the plane of the paper). All such contributions
XAMPLE

add up in magnitude. Hence direction of B for a semicircular arc

is given by the right-hand rule and magnitude is half that of a
circular loop. Thus B is 1.9 x 10—4 T normal to the plane of the

4.6

paper going into it.

(c) Same magnitude of B but opposite in direction to that in (b).
Example 4.7 Consider a tightly wound 100 turn coil of radius 10 cm,
carrying a current of 1 A. What is the magnitude of the magnetic
field at the centre of the coil?

E

Solution Since the coil is tightly wound, we may take each circular

element to have the same radius R = 10 cm = 0.1 m. The number of



XAMPLE

turns N = 100. The magnitude of the magnetic field is,
—7

2

u NI

4m x 10

x10 x1

4.7

10—

:n)(
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. 810

T

2R

2x10

4.7 AMPERE’S CIRCUITAL LAW

There 1s an alternative and appealing way in which the Biot-Savart law
may be expressed. Ampere’s circuital law considers an open surface
with a boundary (Fig. 4.14). The surface has current passing
through it. We consider the boundary to be made up of a number

of small line elements. Consider one such element of length d/. We
take the value of the tangential component of the magnetic field,

B , at this element and multiply it by the length of that element d/ ¢
[Note: B d/=B. d 1]. All such products are added together. We ¢
consider the limit as the lengths of elements get smaller and their
number gets larger. The sum then tends to an integral. Ampere’s
law states that this integral is equal to p times the total current

0

FIGURE 4.14

passing through the surface, i.e.,



d
g=ul
[B10
N
[4.17(a)]

where [ 1s the total current through the surface. The integral is taken over
the closed loop coinciding with the boundary C of the surface. The relation
above involves a sign-convention, given by the right-hand rule.

Let the fingers of the right-hand be curled in the sense the boundary is

traversed in the loop integral “B. dl. Then the direction of the thumb gives
the sense in which the current / 1s regarded as positive.

For several applications, a much simplified version of Eq. [4.17(a)]
proves sufficient. We shall assume that, in such cases, it is possible to
choose the loop (called an amperian loop) such that at each point of the 147

loop, either
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(1)

B is tangential to the loop and is a nonzero constant
B, or

(i1) B is normal to the loop, or

(111) B vanishes.

Now, let L be the length (part) of the loop for which B
is tangential. Let / be the current enclosed by the loop.
e

Then, Eq. (4.17) reduces to,

BL=nl
[4.17(b)]
Oe

When there is a system with a symmetry such as for

a straight infinite current-carrying wire in Fig. 4.15, the
Ampere’s law enables an easy evaluation of the magnetic
field, much the same way Gauss’ law helps in
determination of the electric field. This is exhibited in the
Example 4.8 below. The boundary of the loop chosen is
Andre Ampere (1775 —

1836) Andre Marie Ampere



a circle and magnetic field is tangential to the

was a French physicist,

circumference of the circle. The law gives, for the left hand
mathematician and

side of Eq. [4.17 (b)], B. 2n . We find that the magnetic
chemist who founded the

field at a distance r outside the wire is tangential and
science of electrodynamics.

given by

Ampere was a child prodigy

who mastered advanced

Bx2nr=pl,

0

mathematics by the age of

B=ul/2nr)
(4.18)
0

12. Ampere grasped the
significance of Oersted’s

The above result for the infinite wire is interesting



discovery. He carried out a

from several points of view.

large series of experiments

(1) It implies that the field at every point on a circle of
to explore the relationship

radius r, (with the wire along the axis), is same in
between current electricity

magnitude. In other words, the magnetic field

and magnetism. These

possesses what is called a cylindrical symmetry. The
investigations culminated

field that normally can depend on three coordinates

)

in 1827 with the

depends only on one: ». Whenever there is symmetry,
publication of the

the solutions simplify.

‘Mathematical Theory of

(11) The field direction at any point on this circle is

Electrodynamic Phenomena Deduced Solely from



tangential to it. Thus, the lines of constant magnitude
Experiments’. He hypo—

of magnetic field form concentric circles. Notice now,
thesised that a/l magnetic

in Fig. 4.1(c), the iron filings form concentric circles.
(1775 1836

phenomena are due to

These lines called magnetic field lines form closed
circulating electric

loops. This is unlike the electrostatic field lines which
currents. Ampere was

originate from positive charges and end at negative
humble and absent—

charges. The expression for the magnetic field of a
minded. He once forgot an

straight wire provides a theoretical justification to
invitation to dine with the

Oersted’s experiments.

Emperor Napoleon. He died

of pneumonia at the age of



(i11) Another interesting point to note is that even though
61. His gravestone bears

the wire is infinite, the field due to it at a nonzero
ANDRE AMPERE

the epitaph: Tandem Felix

distance is not infinite. It tends to blow up only when
(Happy at last).

we come very close to the wire. The field is directly
proportional to the current and inversely proportional

to the distance from the (infinitely long) current
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source.
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(iv) There exists a simple rule to determine the direction of the magnetic

field due to a long wire. This rule, called the right-hand rule*, is: Grasp the
wire in your right hand with your extended thumb pointing in the direction
of the current. Your fingers will curl around in the

direction of the magnetic field.
Ampere’s circuital law is not new in content from Biot-Savart law.

Both relate the magnetic field and the current, and both express the same



physical consequences of a steady electrical current. Ampere’s law is to
Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s
and Gauss’s law relate a physical quantity on the periphery or boundary
(magnetic or electric field) to another physical quantity, namely, the source,
in the interior (current or charge). We also note that Ampere’s circuital

law holds for steady currents which do not fluctuate with time. The
following example will help us understand what is meant by the term
enclosed current.

Example 4.8 Figure 4.15 shows a long straight wire of a circular

cross-section (radius a) carrying steady current /. The current / is uniformly
distributed across this cross-section. Calculate the magnetic field in the
region » < g and r > a.

FIGURE 4.15

Solution (a) Consider the case » > a . The Amperian loop, labelled 2, is a
circle concentric with the cross-section. For this loop, L=2n r

I = Current enclosed by the loop =/

e

The result is the familiar expression for a long straight wire
BQ2rnr)y=unl

0

w/l



[4.19(a)]

20r

E

1

XAMPLE

B o<

(r>a)

r

(b) Consider the case » < a. The Amperian loop is a circle labelled 1.
4.8

For this loop, taking the radius of the circle to be 7,
L=2mnr

* Note that there are two distinct right-hand rules: One which gives the
direction of B on the axis of current-loop and the other which gives
direction of B

for a straight conducting wire. Fingers and thumb play different roles in
149
the two.
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Now the current enclosed / i1s not /, but 1s less than this value.
e

Since the current distribution is uniform, the current enclosed is,

2

Ta

a

2

Ir

Using Ampere’s law, B(20 r) = pn0
2

a



02

2a
[4.19(b)]
Becr(r<a)
FIGURE 4.16
Figure (4.16) shows a plot of the magnitude of B with distance r
from the centre of the wire. The direction of the field is tangential to
4.8
the respective circular loop (1 or 2) and given by the right-hand
rule described earlier in this section.
This example possesses the required symmetry so that Ampere’s
XAMPLE
E
law can be applied readily.
It should be noted that while Ampere’s circuital law holds for any

loop, it may not always facilitate an evaluation of the magnetic field in



every case. For example, for the case of the circular loop discussed in
Section 4.6, it cannot be applied to extract the simple expression

B = 1I/2R [Eq. (4.16)] for the field at the centre of the loop. However, 0
there exists a large number of situations of high symmetry where the law
can be conveniently applied. We shall use it in the next section to calculate
the magnetic field produced by two commonly used and very useful
magnetic systems: the solenoid and the toroid.

4.8 THE SOLENOID AND THE TOROID

The solenoid and the toroid are two pieces of equipment which generate
magnetic fields. The television uses the solenoid to generate magnetic
fields needed. The synchrotron uses a combination of both to generate
the high magnetic fields required. In both, solenoid and toroid, we come
across a situation of high symmetry where Ampere’s law can be

150

conveniently applied.
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4.8.1 The solenoid

We shall discuss a long solenoid. By long solenoid we mean that the

solenoid’s length is large compared to its radius. It consists of a long



wire wound in the form of a helix where the neighbouring turns are closely
spaced. So each turn can be regarded as a circular loop. The net magnetic
field is the vector sum of the fields due to all the turns. Enamelled wires
are used for winding so that turns are insulated from each other.

FIGURE 4.17 (a) The magnetic field due to a section of the solenoid which
has been stretched out for clarity. Only the exterior semicircular part is
shown. Notice how the circular loops between neighbouring turns tend to
cancel.

(b) The magnetic field of a finite solenoid.

Figure 4.17 displays the magnetic field lines for a finite solenoid. We
show a section of this solenoid in an enlarged manner in Fig. 4.17(a).
Figure 4.17(b) shows the entire finite solenoid with its magnetic field. In
Fig. 4.17(a), it is clear from the circular loops that the field between two
neighbouring turns vanishes. In Fig. 4.17(b), we see that the field at the
interior midpoint P is uniform, strong and along the axis of the solenoid.
The field at the exterior midpoint Q is weak and moreover is along the
axis of the solenoid with no perpendicular or normal component. As the
solenoid 1s made longer it appears like a long cylindrical metal sheet.
Figure 4.18 represents this idealised picture. The field outside the solenoid
approaches zero. We shall assume that the field outside is zero. The field

inside becomes everywhere parallel to the axis.



FIGURE 4.18 The magnetic field of a very long solenoid. We consider a
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rectangular Amperian loop abcd to determine the field.

Physics

Consider a rectangular Amperian loop abcd. Along cd the field is zero

as argued above. Along transverse sections bc and ad, the field component
is zero. Thus, these two sections make no contribution. Let the field along
ab be B. Thus, the relevant length of the Amperian loop is, L = A.

Let n be the number of turns per unit length, then the total number

of turns is nh. The enclosed current is, le = I (n h), where [ is the current in
the solenoid. From Ampere’s circuital law [Eq. 4.17 (b)]

BL=pl,Bh=pl(nh)

Oe



0

B=unl
(4.20)
0

The direction of the field is given by the right-hand rule. The solenoid
1s commonly used to obtain a uniform magnetic field. We shall see in the
next chapter that a large field is possible by inserting a soft

iron core inside the solenoid.

4.8.2 The toroid

The toroid is a hollow circular ring on which a large number

of turns of a wire are closely wound. It can be viewed as a

solenoid which has been bent into a circular shape to close

on itself. It is shown in Fig. 4.19(a) carrying a current /. We

shall see that the magnetic field in the open space inside

(point P) and exterior to the toroid (point Q) is zero. The

field B inside the toroid is constant in magnitude for the

ideal toroid of closely wound turns.

Figure 4.19(b) shows a sectional view of the toroid. The

direction of the magnetic field inside 1s clockwise as per the

right-hand thumb rule for circular loops. Three circular



Amperian loops 1, 2 and 3 are shown by dashed lines. By
symmetry, the magnetic field should be tangential to each
of them and constant in magnitude for a given loop. The
circular areas bounded by loops 2 and 3 both cut the toroid:
so that each turn of current carrying wire is cut once by
the loop 2 and twice by the loop 3.

Let the magnetic field along loop 1 be B in magnitude.

1

Then in Ampere’s circuital law [Eq. 4.17(a)], L=2nr.

1

However, the loop encloses no current, so /= 0. Thus,

e

BQ2nrnr)=pn(0),B=0

1

1

0

1

FIGURE 4.19 (a) A toroid carrying

Thus, the magnetic field at any point P in the open space

a current /. (b) A sectional view of



inside the toroid is zero.

the toroid. The magnetic field can

We shall now show that magnetic field at Q is likewise

be obtained at an arbitrary

zero. Let the magnetic field along loop 3 be B . Once again
distance r from the centre O of

3

from Ampere’s law L =2

the toroid by Ampere’s circuital

n r . However, from the sectional

3

law. The dashed lines labelled

cut, we see that the current coming out of the plane of the
1, 2 and 3 are three circular

paper is cancelled exactly by the current going into it. Thus,
Amperian loops.

1=0, and B = 0. Let the magnetic field inside the solenoid
e

3

be B. We shall now consider the magnetic field at S. Once again we employ
Ampere’s law in the form of Eq. [4.17 (a)]. We find, L =2n r.



The current enclosed 7 is (for N turns of toroidal coil) N 1.

e
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BQ2nr)=un NI
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u NI

0

B=2r

T

(4.21)

We shall now compare the two results: for a toroid and solenoid. We
re-express Eq. (4.21) to make the comparison easier with the solenoid

result given in Eq. (4.20). Let » be the average radius of the toroid and » be
the number of turns per unit length. Then N = 2n r n = (average) perimeter
of the toroid

X number of turns per unit length
and thus,
B=u

Onl



(4.22)

1.e., the result for the solenoid!

In an ideal toroid the coils are circular. In reality the turns of the

toroidal coil form a helix and there is always a small magnetic field external
to the toroid.

MAGNETIC CONFINEMENT

We have seen in Section 4.3 (see also the box on helical motion of charged
particles earlier in this chapter) that orbits of charged particles are helical. If
the magnetic field is nonuniform, but does not change much during one
circular orbit, then the radius of the helix will decrease as it enters stronger
magnetic field and the radius will increase when it enters weaker magnetic
fields. We consider two solenoids at a distance from each other, enclosed in
an evacuated container (see figure below where we have not shown the
container).

Charged particles moving in the region between the two solenoids will start
with a small radius. The radius will increase as field decreases and the
radius will decrease again as field due to the second solenoid takes over.
The solenoids act as a mirror or reflector. [See the direction of F as the
particle approaches coil 2 in the figure. It has a horizontal component
against the forward motion.] This makes the particles turn back when they
approach the solenoid. Such an arrangement will act like magnetic bottle or
magnetic container. The particles will never touch the sides of the container.
Such magnetic bottles are of great use in confining the high energy plasma
in fusion experiments. The plasma will destroy any other form of material
container because of it’s high temperature. Another useful container is a
toroid. Toroids are expected to play a key role in the tokamak, an equipment
for plasma confinement in fusion power reactors. There is an international
collaboration called the International Thermonuclear Experimental Reactor
(ITER), being set up in France, for achieving controlled fusion, of which
India is a collaborating nation. For details of ITER



collaboration and the project, you may visit http://www.iter.org.
153

Physics

Example 4.9 A solenoid of length 0.5 m has a radius of 1 cm and is
made up of 500 turns. It carries a current of 5 A. What is the
magnitude of the magnetic field inside the solenoid?

Solution The number of turns per unit length is,

500

1=

= 1000 turns/m

0.5

4.9

The length /= 0.5 m and radius » = 0.01 m. Thus, //a=501.e.,[>>a..

Hence, we can use the long solenoid formula, namely, Eq. (4.20)

B=unl
0
XAMPLE

=4n x 10-7 x 103 x5

E

=628 x10-3T



4.9 FORCE BETWEEN TWO PARALLEL CURRENTS,

THE AMPERE

We have learnt that there exists a magnetic field due to a conductor
carrying a current which obeys the Biot-Savart law. Further, we have
learnt that an external magnetic field will exert a force on

a current-carrying conductor. This follows from the

Lorentz force formula. Thus, it is logical to expect that

two current-carrying conductors placed near each other

will exert (magnetic) forces on each other. In the period

1820-25, Ampere studied the nature of this magnetic

force and its dependence on the magnitude of the current,

on the shape and size of the conductors as well as the

distances between the conductors. In this section, we

shall take the simple example of two parallel current-carrying conductors,
which will perhaps help us to

appreciate Ampere’s painstaking work.

Figure 4.20 shows two long parallel conductors a
FIGURE 4.20 Two long straight

and b separated by a distance d and carrying (parallel)
parallel conductors carrying steady

currents / and 7, respectively. The conductor ‘a’



currents / and / and separated by a

a

b

a

b

distance d. B is the magnetic field set

produces, the same magnetic field B at all points along

a

a

up by conductor ‘a’ at conductor ‘b’.

the conductor ‘b’. The right-hand rule tells us that the
direction of this field is downwards (when the conductors
are placed horizontally). Its magnitude is given by Eq. [4.19(a)] or from

Ampere’s circuital law,

2nd

The conductor ‘b’ carrying a current / will experience a sideways



b

force due to the f