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Chapter One

ELECTRIC CHARGES

AND FIELDS

1.1 INTRODUCTION

All of us have the experience of seeing a spark or hearing a crackle when



we take off our synthetic clothes or sweater, particularly in dry weather.

This is almost inevitable with ladies garments like a polyester saree. Have

you ever tried to find any explanation for this phenomenon? Another

common example of electric discharge is the lightning that we see in the

sky during thunderstorms. We also experience a sensation of an electric

shock either while opening the door of a car or holding the iron bar of a

bus after sliding from our seat. The reason for these experiences is

discharge of electric charges through our body, which were accumulated

due to rubbing of insulating surfaces. You might have also heard that

this is due to generation of static electricity. This is precisely the topic we
are going to discuss in this and the next chapter. Static means anything that
does not move or change with time. Electrostatics deals with the

study of forces, fields and potentials arising from static charges.

1.2 ELECTRIC CHARGE

Historically the credit of discovery of the fact that amber rubbed with

wool or silk cloth attracts light objects goes to Thales of Miletus, Greece,

around 600 BC. The name electricity is coined from the Greek word

elektron meaning amber. Many such pairs of materials were known which

Physics

on rubbing could attract light objects

like straw, pith balls and bits of papers.



You can perform the following activity

at home to experience such an effect.

Cut out long thin strips of white paper

and lightly iron them. Take them near a

TV screen or computer monitor. You will

see that the strips get attracted to the

screen. In fact they remain stuck to the

screen for a while.

It was observed that if two glass rods

rubbed with wool or silk cloth are

brought close to each other, they repel

each other [Fig. 1.1(a)]. The two strands

FIGURE 1.1 Rods and pith balls: like charges repel and

of wool or two pieces of silk cloth, with

unlike charges attract each other.

which the rods were rubbed, also repel

each other. However, the glass rod and

wool attracted each other. Similarly, two plastic rods rubbed with cat’s

fur repelled each other [Fig. 1.1(b)] but attracted the fur. On the other

hand, the plastic rod attracts the glass rod [Fig. 1.1(c)] and repel the silk



or wool with which the glass rod is rubbed. The glass rod repels the fur.

If a plastic rod rubbed with fur is made to touch two small pith balls

(now-a-days we can use polystyrene balls) suspended by silk or nylon

thread, then the balls repel each other [Fig. 1.1(d)] and are also repelled

by the rod. A similar effect is found if the pith balls are touched with a

glass rod rubbed with silk [Fig. 1.1(e)]. A dramatic observation is that a

pith ball touched with glass rod attracts another pith ball touched with

plastic rod [Fig. 1.1(f )].

These seemingly simple facts were established from years of efforts

and careful experiments and their analyses. It was concluded, after many

careful studies by different scientists, that there were only two kinds of

an entity which is called the electric charge. We say that the bodies like
glass or plastic rods, silk, fur and pith balls are electrified. They acquire an
electric charge on rubbing. The experiments on pith balls suggested

that there are two kinds of electrification and we find that (i) like charges
repel and (ii) unlike charges attract each other. The experiments also
demonstrated that the charges are transferred from the rods to the pith balls
on contact. It is said that the pith balls are electrified or are charged by
contact. The property which differentiates the two kinds of charges is called
the polarity of charge.

When a glass rod is rubbed with silk, the rod acquires one kind of

Interactive animation on simple electrostatic experiments:

http://ephysics.physics.ucla.edu/travoltage/HTML/



charge and the silk acquires the second kind of charge. This is true for

any pair of objects that are rubbed to be electrified. Now if the electrified

glass rod is brought in contact with silk, with which it was rubbed, they

no longer attract each other. They also do not attract or repel other light

objects as they did on being electrified.

Thus, the charges acquired after rubbing are lost when the charged

bodies are brought in contact. What can you conclude from these

2

observations? It just tells us that unlike charges acquired by the objects
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neutralise or nullify each other’s effect. Therefore the charges were named

as positive and negative by the American scientist Benjamin Franklin.

We know that when we add a positive number to a negative number of

the same magnitude, the sum is zero. This might have been the

philosophy in naming the charges as positive and negative. By convention,

the charge on glass rod or cat’s fur is called positive and that on plastic

rod or silk is termed negative. If an object possesses an electric charge, it

is said to be electrified or charged. When it has no charge it is said to be

neutral.



UNIFICATION OF ELECTRICITY AND MAGNETISM

In olden days, electricity and magnetism were treated as separate subjects.
Electricity dealt with charges on glass rods, cat’s fur, batteries, lightning,
etc., while magnetism described interactions of magnets, iron filings,
compass needles, etc. In 1820 Danish scientist Oersted found that a
compass needle is deflected by passing an electric current through a wire
placed near the needle. Ampere and Faraday supported this observation by
saying that electric charges in motion produce magnetic fields and moving
magnets generate electricity. The unification was achieved when the
Scottish physicist Maxwell and the Dutch physicist Lorentz put forward a
theory where they showed the interdependence of these two subjects. This
field is called electromagnetism. Most of the phenomena occurring around
us can be described under electromagnetism. Virtually every force that we
can think of like friction, chemical force between atoms holding the matter
together, and even the forces describing processes occurring in cells of
living organisms, have its origin in electromagnetic force. Electromagnetic
force is one of the fundamental forces of nature.

Maxwell put forth four equations that play the same role in classical
electromagnetism as Newton’s equations of motion and gravitation law play
in mechanics. He also argued that light is electromagnetic in nature and its
speed can be found by making purely electric and magnetic measurements.
He claimed that the science of optics is intimately related to that of
electricity and magnetism.

The science of electricity and magnetism is the foundation for the modern
technological civilisation. Electric power, telecommunication, radio and
television, and a wide variety of the practical appliances used in daily life
are based on the principles of this science.

Although charged particles in motion exert both electric and magnetic
forces, in the frame of reference where all the charges are at rest, the forces
are purely electrical. You know that gravitational force is a long-range
force. Its effect is felt even when the distance between the interacting
particles is very large because the force decreases inversely as the square of
the distance between the interacting bodies. We will learn in this chapter
that electric force is also as pervasive and is in fact stronger than the



gravitational force by several orders of magnitude (refer to Chapter 1 of
Class XI Physics Textbook).

A simple apparatus to detect charge on a body is the gold-leaf

electroscope [Fig. 1.2(a)]. It consists of a vertical metal rod housed in a
box, with two thin gold leaves attached to its bottom end. When a charged
object touches the metal knob at the top of the rod, charge flows on to

the leaves and they diverge. The degree of divergance is an indicator of

3

the amount of charge.
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Students can make a simple electroscope as

follows [Fig. 1.2(b)]: Take a thin aluminium curtain

rod with ball ends fitted for hanging the curtain. Cut

out a piece of length about 20 cm with the ball at

one end and flatten the cut end. Take a large bottle

that can hold this rod and a cork which will fit in the

opening of the bottle. Make a hole in the cork

sufficient to hold the curtain rod snugly. Slide the

rod through the hole in the cork with the cut end on

the lower side and ball end projecting above the cork.

Fold a small, thin aluminium foil (about 6 cm in



length) in the middle and attach it to the flattened

end of the rod by cellulose tape. This forms the leaves

of your electroscope. Fit the cork in the bottle with

about 5 cm of the ball end projecting above the cork.

A paper scale may be put inside the bottle in advance

to measure the separation of leaves. The separation

is a rough measure of the amount of charge on the

electroscope.

To understand how the electroscope works, use

the white paper strips we used for seeing the

attraction of charged bodies. Fold the strips into half

so that you make a mark of fold. Open the strip and

FIGURE 1.2 Electroscopes: (a) The gold leaf

iron it lightly with the mountain fold up, as shown

electroscope, (b) Schematics of a simple

in Fig. 1.3. Hold the strip by pinching it at the fold.

electroscope.

You would notice that the two halves move apart.

This shows that the strip has acquired charge on ironing. When you fold

it into half, both the halves have the same charge. Hence they repel each



other. The same effect is seen in the leaf electroscope. On charging the

curtain rod by touching the ball end with an electrified body, charge is

transferred to the curtain rod and the attached aluminium foil. Both the

halves of the foil get similar charge and therefore repel each other. The

divergence in the leaves depends on the amount of charge on them. Let

us first try to understand why material bodies acquire charge.

You know that all matter is made up of atoms and/or molecules.

Although normally the materials are electrically neutral, they do contain

charges; but their charges are exactly balanced. Forces that hold the

molecules together, forces that hold atoms together in a solid, the adhesive

force of glue, forces associated with surface tension, all are basically

electrical in nature, arising from the forces between charged particles.

Thus the electric force is all pervasive and it encompasses almost each

and every field associated with our life. It is therefore essential that we

learn more about such a force.

To electrify a neutral body, we need to add or remove one kind of

FIGURE 1.3 Paper strip charge. When we say that a body is charged, we
always refer to this experiment.

excess charge or deficit of charge. In solids, some of the electrons, being

less tightly bound in the atom, are the charges which are transferred

from one body to the other. A body can thus be charged positively by
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losing some of its electrons. Similarly, a body can be charged negatively
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by gaining electrons. When we rub a glass rod with silk, some of the

electrons from the rod are transferred to the silk cloth. Thus the rod gets

positively charged and the silk gets negatively charged. No new charge is

created in the process of rubbing. Also the number of electrons, that are

transferred, is a very small fraction of the total number of electrons in the

material body. Also only the less tightly bound electrons in a material

body can be transferred from it to another by rubbing. Therefore, when

a body is rubbed with another, the bodies get charged and that is why

we have to stick to certain pairs of materials to notice charging on rubbing

the bodies.

1.3 CONDUCTORS AND INSULATORS

A metal rod held in hand and rubbed with wool will not show any sign of

being charged. However, if a metal rod with a wooden or plastic handle is

rubbed without touching its metal part, it shows signs of charging.

Suppose we connect one end of a copper wire to a neutral pith ball and

the other end to a negatively charged plastic rod. We will find that the



pith ball acquires a negative charge. If a similar experiment is repeated

with a nylon thread or a rubber band, no transfer of charge will take

place from the plastic rod to the pith ball. Why does the transfer of charge

not take place from the rod to the ball?

Some substances readily allow passage of electricity through them,

others do not. Those which allow electricity to pass through them easily are
called conductors. They have electric charges (electrons) that are
comparatively free to move inside the material. Metals, human and animal

bodies and earth are conductors. Most of the non-metals like glass,

porcelain, plastic, nylon, wood offer high resistance to the passage of

electricity through them. They are called insulators. Most substances fall
into one of the two classes stated above*.

When some charge is transferred to a conductor, it readily gets

distributed over the entire surface of the conductor. In contrast, if some

charge is put on an insulator, it stays at the same place. You will learn

why this happens in the next chapter.

This property of the materials tells you why a nylon or plastic comb

gets electrified on combing dry hair or on rubbing, but a metal article

like spoon does not. The charges on metal leak through our body to the

ground as both are conductors of electricity.

When we bring a charged body in contact with the earth, all the



excess charge on the body disappears by causing a momentary current

to pass to the ground through the connecting conductor (such as our

body). This process of sharing the charges with the earth is called

grounding or earthing. Earthing provides a safety measure for electrical
circuits and appliances. A thick metal plate is buried deep into the earth and
thick wires are drawn from this plate; these are used in buildings

for the purpose of earthing near the mains supply. The electric wiring in

our houses has three wires: live, neutral and earth. The first two carry

* There is a third category called semiconductors, which offer resistance to
the movement of charges which is intermediate between the conductors and
5

insulators.
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electric current from the power station and the third is earthed by

connecting it to the buried metal plate. Metallic bodies of the electric

appliances such as electric iron, refrigerator, TV are connected to the

earth wire. When any fault occurs or live wire touches the metallic body,

the charge flows to the earth without damaging the appliance and without

causing any injury to the humans; this would have otherwise been

unavoidable since the human body is a conductor of electricity.

1.4 CHARGING BY INDUCTION

When we touch a pith ball with an electrified plastic rod, some of the



negative charges on the rod are transferred to the pith ball and it also

gets charged. Thus the pith ball is charged by contact. It is then repelled by
the plastic rod but is attracted by a glass rod which is oppositely charged.
However, why a electrified rod attracts light objects, is a question we have
still left unanswered. Let us try to understand what could be happening by
performing the following experiment.

(i) Bring two metal spheres, A and B, supported on insulating stands,

in contact as shown in Fig. 1.4(a).

(ii) Bring a positively charged rod near one of the spheres, say A, taking

care that it does not touch the sphere. The free electrons in the spheres

are attracted towards the rod. This leaves an excess of positive charge

on the rear surface of sphere B. Both kinds of charges are bound in

the metal spheres and cannot escape. They, therefore, reside on the

surfaces, as shown in Fig. 1.4(b). The left surface of sphere A, has an

excess of negative charge and the right surface of sphere B, has an

excess of positive charge. However, not all of the electrons in the spheres

have accumulated on the left surface of A. As the negative charge

starts building up at the left surface of A, other electrons are repelled

by these. In a short time, equilibrium is reached under the action of

force of attraction of the rod and the force of repulsion due to the

accumulated charges. Fig. 1.4(b) shows the equilibrium situation.

The process is called induction of charge and happens almost



instantly. The accumulated charges remain on the surface, as shown,

till the glass rod is held near the sphere. If the rod is removed, the

charges are not acted by any outside force and they redistribute to

their original neutral state.

(iii) Separate the spheres by a small distance while the glass rod is still

held near sphere A, as shown in Fig. 1.4(c). The two spheres are found

to be oppositely charged and attract each other.

(iv) Remove the rod. The charges on spheres rearrange themselves as

shown in Fig. 1.4(d). Now, separate the spheres quite apart. The

charges on them get uniformly distributed over them, as shown in

Fig. 1.4(e).

In this process, the metal spheres will each be equal and oppositely

charged. This is charging by induction. The positively charged glass rod
does not lose any of its charge, contrary to the process of charging by
FIGURE 1.4 Charging

contact.

by induction.

When electrified rods are brought near light objects, a similar effect

takes place. The rods induce opposite charges on the near surfaces of

6

the objects and similar charges move to the farther side of the object.
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[This happens even when the light object is not a conductor. The

mechanism for how this happens is explained later in Sections 1.10 and

2.10.] The centres of the two types of charges are slightly separated. We

know that opposite charges attract while similar charges repel. However,

the magnitude of force depends on the distance between the charges

and in this case the force of attraction overweighs the force of repulsion.

As a result the particles like bits of paper or pith balls, being light, are

pulled towards the rods.

Example 1.1 How can you charge a metal sphere positively without

touching it?

Solution Figure 1.5(a) shows an uncharged metallic sphere on an

http://www.physicsclassroom.com/mmedia/estatics/estaticTOC.html



Interactive animation on charging a two-sphere system by induction:

insulating metal stand. Bring a negatively charged rod close to the

metallic sphere, as shown in Fig. 1.5(b). As the rod is brought close

to the sphere, the free electrons in the sphere move away due to

repulsion and start piling up at the farther end. The near end becomes

positively charged due to deficit of electrons. This process of charge

distribution stops when the net force on the free electrons inside the

metal is zero. Connect the sphere to the ground by a conducting

wire. The electrons will flow to the ground while the positive charges

at the near end will remain held there due to the attractive force of

the negative charges on the rod, as shown in Fig. 1.5(c). Disconnect

the sphere from the ground. The positive charge continues to be

held at the near end [Fig. 1.5(d)]. Remove the electrified rod. The

positive charge will spread uniformly over the sphere as shown in

Fig. 1.5(e).

FIGURE 1.5

In this experiment, the metal sphere gets charged by the process

E

of induction and the rod does not lose any of its charge.

XAMPLE



Similar steps are involved in charging a metal sphere negatively

by induction, by bringing a positively charged rod near it. In this

1.1

case the electrons will flow from the ground to the sphere when the

sphere is connected to the ground with a wire. Can you explain why?

7
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1.5 BASIC PROPERTIES OF ELECTRIC CHARGE

We have seen that there are two types of charges, namely positive and

negative and their effects tend to cancel each other. Here, we shall now

describe some other properties of the electric charge.

If the sizes of charged bodies are very small as compared to the

distances between them, we treat them as point charges. All the

charge content of the body is assumed to be concentrated at one point

in space.

1.5.1 Additivity of charges

We have not as yet given a quantitative definition of a charge; we shall

follow it up in the next section. We shall tentatively assume that this can

be done and proceed. If a system contains two point charges q and q , 1

2



the total charge of the system is obtained simply by adding algebraically

q and q , i.e., charges add up like real numbers or they are scalars like 1

2

the mass of a body. If a system contains n charges q , q , q , …, q , then 1

2

3

n

the total charge of the system is q + q + q + … + q . Charge has

1

2

3

n

magnitude but no direction, similar to the mass. However, there is one

difference between mass and charge. Mass of a body is always positive

whereas a charge can be either positive or negative. Proper signs have to

be used while adding the charges in a system. For example, the

total charge of a system containing five charges +1, +2, –3, +4 and –5,

in some arbitrary unit, is (+1) + (+2) + (–3) + (+4) + (–5) = –1 in the

same unit.

1.5.2 Charge is conserved



We have already hinted to the fact that when bodies are charged by

rubbing, there is transfer of electrons from one body to the other; no new

charges are either created or destroyed. A picture of particles of electric

charge enables us to understand the idea of conservation of charge. When

we rub two bodies, what one body gains in charge the other body loses.

Within an isolated system consisting of many charged bodies, due to

interactions among the bodies, charges may get redistributed but it is

found that the total charge of the isolated system is always conserved.

Conservation of charge has been established experimentally.

It is not possible to create or destroy net charge carried by any isolated

system although the charge carrying particles may be created or destroyed

in a process. Sometimes nature creates charged particles: a neutron turns

into a proton and an electron. The proton and electron thus created have

equal and opposite charges and the total charge is zero before and after

the creation.

1.5.3 Quantisation of charge

Experimentally it is established that all free charges are integral multiples

of a basic unit of charge denoted by e. Thus charge q on a body is always
given by

8

q = ne
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where n is any integer, positive or negative. This basic unit of charge is the
charge that an electron or proton carries. By convention, the charge on an
electron is taken to be negative; therefore charge on an electron is

written as –e and that on a proton as +e.

The fact that electric charge is always an integral multiple of e is termed as
quantisation of charge. There are a large number of situations in physics
where certain physical quantities are quantised. The quantisation of charge
was first suggested by the experimental laws of electrolysis discovered by

English experimentalist Faraday. It was experimentally demonstrated by

Millikan in 1912.

In the International System (SI) of Units, a unit of charge is called a

coulomb and is denoted by the symbol C. A coulomb is defined in terms

the unit of the electric current which you are going to learn in a

subsequent chapter. In terms of this definition, one coulomb is the charge

flowing through a wire in 1 s if the current is 1 A (ampere), (see Chapter 2

of Class XI, Physics Textbook , Part I). In this system, the value of the

basic unit of charge is

e = 1.602192 × 10–19 C

Thus, there are about 6 × 1018 electrons in a charge of –1C. In

electrostatics, charges of this large magnitude are seldom encountered



and hence we use smaller units 1 μC (micro coulomb) = 10–6 C or 1 mC

(milli coulomb) = 10–3 C.

If the protons and electrons are the only basic charges in the universe,

all the observable charges have to be integral multiples of e. Thus, if a body
contains n electrons and n protons, the total amount of charge 1

2

on the body is n × e + n × (–e) = (n – n ) e. Since n and n are integers, 2

1

2

1

1

2

their difference is also an integer. Thus the charge on any body is always

an integral multiple of e and can be increased or decreased also in steps of
e.

The step size e is, however, very small because at the macroscopic

level, we deal with charges of a few μC . At this scale the fact that charge of
a body can increase or decrease in units of e is not visible. The grainy
nature of the charge is lost and it appears to be continuous.

This situation can be compared with the geometrical concepts of points

and lines. A dotted line viewed from a distance appears continuous to

us but is not continuous in reality. As many points very close to



each other normally give an impression of a continuous line, many

small charges taken together appear as a continuous charge

distribution.

At the macroscopic level, one deals with charges that are enormous

compared to the magnitude of charge e. Since e = 1.6 × 10–19 C, a charge
of magnitude, say 1 μC, contains something like 1013 times the electronic
charge. At this scale, the fact that charge can increase or decrease only in

units of e is not very different from saying that charge can take continuous
values. Thus, at the macroscopic level, the quantisation of charge has no
practical consequence and can be ignored. At the microscopic level, where

9

the charges involved are of the order of a few tens or hundreds of e, i.e.,

Physics

they can be counted, they appear in discrete lumps and quantisation of

charge cannot be ignored. It is the scale involved that is very important.

Example 1.2 If 109 electrons move out of a body to another body

every second, how much time is required to get a total charge of 1 C

on the other body?

Solution In one second 109 electrons move out of the body. Therefore

the charge given out in one second is 1.6 × 10–19 × 109 C = 1.6 × 10–10 C.

The time required to accumulate a charge of 1 C can then be estimated

to be 1 C ÷ (1.6 × 10–10 C/s ) = 6.25 × 109 s = 6.25 × 109 ÷ (365 × 24 ×



3600) years = 198 years. Thus to collect a charge of one coulomb,

from a body from which 109 electrons move out every second, we will

need approximately 200 years. One coulomb is, therefore, a very large

1.2

unit for many practical purposes.

It is, however, also important to know what is roughly the number of

electrons contained in a piece of one cubic centimetre of a material.

XAMPLE

A cubic piece of copper of side 1 cm contains about 2.5 × 1024

E

electrons.

Example 1.3 How much positive and negative charge is there in a

cup of water?

Solution Let us assume that the mass of one cup of water is

250 g. The molecular mass of water is 18g. Thus, one mole

(= 6.02 × 1023 molecules) of water is 18 g. Therefore the number of

molecules in one cup of water is (250/18) × 6.02 × 1023.

1.3

Each molecule of water contains two hydrogen atoms and one oxygen

atom, i.e., 10 electrons and 10 protons. Hence the total positive and



total negative charge has the same magnitude. It is equal to

XAMPLE

E

(250/18) × 6.02 × 1023 × 10 × 1.6 × 10–19 C = 1.34 × 107 C.

1.6 COULOMB’S LAW

Coulomb’s law is a quantitative statement about the force between two

point charges. When the linear size of charged bodies are much smaller

than the distance separating them, the size may be ignored and the

charged bodies are treated as point charges. Coulomb measured the force
between two point charges and found that it varied inversely as the square
of the distance between the charges and was directly

proportional to the product of the magnitude of the two charges and

acted along the line joining the two charges. Thus, if two point charges q , q
are separated by a distance r in vacuum, the magnitude of the 1

2

force (F) between them is given by

q

q

1

2

F = k



(1.1)

2

r

How did Coulomb arrive at this law from his experiments? Coulomb

used a torsion balance* for measuring the force between two charged
metallic

* A torsion balance is a sensitive device to measure force. It was also used
later by Cavendish to measure the very feeble gravitational force between
two objects, 10

to verify Newton’s Law of Gravitation.
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spheres. When the separation between two spheres is much

larger than the radius of each sphere, the charged spheres

may be regarded as point charges. However, the charges

on the spheres were unknown, to begin with. How then

could he discover a relation like Eq. (1.1)? Coulomb

thought of the following simple way: Suppose the charge



on a metallic sphere is q. If the sphere is put in contact

with an identical uncharged sphere, the charge will spread

over the two spheres. By symmetry, the charge on each

sphere will be q/2*. Repeating this process, we can get

charges q/2, q/4, etc. Coulomb varied the distance for a

fixed pair of charges and measured the force for different

CHARLES AUGUSTIN DE COULOMB

separations. He then varied the charges in pairs, keeping

the distance fixed for each pair. Comparing forces for

Charles Augustin de

different pairs of charges at different distances, Coulomb

Coulomb (1736 – 1806)

arrived at the relation, Eq. (1.1).

Coulomb, a French

Coulomb’s law, a simple mathematical statement,

physicist, began his career

as a military engineer in

was initially experimentally arrived at in the manner

the West Indies. In 1776, he

described above. While the original experiments



returned to Paris and

established it at a macroscopic scale, it has also been

retired to a small estate to

established down to subatomic level ( r ~ 10–10 m).

do his scientific research.

Coulomb discovered his law without knowing the

He invented a torsion

explicit magnitude of the charge. In fact, it is the other

balance to measure the

way round: Coulomb’s law can now be employed to

quantity of a force and used

furnish a definition for a unit of charge. In the relation,

it for determination of

Eq. (1.1), k is so far arbitrary. We can choose any positive

forces of electric attraction

value of k. The choice of k determines the size of the unit

or repulsion between small

charged spheres. He thus

of charge. In SI units, the value of k is about 9 × 109.

arrived in 1785 at the



The unit of charge that results from this choice is called

inverse square law relation,

a coulomb which we defined earlier in Section 1.4.

now known as Coulomb’s

Putting this value of k in Eq. (1.1), we see that for

law. The law had been

(

q = q = 1 C, r = 1 m

1

1

2

anticipated by Priestley and

73

F = 9 × 109 N

also by Cavendish earlier,

though Cavendish never

6

That is, 1 C is the charge that when placed at a

 

published his results.



–1

distance of 1 m from another charge of the same

Coulomb also found the

8

magnitude in vacuum experiences an electrical force of

inverse square law of force

0

repulsion of magnitude 9 × 109 N. One coulomb is

6

between unlike and like

)

evidently too big a unit to be used. In practice, in

magnetic poles.

electrostatics, one uses smaller units like 1 mC or 1 μC.

The constant k in Eq. (1.1) is usually put as

k = 1/4πε for later convenience, so that Coulomb’s law is written as

0

1

q q

1



2

F =

2

(1.2)

4 π ε

r

0

ε is called the permittivity of free space . The value of ε in SI units is 0

0

ε = 8.854 × 10–12 C2 N–1m–2

0

* Implicit in this is the assumption of additivity of charges and
conservation: 11

two charges ( q/2 each) add up to make a total charge q.

Physics

Since force is a vector, it is better to write

Coulomb’s law in the vector notation. Let the

position vectors of charges q and q be r and r

1

2

1



2

respectively [see Fig.1.6(a)]. We denote force on

q due to q by F and force on q due to q by 1

2

12

2

1

F . The two point charges q and q have been

21

1

2

numbered 1 and 2 for convenience and the vector

leading from 1 to 2 is denoted by r :

21

r = r – r

21

2

1

In the same way, the vector leading from 2 to

1 is denoted by r :



12

r = r – r = – r

12

1

2

21

The magnitude of the vectors r and r is

21

12

denoted by r and r , respectively ( r = r ). The 21

12

12

21

direction of a vector is specified by a unit vector

along the vector. To denote the direction from 1

to 2 (or from 2 to 1), we define the unit vectors:

FIGURE 1.6 (a) Geometry and

r

21

ˆ



(b) Forces between charges.

= r

r

12

ˆr

=

,

ˆr

= ˆr

21

,

r

12

21

12

r

21

12

Coulomb’s force law between two point charges q and q located at 1

2



r and r is then expressed as

1

2

1

q

q

1

2

F

=

ˆr

21

2

21

(1.3)

4 π ε

r

o

21

Some remarks on Eq. (1.3) are relevant:



• Equation (1.3) is valid for any sign of q and q whether positive or 1

2

negative. If q and q are of the same sign (either both positive or both 1

2

negative), F is along ˆr

, which denotes repulsion, as it should be for

21

21

like charges. If q and q are of opposite signs, F is along – ˆr (= ˆr ), 1

2

21

21

12

which denotes attraction, as expected for unlike charges. Thus, we do

not have to write separate equations for the cases of like and unlike

charges. Equation (1.3) takes care of both cases correctly [Fig. 1.6(b)].

• The force F on charge q due to charge q , is obtained from Eq. (1.3), 12

1

2

by simply interchanging 1 and 2, i.e.,



1

q

q

1

2

F

=

ˆr

= −F

12

2

12

21

4 π ε

r

0

12

Thus, Coulomb’s law agrees with the Newton’s third law.

• Coulomb’s law [Eq. (1.3)] gives the force between two charges q and

1



q in vacuum. If the charges are placed in matter or the intervening

2

space has matter, the situation gets complicated due to the presence

of charged constituents of matter. We shall consider electrostatics in

12

matter in the next chapter.
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Example 1.4 Coulomb’s law for electrostatic force between two point

charges and Newton’s law for gravitational force between two

stationary point masses, both have inverse-square dependence on

the distance between the charges/masses. (a) Compare the strength

of these forces by determining the ratio of their magnitudes (i) for an

electron and a proton and (ii) for two protons. (b) Estimate the

accelerations of electron and proton due to the electrical force of their

mutual attraction when they are 1 Å (= 10-10 m) apart? ( m = 1.67 ×

p

10–27 kg, m = 9.11 × 10–31 kg)

e

Solution



(a) (i) The electric force between an electron and a proton at a distance

http://webphysics.davidson.edu/physlet_resources/bu_semester2/co1_coulo
mb.html

Interactive animation on Coulomb’s law:

r apart is:

2

1

e

F = −

e

2

4πε r

0

where the negative sign indicates that the force is attractive. The

corresponding gravitational force (always attractive) is:

m

m

p

e

F =



G

−

G

2

r

where m and m are the masses of a proton and an electron

p

e

respectively.

2

F

e

e

39

=

= 2.4 ×10

F

4 ε

π Gm m

G



0

p

e

(ii) On similar lines, the ratio of the magnitudes of electric force

to the gravitational force between two protons at a distance r

apart is :

2

F

e

e

=

=

F

4 ε

π

1.3 × 1036

Gm m

G

0

p



p

However, it may be mentioned here that the signs of the two forces

are different. For two protons, the gravitational force is attractive

in nature and the Coulomb force is repulsive . The actual values

of these forces between two protons inside a nucleus (distance

between two protons is ~ 10-15 m inside a nucleus) are F ~ 230 N

e

whereas F ~ 1.9 × 10–34 N.

G

The (dimensionless) ratio of the two forces shows that electrical

forces are enormously stronger than the gravitational forces.

(b) The electric force F exerted by a proton on an electron is same in

magnitude to the force exerted by an electron on a proton; however

the masses of an electron and a proton are different. Thus, the

magnitude of force is

2

1

e

|F| =

2 = 8.987 × 109 Nm2/C2 × (1.6 ×10–19C)2 / (10–10m)2



4πε r

0

= 2.3 × 10–8 N

Using Newton’s second law of motion, F = ma, the acceleration that an
electron will undergo is a = 2.3×10–8 N / 9.11 ×10–31 kg = 2.5 × 1022
m/s2

E

Comparing this with the value of acceleration due to gravity, we

XAMPLE

can conclude that the effect of gravitational field is negligible on

the motion of electron and it undergoes very large accelerations

under the action of Coulomb force due to a proton.

1.4

The value for acceleration of the proton is

2.3 × 10–8 N 1.67 × 10–27 kg = 1.4 × 1019 ms2

13
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Example 1.5 A charged metallic sphere A is suspended by a nylon

thread. Another charged metallic sphere B held by an insulating

handle is brought close to A such that the distance between their

centres is 10 cm, as shown in Fig. 1.7(a). The resulting repulsion of A

is noted (for example, by shining a beam of light and measuring the

deflection of its shadow on a screen). Spheres A and B are touched

by uncharged spheres C and D respectively, as shown in Fig. 1.7(b).

C and D are then removed and B is brought closer to A to a

distance of 5.0 cm between their centres, as shown in Fig. 1.7(c).

What is the expected repulsion of A on the basis of Coulomb’s law?

Spheres A and C and spheres B and D have identical sizes. Ignore

the sizes of A and B in comparison to the separation between their

centres.

1.5

XAMPLE

14

E

FIGURE 1.7
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Solution Let the original charge on sphere A be q and that on B be q′. At a
distance r between their centres, the magnitude of the electrostatic force on
each is given by 1

qq ′

F =

2

4 ε

π

r

0

neglecting the sizes of spheres A and B in comparison to r. When an

identical but uncharged sphere C touches A, the charges redistribute

on A and C and, by symmetry, each sphere carries a charge q/2.

Similarly, after D touches B, the redistributed charge on each is

q′/2. Now, if the separation between A and B is halved, the magnitude

of the electrostatic force on each is

E

XAMPLE

1



( q / 2)( q ′ /2)

1

( qq ′)

F ′ =

=

= F

2

2

4 ε

π

( r /2)

4πε

r

0

0

1.5

Thus the electrostatic force on A, due to B, remains unaltered.

1.7 FORCES BETWEEN MULTIPLE CHARGES

The mutual electric force between two charges is given

by Coulomb’s law. How to calculate the force on a



charge where there are not one but several charges

around? Consider a system of n stationary charges

q , q , q , ..., q in vacuum. What is the force on q due 1

2

3

n

1

to q , q , ..., q ? Coulomb’s law is not enough to answer 2

3

n

this question. Recall that forces of mechanical origin

add according to the parallelogram law of addition. Is

the same true for forces of electrostatic origin?

Experimentally it is verified that force on any

charge due to a number of other charges is the vector

sum of all the forces on that charge due to the other

charges, taken one at a time. The individual forces

are unaffected due to the presence of other charges.

This is termed as the principle of superposition.

To better understand the concept, consider a



system of three charges q q and q , as shown in

1,

2

3

Fig. 1.8(a) . The force on one charge, say q , due to two

1

other charges q , q can therefore be obtained by

2

3

performing a vector addition of the forces due to each

one of these charges. Thus, if the force on q due to q

1

2

is denoted by F , F is given by Eq. (1.3) even though

12

12

other charges are present.

1

q q

Thus, F



1 2

=

ˆr

12

2

12

4πε

r

0

12

In the same way, the force on q due to q , denoted

1

3

FIGURE 1.8 A system of (a) three

by F , is given by

13

charges (b) multiple charges.

1

q q

1 3



F

=

ˆr

13

2

13

4 ε

π

r

15

0

13
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which again is the Coulomb force on q due to q , even though other 1

3

charge q is present.

2

Thus the total force F on q due to the two charges q and q is 1

1

2



3

given as

1

q q

1

q q

1 2

1 3

F = F

+ F =

ˆr +

ˆr

1

12

13

2

12

2

13

4πε



r

4 ε

π

r

(1.4)

0

12

0

13

The above calculation of force can be generalised to a system of

charges more than three, as shown in Fig. 1.8(b).

The principle of superposition says that in a system of charges q ,

1

q , ..., q , the force on q due to q is the same as given by Coulomb’s law, 2

n

1

2

i.e., it is unaffected by the presence of the other charges q , q , ..., q . The 3

4

n



total force F on the charge q , due to all other charges, is then given by 1

1

the vector sum of the forces F , F , ..., F :

12

13

1 n

i.e.,

1

⎡ q q

q q

q q

⎤

1 2

1 3

1

F = F + F + ...+ F

=

ˆ

⎢



r

+

ˆr + ...

n

+

ˆr

1

12

13

1n

⎥

2

12

2

13

2

1

4

n

ε



π

r

r

r

0 ⎣

12

13

1 n

⎦

n

q

q

1

i

=

ˆ

∑ r

2 1

(1.5)

4



i

ε

π

r

0 i =2 1 i

The vector sum is obtained as usual by the parallelogram law of

addition of vectors. All of electrostatics is basically a consequence of

Coulomb’s law and the superposition principle.

Example 1.6 Consider three charges q , q , q each equal to q at the 1

2

3

vertices of an equilateral triangle of side l. What is the force on a

charge Q (with the same sign as q) placed at the centroid of the triangle, as
shown in Fig. 1.9?

FIGURE 1.9

1.6

Solution In the given equilateral triangle ABC of sides of length l, if we
draw a perpendicular AD to the side BC, XAMPLE

AD = AC cos 30º = ( 3 /2 ) l and the distance AO of the centroid O

16

E



from A is (2/3) AD = (1/ 3 ) l. By symmatry AO = BO = CO.
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Thus,

3

Qq

Force F on Q due to charge q at A =

along AO

1

2

4 ε

π

l

0

3

Qq

Force F on Q due to charge q at B =

2

2

4 ε



π

along BO

l

0

3

Qq

Force F on Q due to charge q at C =

3

2

4 ε

π

along CO

l

0

3

Qq

The resultant of forces F and F is

2

3

2



4 ε

π

along OA, by the

l

0

3

Qq (ˆr − ˆr)

parallelogram law. Therefore, the total force on Q =

2

4 ε

π

l

0

E

XAMPLE

= 0, where ˆ

r is the unit vector along OA.

It is clear also by symmetry that the three forces will sum to zero.

Suppose that the resultant force was nonzero but in some direction.

1.6



Consider what would happen if the system was rotated through 60º

about O.

Example 1.7 Consider the charges q, q, and – q placed at the vertices of an
equilateral triangle, as shown in Fig. 1.10. What is the force on each
charge?

FIGURE 1.10

Solution The forces acting on charge q at A due to charges q at B

and – q at C are F along BA and F along AC respectively, as shown 12

13

in Fig. 1.10. By the parallelogram law, the total force F on the charge 1

q at A is given by

F = F ˆr where ˆr is a unit vector along BC.

1

 

1

1

The force of attraction or repulsion for each pair of charges has the

E

XAMPLE

2

q



same magnitude F =

2

4 π ε l

0

1.7

The total force F on charge q at B is thus F = F ˆ

r , where ˆr is a

2

2

 

2

2

unit vector along AC.

17
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Similarly the total force on charge – q at C is F = 3 F ˆ

n , where ˆ

n is

3

the unit vector along the direction bisecting the ∠BCA.



It is interesting to see that the sum of the forces on the three charges

is zero, i.e.,

1.7

F + F + F = 0

1

2

3

The result is not at all surprising. It follows straight from the fact

that Coulomb’s law is consistent with Newton’s third law. The proof

XAMPLE

E

is left to you as an exercise.

1.8 ELECTRIC FIELD

Let us consider a point charge Q placed in vacuum, at the origin O. If we
place another point charge q at a point P, where OP = r, then the charge Q

will exert a force on q as per Coulomb’s law. We may ask the question: If
charge q is removed, then what is left in the surrounding? Is there nothing?
If there is nothing at the point P, then how does a force act

when we place the charge q at P. In order to answer such questions, the
early scientists introduced the concept of field. According to this, we say
that the charge Q produces an electric field everywhere in the surrounding.

When another charge q is brought at some point P, the field there acts on it
and produces a force. The electric field produced by the charge Q at a point



r is given as E (r)

1

Q

1

Q

=

ˆr =

ˆr

2

2

4πε

(1.6)

r

4 ε

π r

0

0

where ˆr = r/r, is a unit vector from the origin to the point r. Thus, Eq.(1.6)
specifies the value of the electric field for each value of the position vector
r. The word “field” signifies how some distributed quantity (which could be
a scalar or a vector) varies with position. The effect of the charge has been
incorporated in the existence of the electric field. We obtain the



force F exerted by a charge Q on a charge q, as

 

1

Qq

F =

ˆr

2

(1.7)

4πε r

0

Note that the charge q also exerts an equal and opposite force on the

charge Q. The electrostatic force between the charges Q and q can be
looked upon as an interaction between charge q and the electric field of Q
and vice versa. If we denote the position of charge q by the vector r, it
experiences a force F equal to the charge q multiplied by the electric field E
at the location of q. Thus, F(r) = q E(r)

(1.8)

Equation (1.8) defines the SI unit of electric field as N/C*.

Some important remarks may be made here:

(i) From Eq. (1.8), we can infer that if q is unity, the electric field due to a
charge Q is numerically equal to the force exerted by it. Thus, the FIGURE
1.11 Electric



field (a) due to a

electric field due to a charge Q at a point in space may be defined charge Q,
(b) due to a as the force that a unit positive charge would experience if
placed

charge –Q.

18

* An alternate unit V/m will be introduced in the next chapter.
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at that point. The charge Q, which is producing the electric field, is called a
source charge and the charge q, which tests the effect of a source charge, is
called a test charge. Note that the source charge Q

must remain at its original location. However, if a charge q is brought at any
point around Q, Q itself is bound to experience an electrical force due to q
and will tend to move. A way out of this difficulty is to make q negligibly
small. The force F is then negligibly small but the ratio F/ q is finite and
defines the electric field: ⎛ F⎞

E = lim ⎜ ⎟

(1.9)

q→0 ⎝ q ⎠

A practical way to get around the problem (of keeping Q undisturbed

in the presence of q) is to hold Q to its location by unspecified forces!

This may look strange but actually this is what happens in practice.

When we are considering the electric force on a test charge q due to a



charged planar sheet (Section 1.15), the charges on the sheet are held to

their locations by the forces due to the unspecified charged constituents

inside the sheet.

(ii) Note that the electric field E due to Q, though defined operationally in
terms of some test charge q, is independent of q. This is because F is
proportional to q, so the ratio F/ q does not depend on q. The force F on the
charge q due to the charge Q depends on the particular location of charge q
which may take any value in the space around the charge Q. Thus, the
electric field E due to Q is also dependent on the space coordinate r. For
different positions of the charge q all over the space , we get different
values of electric field E. The field exists at every point in three-
dimensional space.

(iii) For a positive charge, the electric field will be directed radially

outwards from the charge. On the other hand, if the source charge is

negative, the electric field vector, at each point, points radially inwards.

(iv) Since the magnitude of the force F on charge q due to charge Q

depends only on the distance r of the charge q from charge Q, the
magnitude of the electric field E will also depend only on the distance r.
Thus at equal distances from the charge Q, the magnitude of its electric
field E is same. The magnitude of electric field E due to a point charge is
thus same on a sphere with the point charge at its centre; in other words, it
has a spherical symmetry.

1.8.1 Electric field due to a system of charges

Consider a system of charges q , q , ... , q with position vectors r , 1

2

n



1

r , ..., r relative to some origin O. Like the electric field at a point in 2

n

space due to a single charge, electric field at a point in space due to the

system of charges is defined to be the force experienced by a unit

test charge placed at that point, without disturbing the original

positions of charges q , q , ..., q . We can use Coulomb’s law and the 1

2

n

superposition principle to determine this field at a point P denoted by

19

position vector r.
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Electric field E at r due to q at r is given by 1

1

1

1

q

E =

1 ˆ



r

1

2

1P

4πε r

0

1P

where ˆr is a unit vector in the direction from q to P,

1P

1

and r is the distance between q and P.

1P

1

In the same manner, electric field E at r due to q at

2

2

r is

2

1

q



E =

2

ˆr

2

2

2P

4πε r

0

2 P

where ˆr is a unit vector in the direction from q to P

2P

2

and r is the distance between q and P. Similar

FIGURE 1.12 Electric field at a

2P

2

point due to a system of charges is

expressions hold good for fields E , E , ..., E due to

3

4



n

the vector sum of the electric fields

charges q , q , ..., q .

3

4

n

at the point due to individual

By the superposition principle, the electric field E at r

charges.

due to the system of charges is (as shown in Fig. 1.12)

E(r) = E (r) + E (r) + … + E (r) 1

2

n

1

q

1

q

1

q

=



1

2

ˆr

+

ˆr

+ ...

n

+

ˆr

2

1P

2

2P

2

n P

4πε r

4πε r

4πε r

0

1P



0

2P

0

n P

1

n

q

E(r) =

i

∑ ˆr

(1.10)

2

i P

4πε

r

0 i 1

=

i P

E is a vector quantity that varies from one point to another point in space
and is determined from the positions of the source charges.

1.8.2 Physical significance of electric field



You may wonder why the notion of electric field has been introduced

here at all. After all, for any system of charges, the measurable quantity

is the force on a charge which can be directly determined using Coulomb’s

law and the superposition principle [Eq. (1.5)]. Why then introduce this

intermediate quantity called the electric field?

For electrostatics, the concept of electric field is convenient, but not

really necessary. Electric field is an elegant way of characterising the

electrical environment of a system of charges. Electric field at a point in

the space around a system of charges tells you the force a unit positive

test charge would experience if placed at that point (without disturbing

the system). Electric field is a characteristic of the system of charges and

is independent of the test charge that you place at a point to determine

the field. The term field in physics generally refers to a quantity that is
defined at every point in space and may vary from point to point. Electric
field is a vector field, since force is a vector quantity.

The true physical significance of the concept of electric field, however,

emerges only when we go beyond electrostatics and deal with time-
dependent electromagnetic phenomena. Suppose we consider the force

between two distant charges q , q in accelerated motion. Now the greatest 1

2

speed with which a signal or information can go from one point to another
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is c, the speed of light. Thus, the effect of any motion of q on q cannot 1

2
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arise instantaneously. There will be some time delay between the effect

(force on q ) and the cause (motion of q ). It is precisely here that the 2

1

notion of electric field (strictly, electromagnetic field) is natural and very

useful. The field picture is this: the accelerated motion of charge q 1

produces electromagnetic waves, which then propagate with the speed

c, reach q and cause a force on q . The notion of field elegantly accounts 2

2

for the time delay. Thus, even though electric and magnetic fields can be

detected only by their effects (forces) on charges, they are regarded as

physical entities, not merely mathematical constructs. They have an

independent dynamics of their own, i.e., they evolve according to laws of
their own. They can also transport energy. Thus, a source of time-dependent
electromagnetic fields, turned on briefly and switched off, leaves behind
propagating electromagnetic fields transporting energy. The

concept of field was first introduced by Faraday and is now among the



central concepts in physics.

Example 1.8 An electron falls through a distance of 1.5 cm in a

uniform electric field of magnitude 2.0 × 104 N C–1 [Fig. 1.13(a)]. The

direction of the field is reversed keeping its magnitude unchanged

and a proton falls through the same distance [Fig. 1.13(b)]. Compute

the time of fall in each case. Contrast the situation with that of ‘free

fall under gravity’.

FIGURE 1.13

Solution In Fig. 1.13(a) the field is upward, so the negatively charged

electron experiences a downward force of magnitude eE where E is the
magnitude of the electric field. The acceleration of the electron is a = eE/ m

e

e

where m is the mass of the electron.

e

Starting from rest, the time required by the electron to fall through a

2 h

2 h m e

distance h is given by t =

=

e



a

e E

e

For e = 1.6 × 10–19C, m = 9.11 × 10–31 kg,

e

E = 2.0 × 104 N C–1, h = 1.5 × 10–2 m,

t = 2.9 × 10–9s

e

In Fig. 1.13 (b), the field is downward, and the positively charged

E

proton experiences a downward force of magnitude eE . The

XAMPLE

acceleration of the proton is

a = eE/ m

p

p

1.8

where m is the mass of the proton; m = 1.67 × 10–27 kg. The time of p

p

fall for the proton is
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2 h

2 h m p

–7

t

=

=

= 1 . 3 ×10 s

p

a

e E

p

Thus, the heavier particle (proton) takes a greater time to fall through

the same distance. This is in basic contrast to the situation of ‘free

fall under gravity’ where the time of fall is independent of the mass of

the body. Note that in this example we have ignored the acceleration

due to gravity in calculating the time of fall. To see if this is justified,

let us calculate the acceleration of the proton in the given electric

field:



e E

a =

p

m p

−19

4

1

(1 . 6 × 10

C) × (2 . 0 × 10

N C− )

=

27

1 6

. 7 × 10−

kg

 

12

–2

= 1 9

.



× 10

m s

1.8

which is enormous compared to the value of g (9.8 m s–2) , the acceleration
due to gravity. The acceleration of the electron is even XAMPLE

greater. Thus, the effect of acceleration due to gravity can be ignored

E

in this example.

Example 1.9 Two point charges q and q , of magnitude +10–8 C and 1

2

–10–8 C, respectively, are placed 0.1 m apart. Calculate the electric

fields at points A, B and C shown in Fig. 1.14.

FIGURE 1.14

Solution The electric field vector E at A due to the positive charge 1A

q points towards the right and has a magnitude

1

9

2

-2

8



(9 10 Nm C ) (10−

×

×

C)

E

=

= 3.6 × 104 N C–1

1A

2

(0.05 m)

The electric field vector E at A due to the negative charge q points 2A

2

1.9

towards the right and has the same magnitude. Hence the magnitude

of the total electric field E at A is

A

E = E + E = 7.2 × 104 N C–1

A

1A

2A



XAMPLE

E is directed toward the right.
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The electric field vector E at B due to the positive charge q points 1B

1

towards the left and has a magnitude

9

2

–2

8

(9 10 Nm C ) (10−

×

×

C)

E

=



= 3.6 × 104 N C–1

1B

2

(0.05 m)

The electric field vector E at B due to the negative charge q points 2B

2

towards the right and has a magnitude

9

2

–2

8

(9 10 Nm C ) (10−

×

×

C)

E

=

= 4 × 103 N C–1

2B

2



(0.15 m)

The magnitude of the total electric field at B is

E = E – E = 3.2 × 104 N C–1

B

1B

2B

E is directed towards the left.

B

The magnitude of each electric field vector at point C, due to charge

q and q is

1

2

9

2

–2

−8

(9 × 10 Nm C ) × (10 C)

E

= E

=



= 9 × 103 N C–1

1C

2C

2

(0.10 m)

E

The directions in which these two vectors point are indicated in

XAMPLE

Fig. 1.14. The resultant of these two vectors is

π

π

E = E cos

+ E cos

= 9 × 103 N C–1

1.9

C

1

2

3

3



E points towards the right.

C

1.9 ELECTRIC FIELD LINES

We have studied electric field in the last section. It is a vector quantity

and can be represented as we represent vectors. Let us try to represent E

due to a point charge pictorially. Let the point charge be placed at the

origin. Draw vectors pointing along the direction of the electric field with

their lengths proportional to the strength of the field at

each point. Since the magnitude of electric field at a point

decreases inversely as the square of the distance of that

point from the charge, the vector gets shorter as one goes

away from the origin, always pointing radially outward.

Figure 1.15 shows such a picture. In this figure, each

arrow indicates the electric field, i.e., the force acting on a

unit positive charge, placed at the tail of that arrow.

Connect the arrows pointing in one direction and the

resulting figure represents a field line. We thus get many

field lines, all pointing outwards from the point charge.

Have we lost the information about the strength or

magnitude of the field now, because it was contained in



the length of the arrow? No. Now the magnitude of the

field is represented by the density of field lines. E is strong

near the charge, so the density of field lines is more near

the charge and the lines are closer. Away from the charge, FIGURE 1.15
Field of a point charge.

the field gets weaker and the density of field lines is less,

resulting in well-separated lines.

Another person may draw more lines. But the number of lines is not
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important. In fact, an infinite number of lines can be drawn in any region.
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It is the relative density of lines in different regions which is

important.

We draw the figure on the plane of paper, i.e., in two-dimensions but we
live in three-dimensions. So if one wishes

to estimate the density of field lines, one has to consider the

number of lines per unit cross-sectional area, perpendicular

to the lines. Since the electric field decreases as the square of

the distance from a point charge and the area enclosing the

charge increases as the square of the distance, the number

of field lines crossing the enclosing area remains constant,



whatever may be the distance of the area from the charge.

We started by saying that the field lines carry information

about the direction of electric field at different points in space.

FIGURE 1.16 Dependence of

Having drawn a certain set of field lines, the relative density

electric field strength on the

(i.e., closeness) of the field lines at different points indicates

distance and its relation to the

the relative strength of electric field at those points. The field

number of field lines.

lines crowd where the field is strong and are spaced apart

where it is weak. Figure 1.16 shows a set of field lines. We

can imagine two equal and small elements of area placed at points R and

S normal to the field lines there. The number of field lines in our picture

cutting the area elements is proportional to the magnitude of field at

these points. The picture shows that the field at R is stronger than at S.

To understand the dependence of the field lines on the area, or rather

the solid angle subtended by an area element, let us try to relate the area
with the solid angle, a generalization of angle to three dimensions.

Recall how a (plane) angle is defined in two-dimensions. Let a small



transverse line element Δ l be placed at a distance r from a point O. Then
the angle subtended by Δ l at O can be approximated as Δθ = Δ l/ r.

Likewise, in three-dimensions the solid angle* subtended by a small

perpendicular plane area Δ S, at a distance r, can be written as ΔΩ = Δ S/ r
2. We know that in a given solid angle the number of radial field lines is the
same. In Fig. 1.16, for two points P and P at distances 1

2

r and r from the charge, the element of area subtending the solid angle 1

2

ΔΩ is 2

r ΔΩ at P and an element of area 2

r ΔΩ at P , respectively. The

1

1

2

2

number of lines (say n) cutting these area elements are the same. The

number of field lines, cutting unit area element is therefore n/( 2

r ΔΩ) at

1

P and n/( 2



r ΔΩ) at P , respectively. Since n and ΔΩ are common, the

1

2

2

strength of the field clearly has a 1/ r 2 dependence.

The picture of field lines was invented by Faraday to develop an

intuitive non-mathematical way of visualizing electric fields around

charged configurations. Faraday called them lines of force. This term is

somewhat misleading, especially in case of magnetic fields. The more

appropriate term is field lines (electric or magnetic) that we have adopted
in this book.

Electric field lines are thus a way of pictorially mapping the electric

field around a configuration of charges. An electric field line is, in general,

* Solid angle is a measure of a cone. Consider the intersection of the given
cone with a sphere of radius R. The solid angle ΔΩ of the cone is defined to
be equal 24

to Δ S/R 2, where Δ S is the area on the sphere cut out by the cone.
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a curve drawn in such a way that the tangent to it at each

point is in the direction of the net field at that point. An



arrow on the curve is obviously necessary to specify the

direction of electric field from the two possible directions

indicated by a tangent to the curve. A field line is a space

curve, i.e., a curve in three dimensions.

Figure 1.17 shows the field lines around some simple

charge configurations. As mentioned earlier, the field lines

are in 3-dimensional space, though the figure shows them

only in a plane. The field lines of a single positive charge

are radially outward while those of a single negative

charge are radially inward. The field lines around a system

of two positive charges ( q, q) give a vivid pictorial

description of their mutual repulsion, while those around

the configuration of two equal and opposite charges

( q, – q), a dipole, show clearly the mutual attraction

between the charges. The field lines follow some important

general properties:

(i) Field lines start from positive charges and end at

negative charges. If there is a single charge, they may

start or end at infinity.

(ii) In a charge-free region, electric field lines can be taken



to be continuous curves without any breaks.

(iii) Two field lines can never cross each other. (If they did,

the field at the point of intersection will not have a

unique direction, which is absurd.)

(iv) Electro static field lines do not form any closed loops.

This follows from the conservative nature of electric

field (Chapter 2).

1.10 ELECTRIC FLUX

Consider flow of a liquid with velocity v, through a small

flat surface d S, in a direction normal to the surface. The

rate of flow of liquid is given by the volume crossing the

area per unit time v d S and represents the flux of liquid flowing across the
plane. If the normal to the surface is not parallel to the direction of flow of
liquid, i.e., to v, but makes an angle θ with it, the projected area in a plane
perpendicular to v is v d S cos θ. Therefore the flux going out of the surface
d S is v. ˆ

n d S.

For the case of the electric field, we define an

analogous quantity and call it electric flux.

We should however note that there is no flow of a

physically observable quantity unlike the case of liquid

flow.



In the picture of electric field lines described above,

FIGURE 1.17 Field lines due to

we saw that the number of field lines crossing a unit area,

some simple charge configurations.

placed normal to the field at a point is a measure of the

25

strength of electric field at that point. This means that if
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we place a small planar element of area Δ S

normal to E at a point, the number of field lines

crossing it is proportional* to E Δ S. Now

suppose we tilt the area element by angle θ.

Clearly, the number of field lines crossing the

area element will be smaller. The projection of



the area element normal to E is Δ S cosθ. Thus,

the number of field lines crossing Δ S is

proportional to E Δ S cosθ. When θ = 90°, field

lines will be parallel to Δ S and will not cross it

at all (Fig. 1.18).

The orientation of area element and not

merely its magnitude is important in many

contexts. For example, in a stream, the amount

of water flowing through a ring will naturally

depend on how you hold the ring. If you hold

it normal to the flow, maximum water will flow

FIGURE 1.18 Dependence of flux on the

through it than if you hold it with some other

inclination θ between E and ˆn .

orientation. This shows that an area element

should be treated as a vector. It has a

magnitude and also a direction. How to specify the direction of a planar

area? Clearly, the normal to the plane specifies the orientation of the

plane. Thus the direction of a planar area vector is along its normal.

How to associate a vector to the area of a curved surface? We imagine



dividing the surface into a large number of very small area elements.

Each small area element may be treated as planar and a vector associated

with it, as explained before.

Notice one ambiguity here. The direction of an area element is along

its normal. But a normal can point in two directions. Which direction do

we choose as the direction of the vector associated with the area element?

This problem is resolved by some convention appropriate to the given

context. For the case of a closed surface, this convention is very simple.

The vector associated with every area element of a closed surface is taken

to be in the direction of the outward normal. This is the convention used in
Fig. 1.19. Thus, the area element vector ΔS at a point on a closed surface
equals Δ S ˆ

n where Δ S is the magnitude of the area element and

ˆ

n is a unit vector in the direction of outward normal at that point.

We now come to the definition of electric flux. Electric flux Δφ through

an area element ΔS is defined by

Δφ = E. ΔS = E Δ S cosθ

(1.11)

which, as seen before, is proportional to the number of field lines cutting



the area element. The angle θ here is the angle between E and ΔS. For a
closed surface, with the convention stated already, θ is the angle between E
and the outward normal to the area element. Notice we could look at

FIGURE 1.19

the expression E Δ S cosθ in two ways: E (Δ S cosθ ) i.e., E times the
Convention for defining normal

ˆ

n and Δ S.

* It will not be proper to say that the number of field lines is equal to EΔ S.
The number of field lines is after all, a matter of how many field lines we
choose to draw. What is physically significant is the relative number of field
lines crossing 26

a given area at different points.
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projection of area normal to E, or E⊥ Δ S, i.e., component of E along the
normal to the area element times the magnitude of the area element. The
unit of electric flux is N C–1 m2.

The basic definition of electric flux given by Eq. (1.11) can be used, in

principle, to calculate the total flux through any given surface. All we

have to do is to divide the surface into small area elements, calculate the

flux at each element and add them up. Thus, the total flux φ through a

surface S is

φ ~ Σ E. ΔS



(1.12)

The approximation sign is put because the electric field E is taken to

be constant over the small area element. This is mathematically exact

only when you take the limit Δ S → 0 and the sum in Eq. (1.12) is written as
an integral.

1.11 ELECTRIC DIPOLE

An electric dipole is a pair of equal and opposite point charges q and – q,
separated by a distance 2 a. The line connecting the two charges defines a
direction in space. By convention, the direction from – q to q is said to be
the direction of the dipole. The midpoint of locations of – q and q is called
the centre of the dipole.

The total charge of the electric dipole is obviously zero. This does not

mean that the field of the electric dipole is zero. Since the charge q and

– q are separated by some distance, the electric fields due to them, when
added, do not exactly cancel out. However, at distances much larger than
the separation of the two charges forming a dipole ( r >> 2 a), the fields due
to q and – q nearly cancel out. The electric field due to a dipole therefore
falls off, at large distance, faster than like 1/ r 2 (the dependence on r of the
field due to a single charge q). These qualitative ideas are borne out by the
explicit calculation as follows: 1.11.1 The field of an electric dipole

The electric field of the pair of charges (– q and q) at any point in space can
be found out from Coulomb’s law and the superposition principle.

The results are simple for the following two cases: (i) when the point is on

the dipole axis, and (ii) when it is in the equatorial plane of the dipole, i.e.,
on a plane perpendicular to the dipole axis through its centre. The electric
field at any general point P is obtained by adding the electric

fields E due to the charge – q and E due to the charge q, by the



–q

+ q

parallelogram law of vectors.

(i) For points on the axis

Let the point P be at distance r from the centre of the dipole on the side of
the charge q, as shown in Fig. 1.20(a). Then q

E

= −

ˆ

−

p

q

2

4πε ( r + a )

[1.13(a)]

0

where ˆ

p is the unit vector along the dipole axis (from – q to q). Also q

E

=



ˆ

+

p

q

2

[1.13(b)]
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The total field at P is

q

⎡

1

1

⎤

E = E

+ E =

⎢

−



ˆ

+

p

q

− q

⎥

2

2

4 π ε ⎣( r − a)

( r + a )

0

⎦

q

4 a r

=

ˆ

p

2

2 2

4 π ε



(1.14)

( r − a )

o

For r >> a

4 q a

E =

ˆ

p

3

( r >> a)

(1.15)

4πε r

0

(ii) For points on the equatorial plane

The magnitudes of the electric fields due to the two

charges + q and – q are given by

q

1

E

=



+ q

2

2

4πε r +

[1.16(a)]

a

0

q

1

E

=

– q

2

2

4πε r +

[1.16(b)]

a

0

FIGURE 1.20 Electric field of a dipole and are equal.

at (a) a point on the axis, (b) a point



The directions of E and E are as shown in

+ q

– q

on the equatorial plane of the dipole. Fig. 1.20(b). Clearly, the components
normal to the dipole p is the dipole moment vector of axis cancel away. The
components along the dipole axis

magnitude p = q × 2 a and

add up. The total electric field is opposite to ˆ

p . We have

directed from – q to q.

E = – ( E + E ) cosθ ˆp

+ q

– q

2 q a

= −

ˆ

p

2

2 3 / 2

(1.17)

4 π ε ( r + a )



o

At large distances ( r >> a), this reduces to

2 q a

E = −

ˆ

p

( r >> a )

3

(1.18)

4 π ε r

o

From Eqs. (1.15) and (1.18), it is clear that the dipole field at large

distances does not involve q and a separately; it depends on the product qa.
This suggests the definition of dipole moment. The dipole moment vector p
of an electric dipole is defined by p = q × 2 a ˆ

p

(1.19)

that is, it is a vector whose magnitude is charge q times the separation 2 a
(between the pair of charges q, – q) and the direction is along the line from
– q to q. In terms of p, the electric field of a dipole at large distances takes
simple forms: At a point on the dipole axis



2

=

p

E

3

(r >> a)

(1.20)

4πε r

o

At a point on the equatorial plane

E = −

p
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4πε r

( r >> a)

(1.21)

o
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Notice the important point that the dipole field at large distances

falls off not as 1/ r 2 but as1/ r 3. Further, the magnitude and the direction
of the dipole field depends not only on the distance r but also on the angle
between the position vector r and the dipole moment p.

We can think of the limit when the dipole size 2 a approaches zero,

the charge q approaches infinity in such a way that the product

p = q × 2 a is finite. Such a dipole is referred to as a point dipole. For a
point dipole, Eqs. (1.20) and (1.21) are exact, true for any r.

1.11.2 Physical significance of dipoles

In most molecules, the centres of positive charges and of negative charges*

lie at the same place. Therefore, their dipole moment is zero. CO and

2

CH are of this type of molecules. However, they develop a dipole moment

4

when an electric field is applied. But in some molecules, the centres of

negative charges and of positive charges do not coincide. Therefore they

have a permanent electric dipole moment, even in the absence of an electric

field. Such molecules are called polar molecules. Water molecules, H O,

2

is an example of this type. Various materials give rise to interesting

properties and important applications in the presence or absence of



electric field.

Example 1.10 Two charges ±10 μC are placed 5.0 mm apart.

Determine the electric field at (a) a point P on the axis of the dipole

15 cm away from its centre O on the side of the positive charge, as

shown in Fig. 1.21(a), and (b) a point Q, 15 cm away from O on a line

passing through O and normal to the axis of the dipole, as shown in

Fig. 1.21(b).

E

XAMPLE

1.10

FIGURE 1.21

* Centre of a collection of positive point charges is defined much the same
way

∑ q r

i i

as the centre of mass:

i

r

=

.

cm



∑ qi
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Solution (a) Field at P due to charge +10 μC

5

10− C

1

=

×

−12

2

1

−

2

−

4 (8.854 10

C N

m−



π

×

)

2

4

2

(15 − 0.25) ×10

m

= 4.13 × 106 N C–1 along BP

Field at P due to charge –10 μC

–5

10 C

=

1

×

12

−

2

−1



−2

−

4π (8.854 ×

 

10

C N

m )

2

4

2

(15 + 0.25) ×10

m

= 3.86 × 106 N C–1 along PA

The resultant electric field at P due to the two charges at A and B is

= 2.7 × 105 N C–1 along BP.

In this example, the ratio OP/OB is quite large (= 60). Thus, we can

expect to get approximately the same result as above by directly using

the formula for electric field at a far-away point on the axis of a dipole.

For a dipole consisting of charges ± q, 2 a distance apart, the electric field
at a distance r from the centre on the axis of the dipole has a magnitude

2 p



E =

3

( r/ a >> 1)

4πε r

0

where p = 2 a q is the magnitude of the dipole moment.

The direction of electric field on the dipole axis is always along the

direction of the dipole moment vector (i.e., from – q to q). Here, p =10–5 C
× 5 × 10–3 m = 5 × 10–8 C m Therefore,

−8

2 × 5 ×10

C m

1

E =

×

12

−

2

1

−



2

−

4π (8.854 ×10

C N m− )

3

6

3

(15) ×

= 2.6 × 105 N C–1

10

m

along the dipole moment direction AB, which is close to the result

obtained earlier.

(b) Field at Q due to charge + 10 μC at B

5

10− C

1

=

×



12

−

2

1

−

−2

4 π (8.854 × 10

C N

m

)

2

2

4

−

2

[15 + (0.25) ] × 10

m

= 3.99 × 106 N C–1 along BQ

Field at Q due to charge –10 μC at A

5



10− C

1

=

×

−12

2

1

−

−2

−

4 π (8.854 ×10

C N

m )

2

2

4

2

[15 + (0.25) ] ×10 m

= 3.99 × 106 N C–1 along QA.

Clearly, the components of these two forces with equal magnitudes



cancel along the direction OQ but add up along the direction parallel

to BA. Therefore, the resultant electric field at Q due to the two

charges at A and B is

0.25

6

–1

= 2 ×

× 3.99 × 10 N C along BA

2

2

15

+ (0.25)

1.10

= 1.33 × 105 N C–1 along BA.

As in (a), we can expect to get approximately the same result by

XAMPLE

directly using the formula for dipole field at a point on the normal to

30

E

the axis of the dipole:
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p

E =

3

( r/ a >> 1)

4 π ε r

0

8

−

E

5 ×10

C m

=

1

×

−

XAMPLE

12

−



2

–1

–2

4 π (8.854 ×10

C N

m )

3

6

3

(15) × 10

m

= 1.33 × 105 N C–1.

The direction of electric field in this case is opposite to the direction

1.10

of the dipole moment vector. Again the result agrees with that obtained

before.

1.12 DIPOLE IN A UNIFORM EXTERNAL FIELD

Consider a permanent dipole of dipole moment p in a uniform

external field E, as shown in Fig. 1.22. (By permanent dipole, we

mean that p exists irrespective of E; it has not been induced by E.) There is
a force qE on q and a force – qE on – q. The net force on the dipole is zero,



since E is uniform. However, the charges are separated, so the forces act at
different points, resulting in a torque

on the dipole. When the net force is zero, the torque (couple) is

independent of the origin. Its magnitude equals the magnitude of

FIGURE 1.22 Dipole in a

each force multiplied by the arm of the couple (perpendicular

uniform electric field.

distance between the two antiparallel forces).

Magnitude of torque = q E × 2 a sinθ

= 2 q a E sinθ

Its direction is normal to the plane of the paper, coming out of it.

The magnitude of p × E is also p E sinθ and its direction is normal to the
paper, coming out of it. Thus, τ = p × E

(1.22)

This torque will tend to align the dipole with the field

E. When p is aligned with E, the torque is zero.

What happens if the field is not uniform? In that case,

the net force will evidently be nonzero. In addition there

will, in general, be a torque on the system as before. The

general case is involved, so let us consider the simpler



situations when p is parallel to E or antiparallel to E. In either case, the net
torque is zero, but there is a net force on the dipole if E is not uniform.

Figure 1.23 is self-explanatory. It is easily seen that

when p is parallel to E, the dipole has a net force in the

direction of increasing field. When p is antiparallel to E,

the net force on the dipole is in the direction of decreasing

field. In general, the force depends on the orientation of p

with respect to E.

This brings us to a common observation in frictional

electricity. A comb run through dry hair attracts pieces of

FIGURE 1.23 Electric force on a

paper. The comb, as we know, acquires charge through

dipole: (a) E parallel to p, (b) E

friction. But the paper is not charged. What then explains

antiparallel to p.
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the attractive force? Taking the clue from the preceding

Physics

discussion, the charged comb ‘polarizes’ the piece of paper, i.e., induces

a net dipole moment in the direction of field. Further, the electric field

due to the comb is not uniform. In this situation, it is easily seen that the



paper should move in the direction of the comb!

1.13 CONTINUOUS CHARGE DISTRIBUTION

We have so far dealt with charge configurations involving discrete charges

q , q , ..., q . One reason why we restricted to discrete charges is that the 1

2

n

mathematical treatment is simpler and does not involve calculus. For

many purposes, however, it is impractical to work in terms of discrete

charges and we need to work with continuous charge distributions. For

example, on the surface of a charged conductor, it is impractical to specify

the charge distribution in terms of the locations of the microscopic charged

constituents. It is more feasible to consider an area element Δ S (Fig. 1.24)
on the surface of the conductor (which is very small on the macroscopic
scale but big enough to include a very large number of electrons) and

specify the charge Δ Q on that element. We then define a surface charge
density σ at the area element by Q

σ

Δ

= S

Δ

(1.23)



We can do this at different points on the conductor and thus arrive at

a continuous function σ, called the surface charge density. The surface

charge density σ so defined ignores the quantisation of charge and the

discontinuity in charge distribution at the microscopic level*. σ represents
macroscopic surface charge density, which in a sense, is a smoothed out
average of the microscopic charge density over an area element Δ S which,
as said before, is large microscopically but small macroscopically. The units
for σ are C/m2.

Similar considerations apply for a line charge distribution and a volume

FIGURE 1.24

charge distribution. The linear charge density λ of a wire is defined by
Definition of linear,

Q

surface and volume

λ

Δ

= Δ

(1.24)

l

charge densities.

In each case, the

where Δ l is a small line element of wire on the macroscopic scale that,
element (Δ l, Δ S, Δ V ) however, includes a large number of microscopic



charged constituents,

chosen is small on

and Δ Q is the charge contained in that line element. The units for λ are the
macroscopic

C/m. The volume charge density (sometimes simply called charge density)
scale but contains

is defined in a similar manner:

a very large number

of microscopic

Q

ρ

Δ

=

constituents.

Δ

(1.25)

V

where Δ Q is the charge included in the macroscopically small volume

element Δ V that includes a large number of microscopic charged

constituents. The units for ρ are C/m3.

The notion of continuous charge distribution is similar to that we



adopt for continuous mass distribution in mechanics. When we refer to

* At the microscopic level, charge distribution is discontinuous, because
they are 32

discrete charges separated by intervening space where there is no charge.
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the density of a liquid, we are referring to its macroscopic density. We

regard it as a continuous fluid and ignore its discrete molecular

constitution.

The field due to a continuous charge distribution can be obtained in

much the same way as for a system of discrete charges, Eq. (1.10). Suppose

a continuous charge distribution in space has a charge density ρ. Choose

any convenient origin O and let the position vector of any point in the

charge distribution be r. The charge density ρ may vary from point to

point, i.e., it is a function of r. Divide the charge distribution into small
volume elements of size Δ V. The charge in a volume element Δ V is ρΔ V.

Now, consider any general point P (inside or outside the distribution)

with position vector R (Fig. 1.24). Electric field due to the charge ρΔ V is
given by Coulomb’s law: 1

ρ Δ V

ΔE =



ˆ '

r

2

(1.26)

4πε

r'

0

where r′ is the distance between the charge element and P, and ˆr′ is a unit
vector in the direction from the charge element to P. By the superposition
principle, the total electric field due to the charge

distribution is obtained by summing over electric fields due to different



volume elements:

1

ρ V

Δ

E ≅

Σ

ˆ '

r

2

4

(1.27)

all

V

πε

Δ

r'

0

Note that ρ, r′, ˆr′ all can vary from point to point. In a strict mathematical
method, we should let Δ V→0 and the sum then becomes an integral; but
we omit that discussion here, for simplicity. In short,



using Coulomb’s law and the superposition principle, electric field can

be determined for any charge distribution, discrete or continuous or part

discrete and part continuous.

1.14 GAUSS’S LAW

As a simple application of the notion of electric flux, let us consider the

total flux through a sphere of radius r, which encloses a point charge q at its
centre. Divide the sphere into small area elements, as shown in Fig. 1.25.

The flux through an area element ΔS is

q

Δφ = Ei Δ S =

ˆri ΔS

2

(1.28)

4 ε

π r

0

where we have used Coulomb’s law for the electric field due to a single

charge q. The unit vector ˆ

r is along the radius vector from the centre to

the area element. Now, since the normal to a sphere at every point is



along the radius vector at that point, the area element ΔS and ˆr have the
same direction. Therefore, q

FIGURE 1.25 Flux

Δφ =

Δ S

through a sphere

2

4πε r

(1.29)

0

enclosing a point

since the magnitude of a unit vector is 1.

charge q at its centre.

The total flux through the sphere is obtained by adding up flux
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through all the different area elements:
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q

φ = Σ

Δ S



2

all S

Δ

4 π ε r

0

Since each area element of the sphere is at the same

distance r from the charge,

FIGURE 1.26 Calculation of the

q

q

φ =

Σ Δ S =

S

2

2

flux of uniform electric field

4

all S

πε r

Δ



4πε r

o

0

through the surface of a cylinder.

Now S, the total area of the sphere, equals 4π r 2. Thus,

q

q

2

φ =

× 4π r =

2

4πε r

ε

(1.30)

0

0

Equation (1.30) is a simple illustration of a general result of

electrostatics called Gauss’s law.

We state Gauss’s law without proof:

Electric flux through a closed surface S



= q/ε

(1.31)

0

q = total charge enclosed by S.

The law implies that the total electric flux through a closed surface is

zero if no charge is enclosed by the surface. We can see that explicitly in

the simple situation of Fig. 1.26.

Here the electric field is uniform and we are considering a closed

cylindrical surface, with its axis parallel to the uniform field E. The total
flux φ through the surface is φ = φ + φ + φ , where φ and φ represent 1

2

3

1

2

the flux through the surfaces 1 and 2 (of circular cross-section) of the

cylinder and φ is the flux through the curved cylindrical part of the

3

closed surface. Now the normal to the surface 3 at every point is

perpendicular to E, so by definition of flux, φ = 0. Further, the outward 3

normal to 2 is along E while the outward normal to 1 is opposite to E.

Therefore,



φ = – E S , φ = + E S

1

1

2

2

S = S = S

1

2

where S is the area of circular cross-section. Thus, the total flux is zero, as
expected by Gauss’s law. Thus, whenever you find that the net electric flux
through a closed surface is zero, we conclude that the total charge

contained in the closed surface is zero.

The great significance of Gauss’s law Eq. (1.31), is that it is true in

general, and not only for the simple cases we have considered above. Let

us note some important points regarding this law:

(i) Gauss’s law is true for any closed surface, no matter what its shape

or size.

(ii) The term q on the right side of Gauss’s law, Eq. (1.31), includes the sum
of all charges enclosed by the surface. The charges may be located
anywhere inside the surface.

(iii) In the situation when the surface is so chosen that there are some

charges inside and some outside, the electric field [whose flux appears



on the left side of Eq. (1.31)] is due to all the charges, both inside and

outside S. The term q on the right side of Gauss’s law, however, 34

represents only the total charge inside S.
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(iv) The surface that we choose for the application of Gauss’s law is called

the Gaussian surface. You may choose any Gaussian surface and

apply Gauss’s law. However, take care not to let the Gaussian surface

pass through any discrete charge. This is because electric field due

to a system of discrete charges is not well defined at the location of

any charge. (As you go close to the charge, the field grows without

any bound.) However, the Gaussian surface can pass through a

continuous charge distribution.

(v) Gauss’s law is often useful towards a much easier calculation of the

electrostatic field when the system has some symmetry. This is



facilitated by the choice of a suitable Gaussian surface.

(vi) Finally, Gauss’s law is based on the inverse square dependence on

distance contained in the Coulomb’s law. Any violation of Gauss’s

law will indicate departure from the inverse square law.

Example 1.11 The electric field components in Fig. 1.27 are

E = α x 1/2, E = E = 0, in which α = 800 N/C m1/2. Calculate (a) the x

y

z

flux through the cube, and (b) the charge within the cube. Assume

that a = 0.1 m.

FIGURE 1.27

Solution

(a) Since the electric field has only an x component, for faces

perpendicular to x direction, the angle between E and ΔS is

± π/2. Therefore, the flux φ = E. ΔS is separately zero for each face of the
cube except the two shaded ones. Now the magnitude of the electric field at
the left face is

E = α x 1/2 = α a 1/2

L

( x = a at the left face).

The magnitude of electric field at the right face is



E = α x 1/2 = α (2 a)1/2

R

( x = 2 a at the right face).

E

The corresponding fluxes are

XAMPLE

φ = E . ΔS = Δ S E ⋅ ˆn = E Δ S cosθ = – E Δ S, since θ = 180°

L

L

L

L

L

L

= – E a 2

L

.

1.11

φ = E ΔS = E Δ S cosθ = E Δ S, since θ = 0°

R

R



R

R

= E a 2

R

Net flux through the cube
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= φ + φ = E a 2 – E a 2 = a 2 ( E – E ) = α a 2 [(2 a)1/2 – a 1/2]

R

L

R

L

R

L

= α a 5/2 ( 2 – )

1

= 800 (0.1)5/2 ( 2 – )

1

1.11

= 1.05 N m2 C–1



(b) We can use Gauss’s law to find the total charge q inside the cube.

We have φ = q/ε or q = φε . Therefore,

0

0

XAMPLE

E

q = 1.05 × 8.854 × 10–12 C = 9.27 × 10–12 C.

Example 1.12 An electric field is uniform, and in the positive x

direction for positive x, and uniform with the same magnitude but in

the negative x direction for negative x. It is given that E = 200 ˆi N/C

for x > 0 and E = –200 ˆi N/C for x < 0. A right circular cylinder of length
20 cm and radius 5 cm has its centre at the origin and its axis along the x-
axis so that one face is at x = +10 cm and the other is at x = –10 cm (Fig.
1.28). (a) What is the net outward flux through each flat face? (b) What is
the flux through the side of the cylinder?

(c) What is the net outward flux through the cylinder? (d) What is the

net charge inside the cylinder?

Solution

(a) We can see from the figure that on the left face E and ΔS are parallel.
Therefore, the outward flux is φ = E. ΔS = – 200 ˆiiΔS

L

= + 200 Δ S, since ˆiiΔS = – ΔS



= + 200 × π (0.05)2 = + 1.57 N m2 C–1

On the right face, E and ΔS are parallel and therefore

φ = E. ΔS = + 1.57 N m2 C–1.

R

(b) For any point on the side of the cylinder E is perpendicular to

ΔS and hence E. ΔS = 0. Therefore, the flux out of the side of the cylinder
is zero.

(c)

Net outward flux through the cylinder

φ = 1.57 + 1.57 + 0 = 3.14 N m2 C–1

 

FIGURE 1.28

(d) The net charge within the cylinder can be found by using Gauss’s

1.12

law which gives

q = ε φ

0

= 3.14 × 8.854 × 10–12 C

XAMPLE

= 2.78 × 10–11 C

36
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1.15 APPLICATIONS OF GAUSS’S LAW

The electric field due to a general charge distribution is, as seen above,

given by Eq. (1.27). In practice, except for some special cases, the

summation (or integration) involved in this equation cannot be carried

out to give electric field at every point in

space. For some symmetric charge

configurations, however, it is possible to

obtain the electric field in a simple way using

the Gauss’s law. This is best understood by

some examples.

1.15.1 Field due to an infinitely

long straight uniformly

charged wire

Consider an infinitely long thin straight wire

with uniform linear charge density λ. The wire

is obviously an axis of symmetry. Suppose we

take the radial vector from O to P and rotate it



around the wire. The points P, P′, P′′ so

obtained are completely equivalent with

respect to the charged wire. This implies that

the electric field must have the same magnitude

at these points. The direction of electric field at

every point must be radial (outward if λ > 0,

inward if λ < 0). This is clear from Fig. 1.29.

Consider a pair of line elements P and P

1

2

of the wire, as shown. The electric fields

produced by the two elements of the pair when

summed give a resultant electric field which

is radial (the components normal to the radial

vector cancel). This is true for any such pair

and hence the total field at any point P is

radial. Finally, since the wire is infinite,

electric field does not depend on the position

of P along the length of the wire. In short, the

electric field is everywhere radial in the plane



cutting the wire normally, and its magnitude

depends only on the radial distance r.

To calculate the field, imagine a cylindrical

Gaussian surface, as shown in the Fig. 1.29(b).

Since the field is everywhere radial, flux

through the two ends of the cylindrical

Gaussian surface is zero. At the cylindrical

FIGURE 1.29 (a) Electric field due to an

part of the surface, E is normal to the surface

infinitely long thin straight wire is radial,

at every point, and its magnitude is constant,

(b) The Gaussian surface for a long thin

since it depends only on r. The surface area

wire of uniform linear charge density.

of the curved part is 2π rl, where l is the length
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of the cylinder.
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Flux through the Gaussian surface

=



flux through the curved cylindrical part of the surface

=

E × 2π rl

The surface includes charge equal to λ l. Gauss’s law then gives

E × 2π rl = λ l/ε0

λ

i.e.,

E = 2πε r

0

Vectorially, E at any point is given by

λ

E =

ˆ

n

(1.32)

2πε r

0

where ˆ

n is the radial unit vector in the plane normal to the wire passing

through the point. E is directed outward if λ is positive and inward if λ is
negative.



Note that when we write a vector A as a scalar multiplied by a unit

vector, i.e., as A = A ˆa , the scalar A is an algebraic number. It can be
negative or positive. The direction of A will be the same as that of the unit
vector ˆa if A > 0 and opposite to ˆa if A < 0. When we want to restrict to
non-negative values, we use the symbol A and call it the modulus of A .

Thus, A ≥ 0 .

Also note that though only the charge enclosed by the surface (λ l )

was included above, the electric field E is due to the charge on the entire
wire. Further, the assumption that the wire is infinitely long is crucial.

Without this assumption, we cannot take E to be normal to the curved

part of the cylindrical Gaussian surface. However, Eq. (1.32) is

approximately true for electric field around the central portions of a long

wire, where the end effects may be ignored.

1.15.2 Field due to a uniformly charged infinite plane sheet

Let σ be the uniform surface charge density of an infinite plane sheet

(Fig. 1.30). We take the x-axis normal to the given plane. By symmetry, the
electric field will not depend on y and z coordinates and its direction at
every point must be parallel to the x-direction.

We can take the Gaussian surface to be a

rectangular parallelepiped of cross sectional area

A, as shown. (A cylindrical surface will also do.) As

seen from the figure, only the two faces 1 and 2 will

contribute to the flux; electric field lines are parallel



to the other faces and they, therefore, do not

contribute to the total flux.

The unit vector normal to surface 1 is in – x

direction while the unit vector normal to surface 2

is in the + x direction. Therefore, flux E.ΔS through

both the surfaces are equal and add up. Therefore

FIGURE 1.30 Gaussian surface for a

the net flux through the Gaussian surface is 2 EA.

uniformly charged infinite plane sheet.

The charge enclosed by the closed surface is σ A.

38

Therefore by Gauss’s law,
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2 EA = σ A/ε0

or, E = σ/2ε0

Vectorically,

σ

E =

ˆ



n

(1.33)

2ε0

where ˆ

n is a unit vector normal to the plane and going away from it.

E is directed away from the plate if σ is positive and toward the plate if σ is
negative. Note that the above application of the Gauss’ law has brought out
an additional fact: E is independent of x also.

For a finite large planar sheet, Eq. (1.33) is approximately true in the

middle regions of the planar sheet, away from the ends.

1.15.3 Field due to a uniformly charged thin spherical shell Let σ be the
uniform surface charge density of a thin spherical shell of radius R (Fig.
1.31). The situation has obvious spherical symmetry. The field at any point
P, outside or inside, can depend only on r (the radial distance from the
centre of the shell to the point) and must be radial (i.e., along the radius
vector).

(i) Field outside the shell: Consider a point P outside the

shell with radius vector r. To calculate E at P, we take the

Gaussian surface to be a sphere of radius r and with centre

O, passing through P. All points on this sphere are equivalent

relative to the given charged configuration. (That is what we

mean by spherical symmetry.) The electric field at each point

of the Gaussian surface, therefore, has the same magnitude



E and is along the radius vector at each point. Thus, E and

ΔS at every point are parallel and the flux through each

element is E Δ S. Summing over all Δ S, the flux through the Gaussian
surface is E × 4 π r 2. The charge enclosed is σ × 4 π R 2. By Gauss’s law

σ

2

E × 4 π r 2 =

4 π R

ε0

2

σ R

q

Or, E =

=

2

2

ε r

4 π ε r

0

0

where q = 4 π R 2 σ is the total charge on the spherical shell.



Vectorially,

q

E =

ˆr

FIGURE 1.31 Gaussian

2

(1.34)

4πε r

surfaces for a point with

0

(a) r > R, (b) r < R.

The electric field is directed outward if q > 0 and inward if

q < 0. This, however, is exactly the field produced by a charge

q placed at the centre O. Thus for points outside the shell, the field due to a
uniformly charged shell is as if the entire charge of the shell is concentrated
at its centre.

(ii) Field inside the shell: In Fig. 1.31(b), the point P is inside the shell. The
Gaussian surface is again a sphere through P centred at O.
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The flux through the Gaussian surface, calculated as before, is

E × 4 π r 2. However, in this case, the Gaussian surface encloses no charge.
Gauss’s law then gives E × 4 π r 2 = 0

i.e., E = 0 ( r < R )

(1.35)

that is, the field due to a uniformly charged thin shell is zero at all points

inside the shell*. This important result is a direct consequence of Gauss’s
law which follows from Coulomb’s law. The experimental verification of
this result confirms the 1/ r 2 dependence in Coulomb’s law.

Example 1.13 An early model for an atom considered it to have a

positively charged point nucleus of charge Ze, surrounded by a

uniform density of negative charge up to a radius R. The atom as a



whole is neutral. For this model, what is the electric field at a distance

r from the nucleus?

FIGURE 1.32

Solution The charge distribution for this model of the atom is as

shown in Fig. 1.32. The total negative charge in the uniform spherical

charge distribution of radius R must be – Z e, since the atom (nucleus of
charge Z e + negative charge) is neutral. This immediately gives us the
negative charge density ρ, since we must have

3

4 π R

ρ = 0 – Ze

3

3 Ze

or ρ = −

3

4 π R

To find the electric field E(r) at a point P which is a distance r away from
the nucleus, we use Gauss’s law. Because of the spherical symmetry of the
charge distribution, the magnitude of the electric

field E(r) depends only on the radial distance, no matter what the direction
of r. Its direction is along (or opposite to) the radius vector r from the
origin to the point P. The obvious Gaussian surface is a spherical surface
centred at the nucleus. We consider two situations,



1.13

namely, r < R and r > R.

(i) r < R : The electric flux φ enclosed by the spherical surface is φ = E ( r )
× 4 π r 2

XAMPLE

E

where E ( r ) is the magnitude of the electric field at r. This is because

* Compare this with a uniform mass shell discussed in Section 8.5 of Class
XI 40

Textbook of Physics.
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the field at any point on the spherical Gaussian surface has the

same direction as the normal to the surface there, and has the same

magnitude at all points on the surface.

The charge q enclosed by the Gaussian surface is the positive nuclear

charge and the negative charge within the sphere of radius r,

3

4 π r

i.e., q = Z e +

ρ



3

Substituting for the charge density ρ obtained earlier, we have

3

r

q = Z e − Z e

3

R

Gauss’s law then gives,

Z e

⎛ 1

r ⎞

E( r ) =

⎜

−

⎟ ;

r < R

2

3

4 π ε

⎝ r



R ⎠

0

The electric field is directed radially outward.

E

(ii) r > R: In this case, the total charge enclosed by the Gaussian XAMPLE

spherical surface is zero since the atom is neutral. Thus, from Gauss’s

law,

E ( r ) × 4 π r 2 = 0 or E ( r ) = 0; r > R

1.13

At r = R, both cases give the same result: E = 0.

ON SYMMETRY OPERATIONS

In Physics, we often encounter systems with various symmetries.
Consideration of these symmetries helps one arrive at results much faster
than otherwise by a straightforward calculation. Consider, for example an
infinite uniform sheet of charge (surface charge density σ) along the y- z
plane. This system is unchanged if (a) translated parallel to the y- z plane in
any direction, (b) rotated about the x-axis through any angle. As the system
is unchanged under such symmetry operation, so must its properties be. In
particular, in this example, the electric field E must be unchanged.

Translation symmetry along the y-axis shows that the electric field must be
the same at a point (0, y , 0) as at (0, y , 0). Similarly translational symmetry
along the z-axis 1

2

shows that the electric field at two point (0, 0, z ) and (0, 0, z ) must be the
same. By 1



2

using rotation symmetry around the x-axis, we can conclude that E must be
perpendicular to the y- z plane, that is, it must be parallel to the x-direction.

Try to think of a symmetry now which will tell you that the magnitude of
the electric field is a constant, independent of the x-coordinate. It thus turns
out that the magnitude of the electric field due to a uniformly charged
infinite conducting sheet is the same at all points in space. The direction,
however, is opposite of each other on either side of the sheet.

Compare this with the effort needed to arrive at this result by a direct
calculation using Coulomb’s law.
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SUMMARY

1.

Electric and magnetic forces determine the properties of atoms,

molecules and bulk matter.

2.

From simple experiments on frictional electricity, one can infer that

there are two types of charges in nature; and that like charges repel

and unlike charges attract. By convention, the charge on a glass rod

rubbed with silk is positive; that on a plastic rod rubbed with fur is

then negative.

3.



Conductors allow movement of electric charge through them, insulators

do not. In metals, the mobile charges are electrons; in electrolytes

both positive and negative ions are mobile.

4.

Electric charge has three basic properties: quantisation, additivity

and conservation.

Quantisation of electric charge means that total charge ( q) of a body

is always an integral multiple of a basic quantum of charge ( e) i.e.,

q = n e, where n = 0, ±1, ±2, ±3, .... Proton and electron have charges

+ e, – e, respectively. For macroscopic charges for which n is a very large
number, quantisation of charge can be ignored.

Additivity of electric charges means that the total charge of a system

is the algebraic sum (i.e., the sum taking into account proper signs)

of all individual charges in the system.

Conservation of electric charges means that the total charge of an

isolated system remains unchanged with time. This means that when

bodies are charged through friction, there is a transfer of electric charge

from one body to another, but no creation or destruction of charge.

5.

Coulomb’s Law: The mutual electrostatic force between two point

charges q and q is proportional to the product q q and inversely 1



2

1 2

proportional to the square of the distance r separating them.

21

Mathematically,

k (q q )

F = force on q due to

1 2

q =

ˆr

21

2

1

2

21

r 21

1

where ˆr is a unit vector in the direction from q to q and k =

21

1



2

4 ε

π 0

is the constant of proportionality.

In SI units, the unit of charge is coulomb. The experimental value of

the constant ε is

0

ε = 8.854 × 10–12 C2 N–1 m–2

0

The approximate value of k is

k = 9 × 109 N m2 C–2

6.

The ratio of electric force and gravitational force between a proton

and an electron is

2

k e
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≅ 2 . 4 × 10

G m m

e



p

7.

Superposition Principle: The principle is based on the property that the
forces with which two charges attract or repel each other are not affected by
the presence of a third (or more) additional charge(s). For

an assembly of charges q , q , q , ..., the force on any charge, say q , is 1

2

3

1
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the vector sum of the force on q due to q , the force on q due to q , 1

2

1

3

and so on. For each pair, the force is given by the Coulomb’s law for

two charges stated earlier.

8.

The electric field E at a point due to a charge configuration is the

force on a small positive test charge q placed at the point divided by



the magnitude of the charge. Electric field due to a point charge q has a
magnitude | q|/4πε r 2; it is radially outwards from q, if q is positive, 0

and radially inwards if q is negative. Like Coulomb force, electric field also
satisfies superposition principle.

9.

An electric field line is a curve drawn in such a way that the tangent

at each point on the curve gives the direction of electric field at that

point. The relative closeness of field lines indicates the relative strength

of electric field at different points; they crowd near each other in regions

of strong electric field and are far apart where the electric field is

weak. In regions of constant electric field, the field lines are uniformly

spaced parallel straight lines.

10. Some of the important properties of field lines are: (i) Field lines are

continuous curves without any breaks. (ii) Two field lines cannot cross

each other. (iii) Electrostatic field lines start at positive charges and

end at negative charges —they cannot form closed loops.

11. An electric dipole is a pair of equal and opposite charges q and – q
separated by some distance 2 a. Its dipole moment vector p has magnitude
2 qa and is in the direction of the dipole axis from – q to q.

12. Field of an electric dipole in its equatorial plane (i.e., the plane

perpendicular to its axis and passing through its centre) at a distance

r from the centre:



−p

1

E =

2

2 3 / 2

4 ε

π

( a + r )

o

−

≅

p

,

for r >> a

3

4 ε

π r

o

Dipole electric field on the axis at a distance r from the centre:

2 p r



E =

2

2 2

4 ε

π ( r − a )

0

2

≅

p

for

r >> a

3

4 ε

π r

0

The 1/ r 3 dependence of dipole electric fields should be noted in contrast to
the 1/ r 2 dependence of electric field due to a point charge.

13. In a uniform electric field E, a dipole experiences a torque τ given by τ
= p × E

but experiences no net force.



14. The flux Δφ of electric field E through a small area element ΔS is given
by

Δφ = E. ΔS

The vector area element ΔS is

ΔS = Δ S ˆn

where Δ S is the magnitude of the area element and ˆ

n is normal to the

area element, which can be considered planar for sufficiently small Δ S.
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For an area element of a closed surface, ˆ

n is taken to be the direction

of outward normal, by convention.

15. Gauss’s law: The flux of electric field through any closed surface S is 1/
ε times the total charge enclosed by S. The law is especially useful 0

in determining electric field E, when the source distribution has simple
symmetry:

(i) Thin infinitely long straight wire of uniform linear charge density λ

λ

E =

ˆ



n

2 ε

π

r

0

where r is the perpendicular distance of the point from the wire and

ˆ

n is the radial unit vector in the plane normal to the wire passing

through the point.

(ii) Infinite thin plane sheet of uniform surface charge density σ

σ

E =

ˆ

n

2 ε0

where ˆ

n is a unit vector normal to the plane, outward on either side.

(iii) Thin spherical shell of uniform surface charge density σ

q

E =



ˆr

( r

≥ R)

2

4 ε

π

r

0

E = 0

( r < R )

where r is the distance of the point from the centre of the shell and R

the radius of the shell. q is the total charge of the shell: q = 4π R2σ.

The electric field outside the shell is as though the total charge is

concentrated at the centre. The same result is true for a solid sphere

of uniform volume charge density. The field is zero at all points inside

the shell

Physical quantity

Symbol

Dimensions

Unit



Remarks

Vector area element

Δ S

[L2]

m2

ΔS = Δ S ˆn

Electric field

E

[MLT–3A–1]

 

V m–1

Electric flux

φ

[ML3 T–3A–1]

 

V m

Δφ = E. ΔS

Dipole moment

p

[LTA]



C m

Vector directed

from negative to

positive charge

Charge density

linear

λ

[L–1 TA]

C m–1

Charge/length

surface

σ

[L–2 TA]

C m–2

Charge/area



volume

ρ

[L–3 TA]

C m–3

Charge/volume
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POINTS TO PONDER

1.

You might wonder why the protons, all carrying positive charges, are

compactly residing inside the nucleus. Why do they not fly away? You

will learn that there is a third kind of a fundamental force, called the

strong force which holds them together. The range of distance where

this force is effective is, however, very small ~10-14 m. This is precisely

the size of the nucleus. Also the electrons are not allowed to sit on

top of the protons, i.e. inside the nucleus, due to the laws of quantum

mechanics. This gives the atoms their structure as they exist in nature.

2.



Coulomb force and gravitational force follow the same inverse-square

law. But gravitational force has only one sign (always attractive), while

Coulomb force can be of both signs (attractive and repulsive), allowing

possibility of cancellation of electric forces. This is how gravity, despite

being a much weaker force, can be a dominating and more pervasive

force in nature.

3.

The constant of proportionality k in Coulomb’s law is a matter of

choice if the unit of charge is to be defined using Coulomb’s law. In SI

units, however, what is defined is the unit of current (A) via its magnetic

effect (Ampere’s law) and the unit of charge (coulomb) is simply defined

by (1C = 1 A s). In this case, the value of k is no longer arbitrary; it is
approximately 9 × 109 N m2 C–2.

4.

The rather large value of k, i.e., the large size of the unit of charge (1C)
from the point of view of electric effects arises because (as mentioned in
point 3 already) the unit of charge is defined in terms of

magnetic forces (forces on current–carrying wires) which are generally

much weaker than the electric forces. Thus while 1 ampere is a unit

of reasonable size for magnetic effects, 1 C = 1 A s, is too big a unit for

electric effects.



5.

The additive property of charge is not an ‘obvious’ property. It is related

to the fact that electric charge has no direction associated with it;

charge is a scalar.

6.

Charge is not only a scalar (or invariant) under rotation; it is also

invariant for frames of reference in relative motion. This is not always

true for every scalar. For example, kinetic energy is a scalar under

rotation, but is not invariant for frames of reference in relative

motion.

7.

Conservation of total charge of an isolated system is a property

independent of the scalar nature of charge noted in point 6.

Conservation refers to invariance in time in a given frame of reference.

A quantity may be scalar but not conserved (like kinetic energy in an

inelastic collision). On the other hand, one can have conserved vector

quantity (e.g., angular momentum of an isolated system).

8.

Quantisation of electric charge is a basic (unexplained) law of nature;

interestingly, there is no analogous law on quantisation of mass.



9.

Superposition principle should not be regarded as ‘obvious’, or equated

with the law of addition of vectors. It says two things: force on one

charge due to another charge is unaffected by the presence of other

charges, and there are no additional three-body, four-body, etc., forces

which arise only when there are more than two charges.

10. The electric field due to a discrete charge configuration is not defined

at the locations of the discrete charges. For continuous volume charge

distribution, it is defined at any point in the distribution. For a surface

charge distribution, electric field is discontinuous across the surface.
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11. The electric field due to a charge configuration with total charge zero

is not zero; but for distances large compared to the size of

the configuration, its field falls off faster than 1/ r 2, typical of field due to a
single charge. An electric dipole is the simplest example of this fact.

EXERCISES

1.1

What is the force between two small charged spheres having

charges of 2 × 10–7C and 3 × 10–7C placed 30 cm apart in air?

1.2



The electrostatic force on a small sphere of charge 0.4 μC due to

another small sphere of charge – 0.8 μC in air is 0.2 N. (a) What is

the distance between the two spheres? (b) What is the force on the

second sphere due to the first?

1.3

Check that the ratio ke 2/ G m m is dimensionless. Look up a Table e

p

of Physical Constants and determine the value of this ratio. What

does the ratio signify?

1.4

(a) Explain the meaning of the statement ‘electric charge of a body

is quantised’.

(b) Why can one ignore quantisation of electric charge when dealing

with macroscopic i.e., large scale charges?

1.5

When a glass rod is rubbed with a silk cloth, charges appear on

both. A similar phenomenon is observed with many other pairs of

bodies. Explain how this observation is consistent with the law of

conservation of charge.

1.6



Four point charges q = 2 μC, q = –5 μC, q = 2 μC, and q = –5 μC are A

B

C

D

located at the corners of a square ABCD of side 10 cm. What is the

force on a charge of 1 μC placed at the centre of the square?

1.7

(a) An electrostatic field line is a continuous curve. That is, a field

line cannot have sudden breaks. Why not?

(b) Explain why two field lines never cross each other at any point?

1.8

Two point charges q = 3 μC and q = –3 μC are located 20 cm apart A

B

in vacuum.

(a) What is the electric field at the midpoint O of the line AB joining

the two charges?

(b) If a negative test charge of magnitude 1.5 × 10–9 C is placed at

this point, what is the force experienced by the test charge?

1.9

A system has two charges q = 2.5 × 10–7 C and q = –2.5 × 10–7 C



A

B

located at points A: (0, 0, –15 cm) and B: (0,0, +15 cm), respectively.

What are the total charge and electric dipole moment of the system?

1.10

An electric dipole with dipole moment 4 × 10–9 C m is aligned at 30°

with the direction of a uniform electric field of magnitude 5 × 104 NC–1.

Calculate the magnitude of the torque acting on the dipole.

1.11

A polythene piece rubbed with wool is found to have a negative

charge of 3 × 10–7 C.

(a) Estimate the number of electrons transferred (from which to

which?)

(b) Is there a transfer of mass from wool to polythene?

1.12

(a) Two insulated charged copper spheres A and B have their centres
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electrostatic repulsion if the charge on each is 6.5 × 10–7 C? The

radii of A and B are negligible compared to the distance of

separation.

(b) What is the force of repulsion if each sphere is charged double

the above amount, and the distance between them is halved?

1.13

Suppose the spheres A and B in Exercise 1.12 have identical sizes.

A third sphere of the same size but uncharged is brought in contact

with the first, then brought in contact with the second, and finally

removed from both. What is the new force of repulsion between A

and B?

1.14

Figure 1.33 shows tracks of three charged particles in a uniform

electrostatic field. Give the signs of the three charges. Which particle

has the highest charge to mass ratio?

FIGURE 1.33

1.15

Consider a uniform electric field E = 3 × 103 î N/C. (a) What is the flux of
this field through a square of 10 cm on a side whose plane is parallel to the
yz plane? (b) What is the flux through the same

square if the normal to its plane makes a 60° angle with the x-axis?



1.16

What is the net flux of the uniform electric field of Exercise 1.15

through a cube of side 20 cm oriented so that its faces are parallel

to the coordinate planes?

1.17

Careful measurement of the electric field at the surface of a black

box indicates that the net outward flux through the surface of the

box is 8.0 × 103 Nm2/C. (a) What is the net charge inside the box?

(b) If the net outward flux through the surface of the box were zero,

could you conclude that there were no charges inside the box? Why

or Why not?

1.18

A point charge +10 μC is a distance 5 cm directly above the centre

of a square of side 10 cm, as shown in Fig. 1.34. What is the

magnitude of the electric flux through the square? ( Hint: Think of

the square as one face of a cube with edge 10 cm.)

47

FIGURE 1.34

Physics

1.19



A point charge of 2.0 μC is at the centre of a cubic Gaussian

surface 9.0 cm on edge. What is the net electric flux through the

surface?

1.20

A point charge causes an electric flux of –1.0 × 103 Nm2/C to pass

through a spherical Gaussian surface of 10.0 cm radius centred on

the charge. (a) If the radius of the Gaussian surface were doubled,

how much flux would pass through the surface? (b) What is the

value of the point charge?

1.21

A conducting sphere of radius 10 cm has an unknown charge. If

the electric field 20 cm from the centre of the sphere is 1.5 × 103 N/C

and points radially inward, what is the net charge on the sphere?

1.22

A uniformly charged conducting sphere of 2.4 m diameter has a

surface charge density of 80.0 μC/m2. (a) Find the charge on the

sphere. (b) What is the total electric flux leaving the surface of the

sphere?

1.23

An infinite line charge produces a field of 9 × 104 N/C at a distance



of 2 cm. Calculate the linear charge density.

1.24

Two large, thin metal plates are parallel and close to each other. On

their inner faces, the plates have surface charge densities of opposite

signs and of magnitude 17.0 × 10–22 C/m2. What is E: (a) in the outer

region of the first plate, (b) in the outer region of the second plate,

and (c) between the plates?

ADDITIONAL EXERCISES

1.25

An oil drop of 12 excess electrons is held stationary under a constant

electric field of 2.55 × 104 NC–1 in Millikan’s oil drop experiment. The

density of the oil is 1.26 g cm–3. Estimate the radius of the drop.

( g = 9.81 m s–2; e = 1.60 × 10–19 C).

1.26

Which among the curves shown in Fig. 1.35 cannot possibly

represent electrostatic field lines?
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FIGURE 1.35

1.27

In a certain region of space, electric field is along the z-direction

throughout. The magnitude of electric field is, however, not constant

but increases uniformly along the positive z-direction, at the rate of

105 NC–1 per metre. What are the force and torque experienced by a

system having a total dipole moment equal to 10–7 Cm in the negative

z-direction ?

1.28

(a) A conductor A with a cavity as shown in Fig. 1.36(a) is given a

charge Q. Show that the entire charge must appear on the outer

surface of the conductor. (b) Another conductor B with charge q is

inserted into the cavity keeping B insulated from A. Show that the

total charge on the outside surface of A is Q + q [Fig. 1.36(b)]. (c) A
sensitive instrument is to be shielded from the strong electrostatic fields in
its environment. Suggest a possible way.

FIGURE 1.36

1.29



A hollow charged conductor has a tiny hole cut into its surface.

Show that the electric field in the hole is (σ/2ε ) ˆ

n , where ˆ

n is the

0

unit vector in the outward normal direction, and σ is the surface

charge density near the hole.

1.30

Obtain the formula for the electric field due to a long thin wire of

uniform linear charge density λ without using Gauss’s law. [ Hint:

Use Coulomb’s law directly and evaluate the necessary integral.]

1.31

It is now believed that protons and neutrons (which constitute nuclei

of ordinary matter) are themselves built out of more elementary units

called quarks. A proton and a neutron consist of three quarks each.

Two types of quarks, the so called ‘up’ quark (denoted by u) of charge

+ (2/3) e, and the ‘down’ quark (denoted by d) of charge (–1/3) e, together
with electrons build up ordinary matter. (Quarks of other types have also
been found which give rise to different unusual

varieties of matter.) Suggest a possible quark composition of a
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1.32

(a) Consider an arbitrary electrostatic field configuration. A small

test charge is placed at a null point (i.e., where E = 0) of the

configuration. Show that the equilibrium of the test charge is

necessarily unstable.

(b) Verify this result for the simple configuration of two charges of

the same magnitude and sign placed a certain distance apart.

1.33

A particle of mass m and charge (– q) enters the region between the two
charged plates initially moving along x-axis with speed v (like x particle 1
in Fig. 1.33). The length of plate is L and an uniform

electric field E is maintained between the plates. Show that the

vertical deflection of the particle at the far edge of the plate is

qEL 2/(2 m v 2).

x

Compare this motion with motion of a projectile in gravitational field

discussed in Section 4.10 of Class XI Textbook of Physics.

1.34

Suppose that the particle in Exercise in 1.33 is an electron projected



with velocity v = 2.0 × 106 m s–1. If E between the plates separated x

by 0.5 cm is 9.1 × 102 N/C, where will the electron strike the upper

plate? (| e|=1.6 × 10–19 C, m = 9.1 × 10–31 kg.)

e
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Chapter Two

ELECTROSTATIC

POTENTIAL AND

CAPACITANCE

2.1 INTRODUCTION

In Chapters 6 and 8 (Class XI), the notion of potential energy was

introduced. When an external force does work in taking a body from a

point to another against a force like spring force or gravitational force,

that work gets stored as potential energy of the body. When the external

force is removed, the body moves, gaining kinetic energy and losing

an equal amount of potential energy. The sum of kinetic and

potential energies is thus conserved. Forces of this kind are called

conservative forces. Spring force and gravitational force are examples of

conservative forces.

Coulomb force between two (stationary) charges, like the gravitational



force, is also a conservative force. This is not surprising, since both have

inverse-square dependence on distance and differ mainly in the

proportionality constants – the masses in the gravitational law are

replaced by charges in Coulomb’s law. Thus, like the potential energy of

a mass in a gravitational field, we can define electrostatic potential energy

of a charge in an electrostatic field.

Consider an electrostatic field E due to some charge configuration.

First, for simplicity, consider the field E due to a charge Q placed at the
origin. Now, imagine that we bring a test charge q from a point R to a point
P against the repulsive force on it due to the charge Q. With reference

Physics

to Fig. 2.1, this will happen if Q and q are both positive

or both negative. For definiteness, let us take Q, q > 0.

Two remarks may be made here. First, we assume

that the test charge q is so small that it does not disturb

the original configuration, namely the charge Q at the

origin (or else, we keep Q fixed at the origin by some

unspecified force). Second, in bringing the charge q from

FIGURE 2.1 A test charge q (> 0) is

R to P, we apply an external force F just enough to

moved from the point R to the



ext

point P against the repulsive

counter the repulsive electric force F (i.e, F = –F ).

E

ext

E

force on it by the charge Q (> 0)

This means there is no net force on or acceleration of

placed at the origin.

the charge q when it is brought from R to P, i.e., it is

brought with infinitesimally slow constant speed. In

this situation, work done by the external force is the negative of the work

done by the electric force, and gets fully stored in the form of potential

energy of the charge q. If the external force is removed on reaching P, the
electric force will take the charge away from Q – the stored energy
(potential energy) at P is used to provide kinetic energy to the charge q in
such a way that the sum of the kinetic and potential energies is conserved.

Thus, work done by external forces in moving a charge q from R to P is

P

W =

d



∫ F C r

ext

RP

R

P

= −

d

∫ F C r

E

(2.1)

R

This work done is against electrostatic repulsive force and gets stored

as potential energy.

At every point in electric field, a particle with charge q possesses a

certain electrostatic potential energy, this work done increases its potential

energy by an amount equal to potential energy difference between points

R and P.

Thus, potential energy difference

∆ U = U − U = W

(2.2)



P

R

RP

( Note here that this displacement is in an opposite sense to the electric

force and hence work done by electric field is negative, i.e. , –W

.)

RP

Therefore, we can define electric potential energy difference between

two points as the work required to be done by an external force in moving

(without accelerating ) charge q from one point to another for electric field
of any arbitrary charge configuration.

Two important comments may be made at this stage:

(i) The right side of Eq. (2.2) depends only on the initial and final positions
of the charge. It means that the work done by an electrostatic field in
moving a charge from one point to another depends only on the initial

and the final points and is independent of the path taken to go from

one point to the other. This is the fundamental characteristic of a

conservative force. The concept of the potential energy would not be

meaningful if the work depended on the path. The path-independence

of work done by an electrostatic field can be proved using the
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Coulomb’s law. We omit this proof here.

Electrostatic Potential

and Capacitance

(ii) Equation (2.2) defines potential energy difference in terms

of the physically meaningful quantity work. Clearly,

potential energy so defined is undetermined to within an

additive constant.What this means is that the actual value

of potential energy is not physically significant; it is only

the difference of potential energy that is significant. We can

always add an arbitrary constant α to potential energy at

every point, since this will not change the potential energy

difference:

( U + α) − ( U + α) = U − U

P

R

P



R

Put it differently, there is a freedom in choosing the point

where potential energy is zero. A convenient choice is to have

electrostatic potential energy zero at infinity. With this choice,

if we take the point R at infinity, we get from Eq. (2.2)

Count Alessandro Volta

COUNT ALESSANDRO VOLTA (1745 –1827)

(1745 – 1827) Italian

W

= U − U = U

∞

(2.3)

P

P

∞

P

physicist, professor at

Since the point P is arbitrary, Eq. (2.3) provides us with a

Pavia. Volta established

definition of potential energy of a charge q at any point.



that the animal electri-

Potential energy of charge q at a point (in the presence of field

city observed by Luigi

due to any charge configuration) is the work done by the

Galvani, 1737–1798, in

experiments with frog

external force (equal and opposite to the electric force) in

muscle tissue placed in

bringing the charge q from infinity to that point.

contact with dissimilar

2.2 E

metals, was not due to

LECTROSTATIC POTENTIAL

any exceptional property

Consider any general static charge configuration. We define

of animal tissues but

potential energy of a test charge q in terms of the work done

was also generated

whenever any wet body

on the charge q. This work is obviously proportional to q, since was
sandwiched between



the force at any point is qE, where E is the electric field at that dissimilar
metals. This point due to the given charge configuration. It is, therefore,

led him to develop the

convenient to divide the work by the amount of charge q, so

first voltaic pile, or

that the resulting quantity is independent of q. In other words,

battery, consisting of a

work done per unit test charge is characteristic of the electric

large stack of moist disks

field associated with the charge configuration. This leads to

of cardboard (electrolyte) sandwiched

the idea of electrostatic potential V due to a given charge

between disks of metal

configuration. From Eq. (2.1), we get:

(electrodes).

Work done by external force in bringing a unit positive

charge from point R to P

 U − U 

= V – V

P



R

=

(2.4)

P

R







q



where V and V are the electrostatic potentials at P and R, respectively.

P

R

Note, as before, that it is not the actual value of potential but the potential
difference that is physically significant. If, as before, we choose the
potential to be zero at infinity, Eq. (2.4) implies:

Work done by an external force in bringing a unit positive charge
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In other words, the electrostatic potential ( V )



at any point in a region with electrostatic field is

the work done in bringing a unit positive

charge (without acceleration) from infinity to

that point.

The qualifying remarks made earlier regarding

potential energy also apply to the definition of

potential. To obtain the work done per unit test

charge, we should take an infinitesimal test charge

FIGURE 2.2 Work done on a test charge q

δ q, obtain the work done δ W in bringing it from

by the electrostatic field due to any given

infinity to the point and determine the ratio

charge configuration is independent

δ W/δ q. Also, the external force at every point of

of the path, and depends only on

the path is to be equal and opposite to the

its initial and final positions.

electrostatic force on the test charge at that point.

2.3 POTENTIAL DUE TO A POINT CHARGE

Consider a point charge Q at the origin (Fig. 2.3). For definiteness, take Q



to be positive. We wish to determine the potential at any point P with

position vector r from the origin. For that we must

calculate the work done in bringing a unit positive

test charge from infinity to the point P. For Q > 0,

the work done against the repulsive force on the

test charge is positive. Since work done is

independent of the path, we choose a convenient

path – along the radial direction from infinity to

the point P.

At some intermediate point P′ on the path, the

electrostatic force on a unit positive charge is

FIGURE 2.3 Work done in bringing a unit

positive test charge from infinity to the

Q × 1 ˆ′

point P, against the repulsive force of

2

4 ε

π

r

(2.5)



r '

0

charge Q ( Q > 0), is the potential at P due to

the charge Q.

where ˆr′ is the unit vector along OP′. Work done

against this force from r′ to r′ + ∆r′ is

Q

∆ W = −

∆ r ′

2

(2.6)

4 ε

π r '

0

The negative sign appears because for ∆ r ′ < 0, ∆ W is positive . Total work
done (W) by the external force is obtained by integrating Eq. (2.6) from r′ =
∞ to r′ = r,

r

r

Q

Q



Q

W = −

dr ′ =

=

∫

2

(2.7)

4πε r '

4πε r ′ ∞

4πε r

∞

0

0

0

This, by definition is the potential at P due to the charge Q

Q

=

54

V ( r )

(2.8)



4 ε

π r

0
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Equation (2.8) is true for any

sign of the charge Q, though we

considered Q > 0 in its derivation.

For Q < 0, V < 0, i.e., work done (by

the external force) per unit positive

test charge in bringing it from

infinity to the point is negative. This

is equivalent to saying that work

done by the electrostatic force in

bringing the unit positive charge

form infinity to the point P is

positive. [This is as it should be,

since for Q < 0, the force on a unit

positive test charge is attractive, so

that the electrostatic force and the



displacement (from infinity to P) are

FIGURE 2.4 Variation of potential V with r [in units of

in the same direction.] Finally, we

( Q/4πε ) m-1] (blue curve) and field with r [in units

0

note that Eq. (2.8) is consistent with

of ( Q/4πε ) m-2] (black curve) for a point charge Q.

0

the choice that potential at infinity

be zero.

Figure (2.4) shows how the electrostatic potential ( ∝ 1/ r ) and the

electrostatic field ( ∝ 1/ r 2 ) varies with r.

Example 2.1

(a) Calculate the potential at a point P due to a charge of 4 × 10–7C

located 9 cm away.

(b) Hence obtain the work done in bringing a charge of 2 × 10–9 C

from infinity to the point P. Does the answer depend on the path

along which the charge is brought?

Solution

7



1

Q

−

×

9

2

–2

4 10 C

(a) V =

= 9 ×10 Nm C ×

4πε r

0.09 m

0

= 4 × 104 V

(b)

9

−

4

W = qV = 2 ×10 C × 4 ×10 V

E



XAMPLE

= 8 × 10–5 J

No, work done will be path independent. Any arbitrary infinitesimal

path can be resolved into two perpendicular displacements: One along

2.1

r and another perpendicular to r. The work done corresponding to the later
will be zero.

2.4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

As we learnt in the last chapter, an electric dipole consists of two charges

q and – q separated by a (small) distance 2 a. Its total charge is zero. It is
characterised by a dipole moment vector p whose magnitude is q × 2 a and
which points in the direction from – q to q (Fig. 2.5). We also saw that the
electric field of a dipole at a point with position vector r depends not 55

just on the magnitude r, but also on the angle between r and p. Further,
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the field falls off, at large distance, not as

1/ r 2 (typical of field due to a single charge)

but as 1/ r 3. We, now, determine the electric

potential due to a dipole and contrast it

with the potential due to a single charge.

As before, we take the origin at the

centre of the dipole. Now we know that the



electric field obeys the superposition

principle. Since potential is related to the

work done by the field, electrostatic

potential also follows the superposition

principle. Thus, the potential due to the

dipole is the sum of potentials due to the

charges q and – q

1

 q

q 

V =

−





FIGURE 2.5 Quantities involved in the calculation

4πε  r

r 

(2.9)

0

1



2

of potential due to a dipole.

where r and r are the distances of the

1

2

point P from q and – q, respectively.

Now, by geometry,

2

2

2

r = r + a − 2 ar cosθ

1

2

2

2

r = r + a + 2 ar cosθ

(2.10)

2

We take r much greater than a ( r >> a ) and retain terms only upto the first
order in a/r 2





a

θ a 

2

2

2 cos

r = r

1 −

+

1



2





r

r





a

θ 

2



2 cos

≅ r

1

 −





r



(2.11)

Similarly,



a

θ 

2

2

2 cos

r ≅ r

1

 +



2





r



(2.12)

Using the Binomial theorem and retaining terms upto the first order

in a/r ; we obtain,

− 1/ 2

1

1 

2 a cosθ 

1 

a



≅

1

 −



≅



1

 + cosθ

r

r 

r



r 

r



[2.13(a)]

1

− 1/ 2

1

1 

2 a cosθ 

1 

a



≅



1

 +



≅

1

 − cosθ

r

r 

r



r 

r



[2.13(b)]

2

Using Eqs. (2.9) and (2.13) and p = 2 qa, we get

q

2 a cosθ

p cosθ



V =

=

2

2

(2.14)

4 ε

π

r

4 ε

π r

0

0
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Now, p cos θ = pCˆr
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where ˆr is the unit vector along the position vector OP.

The electric potential of a dipole is then given by

1

pCˆr



V =

2

; ( r >> a)

(2.15)

4 ε

π

r

0

Equation (2.15) is, as indicated, approximately true only for distances

large compared to the size of the dipole, so that higher order terms in

a/ r are negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (θ = 0, π ) is given by

1

p

V = ±

2

4 ε

π

(2.16)

r



0

(Positive sign for θ = 0, negative sign for θ = π.) The potential in the

equatorial plane (θ = π/2) is zero.

The important contrasting features of electric potential of a dipole

from that due to a single charge are clear from Eqs. (2.8) and (2.15):

(i) The potential due to a dipole depends not just on r but also on the angle
between the position vector r and the dipole moment vector p.

(It is, however, axially symmetric about p. That is, if you rotate the

position vector r about p, keeping θ fixed, the points corresponding to P on
the cone so generated will have the same potential as at P.) (ii) The electric
dipole potential falls off, at large distance, as 1/ r 2, not as 1/ r,
characteristic of the potential due to a single charge. (You can refer to the
Fig. 2.5 for graphs of 1/ r 2 versus r and 1/ r versus r, drawn there in
another context.) 2.5 POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q , q ,…, q with position vectors r , r ,…, 1

2

n

1

2

r relative to some origin (Fig. 2.6). The potential V at P due to the charge n

1

q is

1



1

q 1

V =

1

4 ε

π r

0

1P

where r is the distance between q and P.

1P

1

Similarly, the potential V at P due to q and

2

2

V due to q are given by

3

3

1

q

1



q

2

V =

3

V =

2

,

4 ε

π r

3

4 ε

π r

0

2P

0

3P

where r and r are the distances of P from

2P

3P

charges q and q , respectively; and so on for the



2

3

potential due to other charges. By the

FIGURE 2.6 Potential at a point due to a

superposition principle, the potential V at P due

system of charges is the sum of potentials

to the total charge configuration is the algebraic

due to individual charges.

sum of the potentials due to the individual

charges

V = V + V + ... + V
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(2.17)

1

2

n
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1

 q

q



q 

1

2

=

+

+ ......

n

+





4 ε

π  r

r

r 

(2.18)

0

1P

2P

n P

If we have a continuous charge distribution characterised by a charge



density ρ (r), we divide it, as before, into small volume elements each of
size ∆ v and carrying a charge ρ∆ v. We then determine the potential due to
each volume element and sum (strictly speaking , integrate) over all such
contributions, and thus determine the potential due to the entire

distribution.

We have seen in Chapter 1 that for a uniformly charged spherical shell,

the electric field outside the shell is as if the entire charge is concentrated at
the centre. Thus, the potential outside the shell is given by 1

q

V =

≥

[2.19(a)]

4 ε

π r

( r

R)

0

where q is the total charge on the shell and R its radius. The electric field
inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),
and, therefore, equals its value at the surface, which is

1

q



V =

[2.19(b)]

4 ε

π R

0

Example 2.2 Two charges 3 × 10–8 C and –2 × 10–8 C are located

15 cm apart. At what point on the line joining the two charges is the

electric potential zero? Take the potential at infinity to be zero.

Solution Let us take the origin O at the location of the positive charge.

The line joining the two charges is taken to be the x-axis; the negative
charge is taken to be on the right side of the origin (Fig. 2.7).

FIGURE 2.7

Let P be the required point on the x-axis where the potential is zero.

If x is the x-coordinate of P, obviously x must be positive. (There is no
possibility of potentials due to the two charges adding up to zero for x < 0.)
If x lies between O and A, we have

–8

–8

1

 3 ×10



2 ×10



−

= 0



–2

–2 

4πε

x ×10

(15 − x) ×10

0 



where x is in cm. That is,

3

2

−

= 0

x

15 − x

2.2



which gives x = 9 cm.

If x lies on the extended line OA, the required condition is

3

2

XAMPLE

−

= 0

x

x − 15
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E

which gives

XAMPLE

x = 45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the

positive charge on the side of the negative charge. Note that the

2.2



formula for potential used in the calculation required choosing

potential to be zero at infinity.

Example 2.3 Figures 2.8 (a) and (b) show the field lines of a positive

and negative point charge respectively.

http://sol.sci.uop.edu/~jfalward/electricpotential/electricpotential.html
Electric potential, equipotential surfaces: FIGURE 2.8

(a) Give the signs of the potential difference V – V ; V – V .

P

Q

B

A

(b) Give the sign of the potential energy difference of a small negative

charge between the points Q and P; A and B.

(c) Give the sign of the work done by the field in moving a small

positive charge from Q to P.

(d) Give the sign of the work done by the external agency in moving

a small negative charge from B to A.

(e) Does the kinetic energy of a small negative charge increase or

decrease in going from B to A?

Solution

1



(a) As V ∝

, V > V . Thus, ( V – V ) is positive. Also V is less negative r P

Q

P

Q

B

than V . Thus, V > V or ( V – V ) is positive.

A

B

A

B

A

(b) A small negative charge will be attracted towards positive charge.

The negative charge moves from higher potential energy to lower

potential energy. Therefore the sign of potential energy difference

of a small negative charge between Q and P is positive.

Similarly, (P.E.) > (P.E.) and hence sign of potential energy

A

B

 



differences is positive.

(c) In moving a small positive charge from Q to P, work has to be

done by an external agency against the electric field. Therefore,

E

work done by the field is negative.

XAMPLE

(d) In moving a small negative charge from B to A work has to be

done by the external agency. It is positive.

2.3

(e) Due to force of repulsion on the negative charge, velocity decreases

and hence the kinetic energy decreases in going from B to A.
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2.6 EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential

at all points on the surface. For a single charge q, the potential is given by
Eq. (2.8):

1

q

V = 4 ε

π r



o

This shows that V is a constant if r is constant . Thus, equipotential surfaces
of a single point charge are concentric spherical surfaces centred at the
charge.

Now the electric field lines for a single charge q are radial lines starting
from or ending at the charge, depending on whether q is positive or
negative.

Clearly, the electric field at every point is normal to the equipotential
surface passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would

have nonzero component along the surface. To move a unit test charge

against the direction of the component of the field, work would have to

be done. But this is in contradiction to the definition of an equipotential

FIGURE 2.9 For a

surface: there is no potential difference between any two points on the

single charge q

surface and no work is required to move a test charge on the surface.

(a) equipotential

The electric field must, therefore, be normal to the equipotential surface

surfaces are

at every point. Equipotential surfaces offer an alternative visual picture



spherical surfaces

in addition to the picture of electric field lines around a charge

centred at the

configuration.

charge, and

(b) electric field

lines are radial,

starting from the

charge if q > 0.

FIGURE 2.10 Equipotential surfaces for a uniform electric field.

For a uniform electric field E, say, along the x -axis, the equipotential
surfaces are planes normal to the x -axis, i.e., planes parallel to the y- z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two
identical positive charges are shown in Fig. 2.11.

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,

60

(b) two identical positive charges.
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2.6.1 Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)



with potential values V and V + δ V, where δ V is the change in V in the
direction of the electric field E. Let P be a point on the surface B. δ l is the
perpendicular distance of the

surface A from P. Imagine that a unit positive charge

is moved along this perpendicular from the surface B

to surface A against the electric field. The work done

in this process is |E|δ l.

This work equals the potential difference

V – V .

A

B

Thus,

|E|δ l = V − ( V +δ V)= –δ V

δ V

i.e., |E|= −

(2.20)

δ l

Since δ V is negative, δ V = – |δ V|. we can rewrite

FIGURE 2.12 From the

Eq (2.20) as

potential to the field.



δ V

δ V

E = −

= +

δ

(2.21)

l

δ l

We thus arrive at two important conclusions concerning the relation

between electric field and potential:

(i) Electric field is in the direction in which the potential decreases

steepest.

(ii) Its magnitude is given by the change in the magnitude of potential

per unit displacement normal to the equipotential surface at the point.

2.7 POTENTIAL ENERGY OF A SYSTEM OF CHARGES

Consider first the simple case of two charges q and q with position vector 1

2

r and r relative to some origin. Let us calculate the work done 1

2

(externally) in building up this configuration. This means that we consider



the charges q and q initially at infinity and determine the work done by 1

2

an external agency to bring the charges to the given locations. Suppose,

first the charge q is brought from infinity to the point r . There is no 1

1

external field against which work needs to be done, so work done in

bringing q from infinity to r is zero. This charge produces a potential in 1

1

space given by

1

q 1

V =

1

4 ε

π r

0

1P

where r is the distance of a point P in space from the location of q .

1P

1



From the definition of potential, work done in bringing charge q from

2

infinity to the point r is q times the potential at r due to q : 2

2

2

1

1

q q

work done on q =

1 2

2

4 ε

π

r
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where r is the distance between points 1 and 2.

12



Since electrostatic force is conservative, this work gets

stored in the form of potential energy of the system. Thus,

the potential energy of a system of two charges q and q is

1

2

FIGURE 2.13 Potential energy of a

1

q q

1 2

U =

system of charges q and q is

(2.22)

1

2

4 ε

π

r

0

12

directly proportional to the product



Obviously, if q was brought first to its present location and

of charges and inversely to the

2

q brought later, the potential energy U would be the same.

distance between them.

1

More generally, the potential energy expression,

Eq. (2.22), is unaltered whatever way the charges are brought to the
specified

locations, because of path-independence of work for electrostatic force.

Equation (2.22) is true for any sign of q and q . If q q > 0, potential 1

2

1 2

energy is positive. This is as expected, since for like charges ( q q > 0), 1 2

electrostatic force is repulsive and a positive amount of work is needed to

be done against this force to bring the charges from infinity to a finite

distance apart. For unlike charges ( q q < 0), the electrostatic force is 1 2

attractive. In that case, a positive amount of work is needed against this

force to take the charges from the given location to infinity. In other words,

a negative amount of work is needed for the reverse path (from infinity to

the present locations), so the potential energy is negative.



Equation (2.22) is easily generalised for a system of any number of

point charges. Let us calculate the potential energy of a system of three

charges q , q and q located at r , r , r , respectively. To bring q first 1 2

3

1 2

3

1

from infinity to r , no work is required. Next we bring q from infinity to 1

2

r . As before, work done in this step is

2

1

q q

1 2

q V (r ) =

2

1

2

(2.23)

4 ε



π

r

0

12

The charges q and q produce a potential, which at any point P is 1

2

given by

1

 q

q 

1

2

V

=

+

1, 2





4 ε

π  r



r



(2.24)

0

1P

2P

Work done next in bringing q from infinity to the point r is q times 3

3

3

V

at r

1, 2

3

1

 q q

q q 

1 3

2

3

q V



(r ) =

+

(2.25)

3

1,2

3





4 ε

π  r

r



0

13

23

The total work done in assembling the charges

at the given locations is obtained by adding the work

done in different steps [Eq. (2.23) and Eq. (2.25)],

1

 q q



q q

q q 

1 2

1 3

2

3

U =

+

+

FIGURE 2.14 Potential energy of a





4 ε

π  r

r

r



(2.26)

0

12



13

23

system of three charges is given by

Again, because of the conservative nature of the

Eq. (2.26), with the notation given

electrostatic force (or equivalently, the path

in the figure.

independence of work done), the final expression for

U, Eq. (2.26), is independent of the manner in which
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the configuration is assembled. The potential energy
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is characteristic of the present state of configuration, and not the way

the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square

ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to

put together this arrangement. (b) A charge q is brought to the centre 0

E of the square, the four charges being held fixed at its corners. How

much extra work is needed to do this?



FIGURE 2.15

Solution

(a) Since the work done depends on the final arrangement of the

charges, and not on how they are put together, we calculate work

needed for one way of putting the charges at A, B, C and D. Suppose,

first the charge + q is brought to A, and then the charges – q, + q, and

– q are brought to B, C and D, respectively. The total work needed can

be calculated in steps:

(i)

Work needed to bring charge + q to A when no charge is present

elsewhere: this is zero.

(ii) Work needed to bring – q to B when + q is at A. This is given by (charge
at B) × (electrostatic potential at B due to charge + q at A) 2



q



q



= q

− ×

= −





 4πε d 

4πε d

0

0

(iii) Work needed to bring charge + q to C when + q is at A and – q is at B.
This is given by (charge at C) × (potential at C due to charges at A and B)



+ q

− q 

= + q

+





 4πε d 2 4 ε

π d 

0



0

2

− q



1 

=

1 −





4 ε

π d 



0

2

(iv) Work needed to bring – q to D when + q at A, –q at B, and + q at C.

This is given by (charge at D) × (potential at D due to charges at A,

E

B and C)

XAMPLE

 + q



− q

q



= q

−

+

+





 4 ε

π d 4πε d 2 4 ε

π d 

0

0

0

2.4

2

q

−





1 

=

2 −





4πε d 



0

2
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Add the work done in steps (i), (ii), (iii) and (iv). The total work

required is

2

− q





1 





1  

=

(0

 ) + (1) + 1 −

+ 2 −



 



4 ε

π d



 



0



2

2 

2

− q

=



(4− 2)

4 ε

π d

0

The work done depends only on the arrangement of the charges, and

not how they are assembled. By definition, this is the total

electrostatic energy of the charges.

(Students may try calculating same work/energy by taking charges

in any other order they desire and convince themselves that the energy

will remain the same.)

(b) The extra work necessary to bring a charge q to the point E when

0

2.4

the four charges are at A, B, C and D is q × (electrostatic potential at 0

E due to the charges at A, B, C and D). The electrostatic potential at

E is clearly zero since potential due to A and C is cancelled by that

XAMPLE

due to B and D. Hence no work is required to bring any charge to

E

point E.



2.8 POTENTIAL ENERGY IN AN EXTERNAL FIELD

2.8.1 Potential energy of a single charge

In Section 2.7, the source of the electric field was specified – the charges

and their locations - and the potential energy of the system of those charges

was determined. In this section, we ask a related but a distinct question.

What is the potential energy of a charge q in a given field? This question
was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again to
clarify in what way it is different from the discussion in Section 2.7.

The main difference is that we are now concerned with the potential

energy of a charge (or charges) in an external field. The external field E is
not produced by the given charge(s) whose potential energy we wish to
calculate. E is produced by sources external to the given charge(s).The
external sources may be known, but often they are unknown or unspecified;
what is specified is the electric field E or the electrostatic potential V due to
the external sources. We assume that the charge q does not significantly
affect the sources producing the external field. This is true if q is very small,
or the external sources are held fixed by other unspecified forces. Even if q
is finite, its influence on the external sources may still be ignored in the
situation when very strong sources far away at infinity produce a finite field
E in the region of interest. Note again that we are interested in determining
the potential energy of a given charge q (and later, a system of charges) in
the external field; we are not interested

in the potential energy of the sources producing the external electric field.

The external electric field E and the corresponding external potential

V may vary from point to point. By definition, V at a point P is the work 64

done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in

bringing a charge q from infinity to the point P in the external field is q V.

This work is stored in the form of potential energy of q. If the point P has
position vector r relative to some origin, we can write: Potential energy of q
at r in an external field

= qV (r)

(2.27)

where V(r) is the external potential at the point r.

Thus, if an electron with charge q = e = 1.6×10–19 C is accelerated by a
potential difference of ∆ V = 1 volt, it would gain energy of q∆ V = 1.6 ×

10–19J. This unit of energy is defined as 1 electron volt or 1eV, i.e., 1
eV=1.6 × 10–19J. The units based on eV are most commonly used in
atomic, nuclear and particle physics, (1 keV = 103eV = 1.6 × 10–16J, 1
MeV

= 106eV = 1.6 × 10–13J, 1 GeV = 109eV = 1.6 × 10–10J and 1 TeV =
1012eV

= 1.6 × 10–7J). [This has already been defined on Page 117, XI Physics

Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an

external field

Next, we ask: what is the potential energy of a system of two charges q 1



and q located at r and r , respectively, in an external field? First, we 2

1

2

calculate the work done in bringing the charge q from infinity to r .

1

1

Work done in this step is q V(r ), using Eq. (2.27). Next, we consider the 1

1

work done in bringing q to r . In this step, work is done not only against 2

2

the external field E but also against the field due to q .

1

Work done on q against the external field

2

= q V (r )

2

2

Work done on q against the field due to q

2

1



q q

1 2

= 4 επ ro 12

where r

is the distance between q and q . We have made use of Eqs.

12

1

2

(2.27) and (2.22). By the superposition principle for fields, we add up

the work done on q against the two fields (E and that due to q ): 2

1

Work done in bringing q to r

2

2

q q

1 2

= q V (r ) +

2

2

(2.28)



4 ε

π r

o 12

Thus,

Potential energy of the system

= the total work done in assembling the configuration

q q

1 2

= q V (r ) + q V (r ) +

1

1

2

2

(2.29)

4 ε

π r

0 12

E

Example 2.5

XAMPLE



(a) Determine the electrostatic potential energy of a system consisting

of two charges 7 µC and –2 µC (and with no external field) placed

at (–9 cm, 0, 0) and (9 cm, 0, 0) respectively.

2.5

(b) How much work is required to separate the two charges infinitely

away from each other?
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(c) Suppose that the same system of charges is now placed in an

external electric field E = A (1/ r 2); A = 9 × 105 C m–2. What would the
electrostatic energy of the configuration be?

Solution

12

1

q q

7 ( 2) 10−

× − ×

(a)

1 2

9

U =



= 9 ×10 ×

4 ε

π

= –0.7 J.

r

0.18

0

(b) W = U – U = 0 – U = 0 – (–0.7) = 0.7 J.

2

1

(c) The mutual interaction energy of the two charges remains

unchanged. In addition, there is the energy of interaction of the

two charges with the external electric field. We find,

7 C

µ

2

− C

µ

q V r + q V r

= A



+ A

1

( 1) 2 ( 2)

0.09m

0.09m

and the net electrostatic energy is

2.5

µ

− µ

q V (r ) + q V (r )

q q

7 C

2 C

1 2

+

= A

+ A

− 0.7 J

1

1



2

2

4 ε

π r

0.09 m

0.09 m

0 12

XAMPLE

= 70 − 20 − 0.7 = 49.3 J

E

2.8.3 Potential energy of a dipole in an external field

Consider a dipole with charges q = + q and q = – q placed in a uniform 1

2

electric field E, as shown in Fig. 2.16.

As seen in the last chapter, in a uniform electric field,

the dipole experiences no net force; but experiences a

torque

τ given by

=

τ =



 

τ = p×E

(2.30)

which will tend to rotate it (unless p is parallel or

antiparallel to E). Suppose an external torque τ

is

ext

applied in such a manner that it just neutralises this

torque and rotates it in the plane of paper from angle θ0

to angle θ

1 at an infinitesimal angular speed and without

angular acceleration. The amount of work done by the

external torque will be given by

θ1

θ1

W =

τ (θ d

) θ =

pE sin θ dθ



FIGURE 2.16 Potential energy of a

∫

∫

ext

θ0

θ0

dipole in a uniform external field.

= pE (cosθ − cos

0

θ1)

(2.31)

This work is stored as the potential energy of the system. We can then

associate potential energy U(θ ) with an inclination θ of the dipole. Similar
to other potential energies, there is a freedom in choosing the angle where
the potential energy U is taken to be zero. A natural choice is to take θ = π /
2. (Αn explanation for it is provided towards the end of discussion.) 0

We can then write,



π


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U (θ) = pE cos



− cosθ = – pE cosθ = −



pCE

2



(2.32)
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This expression can alternately be understood also from Eq. (2.29).

We apply Eq. (2.29) to the present system of two charges + q and – q. The
potential energy expression then reads ′ (θ)

q

U

= q [ V (r ) − V (r )

2

] −

1

2

(2.33)



4 ε

π × 2 a

0

Here, r and r denote the position vectors of + q and – q. Now, the 1

2

potential difference between positions r and r equals the work done 1

2

in bringing a unit positive charge against field from r to r . The 2

1

displacement parallel to the force is 2 a cosθ. Thus, [ V(r )–V (r )] =

1

2

– E × 2 a cosθ . We thus obtain,

′ (θ)

2

2

q

q

U

= − pE cosθ −



= −p E

C −

(2.34)

4 ε

π × 2 a

4π

×

0

ε

2 a

0

We note that U′ (θ) differs from U(θ ) by a quantity which is just a constant
for a given dipole. Since a constant is insignificant for potential energy, we
can drop the second term in Eq. (2.34) and it then reduces to Eq. (2.32).

We can now understand why we took θ =π/2. In this case, the work

0

done against the external field E in bringing + q and – q are equal and
opposite and cancel out, i.e., q [ V (r ) – V (r )]=0.

1

2

Example 2.6 A molecule of a substance has a permanent electric



dipole moment of magnitude 10–29 C m. A mole of this substance is

polarised (at low temperature) by applying a strong electrostatic field

of magnitude 106 V m–1. The direction of the field is suddenly changed

by an angle of 60º. Estimate the heat released by the substance in

aligning its dipoles along the new direction of the field. For simplicity,

assume 100% polarisation of the sample.

Solution Here, dipole moment of each molecules = 10–29 C m

As 1 mole of the substance contains 6 × 1023 molecules,

total dipole moment of all the molecules, p = 6 × 1023 × 10–29 C m

E

= 6 × 10–6 C m

 

XAMPLE

Initial potential energy, U = – pE cos θ = –6×10–6×106 cos 0° = –6 J

i

Final potential energy (when θ = 60°), U = –6 × 10–6 × 106 cos 60° = –3 J

f

Change in potential energy = –3 J – (–6J) = 3 J

2.6

So, there is loss in potential energy. This must be the energy released



by the substance in the form of heat in aligning its dipoles.

2.9 ELECTROSTATICS OF CONDUCTORS

Conductors and insulators were described briefly in Chapter 1.

Conductors contain mobile charge carriers. In metallic conductors, these

charge carriers are electrons. In a metal, the outer (valence) electrons

part away from their atoms and are free to move. These electrons are free

within the metal but not free to leave the metal. The free electrons form a

kind of ‘gas’; they collide with each other and with the ions, and move

randomly in different directions. In an external electric field, they drift

against the direction of the field. The positive ions made up of the nuclei

and the bound electrons remain held in their fixed positions. In electrolytic

67

conductors, the charge carriers are both positive and negative ions; but
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the situation in this case is more involved – the movement of the charge

carriers is affected both by the external electric field as also by the

so-called chemical forces (see Chapter 3). We shall restrict our discussion

to metallic solid conductors. Let us note important results regarding

electrostatics of conductors.

1. Inside a conductor, electrostatic field is zero



Consider a conductor, neutral or charged. There may also be an external

electrostatic field. In the static situation, when there is no current inside

or on the surface of the conductor, the electric field is zero everywhere

inside the conductor. This fact can be taken as the defining property of a

conductor. A conductor has free electrons. As long as electric field is not

zero, the free charge carriers would experience force and drift. In the

static situation, the free charges have so distributed themselves that the

electric field is zero everywhere inside. Electrostatic field is zero inside a
conductor.

2. At the surface of a charged conductor, electrostatic field

must be normal to the surface at every point

If E were not normal to the surface, it would have some nonzero

component along the surface. Free charges on the surface of the conductor

would then experience force and move. In the static situation, therefore,

E should have no tangential component. Thus electrostatic field at the
surface of a charged conductor must be normal to the surface at every
point. (For a conductor without any surface charge density, field is zero
even at the surface.) See result 5.

3. The interior of a conductor can have no excess charge in

the static situation

A neutral conductor has equal amounts of positive and negative charges

in every small volume or surface element. When the conductor is charged,



the excess charge can reside only on the surface in the static situation.

This follows from the Gauss’s law. Consider any arbitrary volume element

v inside a conductor. On the closed surface S bounding the volume element
v, electrostatic field is zero. Thus the total electric flux through S

is zero. Hence, by Gauss’s law, there is no net charge enclosed by S. But the
surface S can be made as small as you like, i.e., the volume v can be made
vanishingly small. This means there is no net charge at any point inside the
conductor, and any excess charge must reside at the surface.

4. Electrostatic potential is constant throughout the volume

of the conductor and has the same value (as inside) on

its surface

This follows from results 1 and 2 above. Since E = 0 inside the conductor
and has no tangential component on the surface, no work is done in moving
a small test charge within the conductor and on its surface. That

is, there is no potential difference between any two points inside or on
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the surface of the conductor. Hence, the result. If the conductor is charged,
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electric field normal to the surface exists; this means potential will be

different for the surface and a point just outside the surface.

In a system of conductors of arbitrary size, shape and

charge configuration, each conductor is characterised by a constant

value of potential, but this constant may differ from one conductor to

the other.

5. Electric field at the surface of a charged conductor

σ

E =

ˆ

ε n

(2.35)

0

where σ is the surface charge density and ˆ



n is a unit vector normal

to the surface in the outward direction.

To derive the result, choose a pill box (a short cylinder) as the Gaussian

surface about any point P on the surface, as shown in Fig. 2.17. The pill

box is partly inside and partly outside the surface of the conductor. It

has a small area of cross section δ S and negligible height.

Just inside the surface, the electrostatic field is zero; just outside, the

field is normal to the surface with magnitude E. Thus,

the contribution to the total flux through the pill box

comes only from the outside (circular) cross-section

of the pill box. This equals ± Eδ S (positive for σ > 0,

negative for σ < 0), since over the small area δ S, E

may be considered constant and E and δ S are parallel

or antiparallel. The charge enclosed by the pill box

is σδ S.

By Gauss’s law

σ δ S

Eδ S = ε0

σ

E = ε



(2.36)

0

Including the fact that electric field is normal to the

FIGURE 2.17 The Gaussian surface

surface, we get the vector relation, Eq. (2.35), which

(a pill box) chosen to derive Eq. (2.35)

is true for both signs of σ. For σ > 0, electric field is

for electric field at the surface of a

normal to the surface outward; for σ < 0, electric field

charged conductor.

is normal to the surface inward.

6. Electrostatic shielding

Consider a conductor with a cavity, with no charges inside the cavity. A

remarkable result is that the electric field inside the cavity is zero, whatever
be the size and shape of the cavity and whatever be the charge on the
conductor and the external fields in which it might be placed. We have

proved a simple case of this result already: the electric field inside a
charged spherical shell is zero. The proof of the result for the shell makes
use of the spherical symmetry of the shell (see Chapter 1). But the
vanishing of

electric field in the (charge-free) cavity of a conductor is, as mentioned
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above, a very general result. A related result is that even if the conductor
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is charged or charges are induced on a neutral

conductor by an external field, all charges reside

only on the outer surface of a conductor with cavity.

The proofs of the results noted in Fig. 2.18 are

omitted here, but we note their important

implication. Whatever be the charge and field

configuration outside, any cavity in a conductor

remains shielded from outside electric influence: the

field inside the cavity is always zero. This is known

as electrostatic shielding. The effect can be made

use of in protecting sensitive instruments from

FIGURE 2.18 The electric field inside a

outside electrical influence. Figure 2.19 gives a

cavity of any conductor is zero. All

summary of the important electrostatic properties

charges reside only on the outer surface

of a conductor.

of a conductor with cavity. (There are no



charges placed in the cavity.)

FIGURE 2.19 Some important electrostatic properties of a conductor.

Example 2.7

(a) A comb run through one’s dry hair attracts small bits of paper.

Why?

What happens if the hair is wet or if it is a rainy day? (Remember,

a paper does not conduct electricity.)

(b) Ordinary rubber is an insulator. But special rubber tyres of

aircraft are made slightly conducting. Why is this necessary?

(c) Vehicles carrying inflammable materials usually have metallic

ropes touching the ground during motion. Why?

(d) A bird perches on a bare high power line, and nothing happens

to the bird. A man standing on the ground touches the same line

and gets a fatal shock. Why?

Solution

(a) This is because the comb gets charged by friction. The molecules

2.7

in the paper gets polarised by the charged comb, resulting in a

net force of attraction. If the hair is wet, or if it is rainy day, friction

between hair and the comb reduces. The comb does not get



XAMPLE

charged and thus it will not attract small bits of paper.
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E

(b) To enable them to conduct charge (produced by friction) to the

XAMPLE

ground; as too much of static electricity accumulated may result

in spark and result in fire.

2.7

(c) Reason similar to (b).

(d) Current passes only when there is difference in potential.

2.10 DIELECTRICS AND POLARISATION

Dielectrics are non-conducting substances. In contrast to conductors,

they have no (or negligible number of ) charge carriers. Recall from Section

2.9 what happens when a conductor is placed in an

external electric field. The free charge carriers move

and charge distribution in the conductor adjusts



itself in such a way that the electric field due to

induced charges opposes the external field within

the conductor. This happens until, in the static

situation, the two fields cancel each other and the

net electrostatic field in the conductor is zero. In a

dielectric, this free movement of charges is not

possible. It turns out that the external field induces

dipole moment by stretching or reorienting

molecules of the dielectric. The collective effect of all

the molecular dipole moments is net charges on the

surface of the dielectric which produce a field that

FIGURE 2.20 Difference in behaviour

of a conductor and a dielectric

opposes the external field. Unlike in a conductor,

in an external electric field.

however, the opposing field so induced does not

exactly cancel the external field. It only reduces it.

The extent of the effect depends on the

nature of the dielectric. To understand the

effect, we need to look at the charge



distribution of a dielectric at the

molecular level.

The molecules of a substance may be

polar or non-polar. In a non-polar

molecule, the centres of positive and

negative charges coincide. The molecule

then has no permanent (or intrinsic) dipole

moment. Examples of non-polar molecules

are oxygen (O ) and hydrogen (H )

2

2

molecules which, because of their

symmetry, have no dipole moment. On the

other hand, a polar molecule is one in which

the centres of positive and negative charges

are separated (even when there is no

FIGURE 2.21

external field). Such molecules have a

Some examples of polar

and non-polar molecules.



permanent dipole moment. An ionic

molecule such as HCl or a molecule of water

(H O) are examples of polar molecules.
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In an external electric field, the

positive and negative charges of a non-polar molecule are displaced in
opposite

directions. The displacement stops when

the external force on the constituent

charges of the molecule is balanced by

the restoring force (due to internal fields

in the molecule). The non-polar molecule

thus develops an induced dipole moment.

The dielectric is said to be polarised by

the external field. We consider only the

simple situation when the induced dipole

moment is in the direction of the field and

is proportional to the field strength.

(Substances for which this assumption



is true are called linear isotropic

dielectrics. ) The induced dipole moments

of different molecules add up giving a net

dipole moment of the dielectric in the

presence of the external field.

A dielectric with polar molecules also

develops a net dipole moment in an

external field, but for a different reason.

FIGURE 2.22 A dielectric develops a net dipole

In the absence of any external field, the

moment in an external electric field. (a) Non-polar

different permanent dipoles are oriented

molecules, (b) Polar molecules.

randomly due to thermal agitation; so

the total dipole moment is zero. When

an external field is applied, the individual dipole moments tend to align

with the field. When summed over all the molecules, there is then a net

dipole moment in the direction of the external field, i.e., the dielectric is

polarised. The extent of polarisation depends on the relative strength of

two mutually opposite factors: the dipole potential energy in the external



field tending to align the dipoles with the field and thermal energy tending

to disrupt the alignment. There may be, in addition, the ‘induced dipole

moment’ effect as for non-polar molecules, but generally the alignment

effect is more important for polar molecules.

Thus in either case, whether polar or non-polar, a dielectric develops

a net dipole moment in the presence of an external field. The dipole

moment per unit volume is called polarisation and is denoted by P. For
linear isotropic dielectrics, P = χ E

(2.37)

e

where χ is a constant characteristic of the dielectric and is known as the

e

electric susceptibility of the dielectric medium.

It is possible to relate χ to the molecular properties of the substance,

e

but we shall not pursue that here.

The question is: how does the polarised dielectric modify the original

external field inside it? Let us consider, for simplicity, a rectangular

dielectric slab placed in a uniform external field E parallel to two of its 72

0

faces. The field causes a uniform polarisation P of the dielectric. Thus
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every volume element ∆ v of the slab has a dipole moment

P ∆ v in the direction of the field. The volume element ∆ v is
macroscopically small but contains a very large number of molecular
dipoles. Anywhere inside the dielectric, the

volume element ∆ v has no net charge (though it has net

dipole moment). This is, because, the positive charge of one

dipole sits close to the negative charge of the adjacent dipole.

However, at the surfaces of the dielectric normal to the

electric field, there is evidently a net charge density. As seen

in Fig 2.23, the positive ends of the dipoles remain

unneutralised at the right surface and the negative ends at

the left surface. The unbalanced charges are the induced

charges due to the external field.

Thus the polarised dielectric is equivalent to two charged

surfaces with induced surface charge densities, say σ p

and –σ . Clearly, the field produced by these surface charges

p



opposes the external field. The total field in the dielectric

FIGURE 2.23 A uniformly

is, thereby, reduced from the case when no dielectric is

polarised dielectric amounts

present. We should note that the surface charge density

to induced surface charge

±σ arises from bound (not free charges) in the dielectric.

density, but no volume

p

charge density.

2.11 CAPACITORS AND CAPACITANCE

A capacitor is a system of two conductors separated by an insulator

(Fig. 2.24). The conductors have charges, say Q and Q , and potentials 1

2

V and V . Usually, in practice, the two conductors have charges Q

1

2

and – Q, with potential difference V = V – V between them. We shall 1

2

consider only this kind of charge configuration of the capacitor. (Even a



single conductor can be used as a capacitor by assuming the other at

infinity.) The conductors may be so charged by connecting them to the

two terminals of a battery. Q is called the charge of the capacitor, though
this, in fact, is the charge on one of the conductors – the total charge of the
capacitor is zero.

The electric field in the region between the

conductors is proportional to the charge Q. That

is, if the charge on the capacitor is, say doubled,

the electric field will also be doubled at every point.

(This follows from the direct proportionality

between field and charge implied by Coulomb’s

law and the superposition principle.) Now,

potential difference V is the work done per unit

positive charge in taking a small test charge from

the conductor 2 to 1 against the field.

FIGURE 2.24 A system of two conductors

Consequently, V is also proportional to Q, and

separated by an insulator forms a capacitor.

the ratio Q/ V is a constant:

Q

C =



(2.38)

V

The constant C is called the capacitance of the capacitor. C is independent
73
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geometrical configuration (shape, size, separation) of the system of two

conductors. [As we shall see later, it also depends on the nature of the

insulator (dielectric) separating the two conductors.] The SI unit of

capacitance is 1 farad (=1 coulomb volt-1) or 1 F = 1 C V–1. A capacitor

with fixed capacitance is symbolically shown as ---||--, while the one with

variable capacitance is shown as

.

Equation (2.38) shows that for large C, V is small for a given Q. This means
a capacitor with large capacitance can hold large amount of charge Q at a
relatively small V. This is of practical importance. High potential difference
implies strong electric field around the conductors. A strong electric field
can ionise the surrounding air and accelerate the charges so

produced to the oppositely charged plates, thereby neutralising the charge

on the capacitor plates, at least partly. In other words, the charge of the

capacitor leaks away due to the reduction in insulating power of the

intervening medium.



The maximum electric field that a dielectric medium can withstand

without breakdown (of its insulating property) is called its dielectric

strength; for air it is about 3 × 106 Vm–1. For a separation between

conductors of the order of 1 cm or so, this field corresponds to a potential

difference of 3 × 104 V between the conductors. Thus, for a capacitor to

store a large amount of charge without leaking, its capacitance should

be high enough so that the potential difference and hence the electric

field do not exceed the breakdown limits. Put differently, there is a limit

to the amount of charge that can be stored on a given capacitor without

significant leaking. In practice, a farad is a very big unit; the most common

units are its sub-multiples 1 µF = 10–6 F, 1 nF = 10–9 F, 1 pF = 10–12 F,

etc. Besides its use in storing charge, a capacitor is a key element of most

ac circuits with important functions, as described in Chapter 7.

2.12 THE PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two large plane parallel conducting

plates separated by a small distance (Fig. 2.25). We first take the

intervening medium between the plates to be

vacuum. The effect of a dielectric medium between

the plates is discussed in the next section. Let A be

the area of each plate and d the separation between



them. The two plates have charges Q and – Q. Since

d is much smaller than the linear dimension of the

plates ( d 2 << A), we can use the result on electric

field by an infinite plane sheet of uniform surface

charge density (Section 1.15). Plate 1 has surface

charge density σ = Q/ A and plate 2 has a surface

charge density –σ. Using Eq. (1.33), the electric field

in different regions is:

Outer region I (region above the plate 1),

FIGURE 2.25 The parallel plate capacitor.

σ

σ

=

−

=
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(2.39)

2ε



2ε

0
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Outer region II (region below the plate 2),

σ

σ

E =

−

= 0

(2.40)

2ε

2ε

0

0

In the inner region between the plates 1 and 2, the electric fields due

to the two charged plates add up, giving

σ

σ



σ

Q

E =

+

=

=

(2.41)

2ε

2ε

ε

ε A

0

0

0

0

The direction of electric field is from the positive to the negative plate.

Thus, the electric field is localised between the two plates and is

uniform throughout. For plates with finite area, this will not be true near

the outer boundaries of the plates. The field lines bend outward at the

edges – an effect called ‘fringing of the field’. By the same token, σ will not
http://micro.magnet.fsa.edu/electromag/java/capacitance/ Interactive Java



tutorial Factors affecting capacitance, capacitors in action be strictly
uniform on the entire plate. [ E and σ are related by Eq. (2.35).]

However, for d 2 << A, these effects can be ignored in the regions
sufficiently far from the edges, and the field there is given by Eq. (2.41).
Now for uniform electric field, potential difference is simply the electric
field times the distance between the plates, that is, 1 Qd

V = E d = ε A

(2.42)

0

The capacitance C of the parallel plate capacitor is then

Q

ε A

C =

=

0

=

(2.43)

V

d

which, as expected, depends only on the geometry of the system. For

typical values like A = 1 m2, d = 1 mm, we get



12

−

2

–1

–2

2

8.85 × 10

C N m

×1m

9

C =

= 8.85 ×10− F

(2.44)

3

10− m

(You can check that if 1F= 1C V–1 = 1C (NC–1m)–1 = 1 C2 N–1m–1.)

This shows that 1F is too big a unit in practice, as remarked earlier.

Another way of seeing the ‘bigness’ of 1F is to calculate the area of the

plates needed to have C = 1F for a separation of, say 1 cm:

Cd



−2

×

A =

=

1F 10 m

9

2

ε

= 10 m

−12

2

–1

–2

0

8.85 ×

(2.45)

10

C N m

which is a plate about 30 km in length and breadth!

2.13 EFFECT OF DIELECTRIC ON CAPACITANCE



With the understanding of the behavior of dielectrics in an external field

developed in Section 2.10, let us see how the capacitance of a parallel

plate capacitor is modified when a dielectric is present. As before, we

have two large plates, each of area A, separated by a distance d. The charge
on the plates is ± Q, corresponding to the charge density ±σ (with σ = Q/ A).
When there is vacuum between the plates, σ

E =

0

75
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and the potential difference V is

0

V = E d

0

0

The capacitance C in this case is

0

Q

A

C =



= ε

0

0

V

d

(2.46)

0

Consider next a dielectric inserted between the plates fully occupying

the intervening region. The dielectric is polarised by the field and, as

explained in Section 2.10, the effect is equivalent to two charged sheets

(at the surfaces of the dielectric normal to the field) with surface charge

densities σ and –σ . The electric field in the dielectric then corresponds

p

p

to the case when the net surface charge density on the plates is ±(σ – σ ).

p

That is,

σ − σ P

E =

ε



(2.47)

0

so that the potential difference across the plates is

σ − σ P

V = E d =

d

ε

(2.48)

0

For linear dielectrics, we expect σ to be proportional to E , i.e., to σ.

p

0

Thus, (σ – σ ) is proportional to σ and we can write

p

σ

σ − σ =

P

(2.49)

K

where K is a constant characteristic of the dielectric. Clearly, K > 1. We then
have



σ d

Qd

V =

=

ε K

Aε K

(2.50)

0

0

The capacitance C, with dielectric between the plates, is then

Q

ε KA

0

C =

=

(2.51)

V

d

The product ε K is called the permittivity of the medium and is 0

denoted by ε



ε = ε K

(2.52)

0

For vacuum K = 1 and ε = ε ; ε is called the permittivity of the vacuum.

0

0

The dimensionless ratio

ε

K = ε

(2.53)

0

is called the dielectric constant of the substance. As remarked before, from
Eq. (2.49), it is clear that K is greater than 1. From Eqs. (2.46) and (2. 51) C

K = C

(2.54)

0

Thus, the dielectric constant of a substance is the factor (>1) by which

the capacitance increases from its vacuum value, when the dielectric is
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inserted fully between the plates of a capacitor. Though we arrived at
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Eq. (2.54) for the case of a parallel plate capacitor, it holds good for any

type of capacitor and can, in fact, be viewed in general as a definition of

the dielectric constant of a substance.

ELECTRIC DISPLACEMENT

We have introduced the notion of dielectric constant and arrived at Eq.
(2.54), without giving the explicit relation between the induced charge
density σ and the polarisation P.

p

We take without proof the result that

σ = PC ˆn

P

where ˆ

n is a unit vector along the outward normal to the surface. Above equation
is general, true for any shape of the dielectric. For the slab in Fig. 2.23, P is
along ˆ

n at the

right surface and opposite to ˆ

n at the left surface. Thus at the right surface, induced

charge density is positive and at the left surface, it is negative, as guessed
already in our qualitative discussion before. Putting the equation for electric
field in vector form σ − C ˆ

C ˆ =



P n

E n

ε0

or (ε E + P) C ˆ

n =σ

0

The quantity ε E + P is called the electric displacement and is denoted by
D. It is a 0

vector quantity. Thus,

D = ε E + P, D C ˆ

n = σ,

0

The significance of D is this : in vacuum, E is related to the free charge
density σ.

When a dielectric medium is present, the corresponding role is taken up by
D. For a dielectric medium, it is D not E that is directly related to free
charge density σ, as seen in above equation. Since P is in the same direction
as E, all the three vectors P, E and D are parallel.

The ratio of the magnitudes of D and E is

D

σε0

=



= ε K

0

E

σ − σ P

Thus,

D = ε K E

0

and P = D –ε E = ε ( K –1)E

0

0

This gives for the electric susceptibility χ defined in Eq. (2.37)

e

χ =ε ( K–1)

e

0

Example 2.8 A slab of material of dielectric constant K has the same area as
the plates of a parallel-plate capacitor but has a thickness (3/4) d, where d is
the separation of the plates. How is the capacitance E

XAMPLE

changed when the slab is inserted between the plates?

Solution Let E = V / d be the electric field between the plates when 0



0

there is no dielectric and the potential difference is V . If the dielectric 0

2.8

is now inserted, the electric field in the dielectric will be E = E / K.

0

The potential difference will then be
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1

E

3

0

V = E ( d ) +

( d )

0 4

K 4

1

3

K + 3

= E d( +



) = V

0

0

4

4 K

4 K

The potential difference decreases by the factor ( K + 3)/4 K while the 2.8

free charge Q on the plates remains unchanged. The capacitance

0

thus increases

XAMPLE

Q

4 K Q

4 K

0

0

C =

=

=

C



E

0

V

K + 3 V

K + 3

0

2.14 COMBINATION OF CAPACITORS

We can combine several capacitors of capacitance C , C ,…, C to obtain 1

2

n

a system with some effective capacitance C. The effective capacitance

depends on the way the individual capacitors are combined. Two simple

possibilities are discussed below.

2.14.1 Capacitors in series

Figure 2.26 shows capacitors C and C combined in series.

1

2

The left plate of C and the right plate of C are connected to two 1

2

terminals of a battery and have charges Q and – Q ,



respectively. It then follows that the right plate of C

 

1

has charge – Q and the left plate of C has charge Q.

2

If this was not so, the net charge on each capacitor

would not be zero. This would result in an electric

field in the conductor connecting C and C . Charge

1

2

would flow until the net charge on both C and C

1

2

is zero and there is no electric field in the conductor

connecting C and C . Thus, in the series

1

2

combination, charges on the two plates (± Q) are the

same on each capacitor. The total potential drop V

across the combination is the sum of the potential



drops V and V across C and C , respectively.

1

2

1

2

FIGURE 2.26 Combination of two

Q

Q

capacitors in series.

V = V + V =

+

(2.55)

1

2

C

C

1

2

V

1



1

i.e.,

=

+

Q

C

C ,

(2.56)

1

2

Now we can regard the combination as an

effective capacitor with charge Q and potential

difference V. The effective capacitance of the

combination is

Q

C =

(2.57)

V

We compare Eq. (2.57) with Eq. (2.56), and

obtain



FIGURE 2.27 Combination of n

capacitors in series.

1

1

1
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=

+

C

C

C

(2.58)

1

2
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The proof clearly goes through for any number of

capacitors arranged in a similar way. Equation (2.55),

for n capacitors arranged in series, generalises to

Q



Q

Q

V = V + V + ... + V =

+

+ ... +

1

2

n

C

C

C

(2.59)

1

2

n

Following the same steps as for the case of two

capacitors, we get the general formula for effective

capacitance of a series combination of n capacitors:

1

1



1

1

1

=

+

+

+ ... +

C

C

C

C

C

(2.60)

1

2

3

n

2.14.2 Capacitors in parallel

Figure 2.28 (a) shows two capacitors arranged in

parallel. In this case, the same potential difference is



applied across both the capacitors. But the plate charges

(± Q ) on capacitor 1 and the plate charges (± Q ) on the

1

2

capacitor 2 are not necessarily the same:

Q = C V, Q = C V

(2.61)

1

1

2

2

The equivalent capacitor is one with charge

Q = Q + Q

(2.62)

1

2

and potential difference V.

Q = CV = C V + C V

(2.63)

1



2

The effective capacitance C is, from Eq. (2.63),

C = C + C

(2.64)

1

2

The general formula for effective capacitance C for

parallel combination of n capacitors [Fig. 2.28 (b)]

FIGURE 2.28 Parallel combination of

follows similarly,

(a) two capacitors, (b) n capacitors.

Q = Q + Q + ... + Q

(2.65)

1

2

n

i.e., CV = C V + C V + ... C V

(2.66)

1

2



n

which gives

C = C + C + ... C

(2.67)

1

2

n

Example 2.9 A network of four 10 µF capacitors is connected to a 500 V

supply, as shown in Fig. 2.29. Determine (a) the equivalent capacitance

of the network and (b) the charge on each capacitor. (Note, the charge

on a capacitor is the charge on the plate with higher potential, equal

and opposite to the charge on the plate with lower potential.)

E

XAMPLE

2.9

FIGURE 2.29
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Solution

(a) In the given network, C , C and C are connected in series. The 1



2

3

effective capacitance C′ of these three capacitors is given by

1

1

1

1

=

+

+

C′

C

C

C

1

2

3

For C = C = C = 10 µF, C′ = (10/3) µF. The network has C′ and C

1

2



3

4

connected in parallel. Thus, the equivalent capacitance C of the

network is

10



C = C′ + C = 

+10

4



 3

 µF =13.3µF

(b) Clearly, from the figure, the charge on each of the capacitors, C , 1

C and C is the same, say Q. Let the charge on C be Q′. Now, since 2

3

4

the potential difference across AB is Q/ C , across BC is Q/ C , across 1

2

CD is Q/ C , we have

3



Q

Q

Q

+

+

= 500 V .

C

C

C

1

2

3

Also, Q′/ C = 500 V.

4

2.9

This gives for the given value of the capacitances,

10

−3

Q = 500 V ×

µF = 1.7 × 10 C and



3

XAMPLE

3

−

′ =

×

µ =

×

E

Q

500 V

10 F

5.0 10

C

2.15 ENERGY STORED IN A CAPACITOR

A capacitor, as we have seen above, is a system of two conductors with

charge Q and – Q. To determine the energy stored in this configuration,
consider initially two uncharged conductors 1 and 2. Imagine next a process
of transferring charge from conductor 2 to conductor 1 bit by

bit, so that at the end, conductor 1 gets charge Q. By

charge conservation, conductor 2 has charge – Q at



the end (Fig 2.30 ).

In transferring positive charge from conductor 2

to conductor 1, work will be done externally, since at

any stage conductor 1 is at a higher potential than

conductor 2. To calculate the total work done, we first

calculate the work done in a small step involving

transfer of an infinitesimal (i.e., vanishingly small)

amount of charge. Consider the intermediate situation

when the conductors 1 and 2 have charges Q′ and

– Q′ respectively. At this stage, the potential difference

FIGURE 2.30 (a) Work done in a small

V′ between conductors 1 to 2 is Q′/ C, where C is the step of building
charge on conductor 1

capacitance of the system. Next imagine that a small

from Q′ to Q′ + δ Q′. (b) Total work done

charge δ Q′ is transferred from conductor 2 to 1. Work

in charging the capacitor may be

done in this step (δ W′ ), resulting in charge Q′ on

viewed as stored in the energy of

conductor 1 increasing to Q′+ δ Q′, is given by

electric field between the plates.



Q ′

80

δ W = V ′δ Q′ =

δ Q′

(2.68)

C
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Since δ Q′ can be made as small as we like, Eq. (2.68) can be written as 1

2

2

δ W =

[( Q ′ + δ Q ′) − Q ′ ]

(2.69)

2 C

Equations (2.68) and (2.69) are identical because the term of second

order in δ Q′, i.e., δ Q′ 2/2 C, is negligible, since δ Q′ is arbitrarily small.
The total work done ( W) is the sum of the small work (δ W) over the very
large number of steps involved in building the charge Q′ from zero to Q.

W =

∑



δ W

sum over all steps

1

2

2

=

[( Q

∑

′ + δ Q′) − Q′ ]

2 C

(2.70)

sum over all steps

1

2

2

2

=

[{δ Q ′ − 0} + {(2δ Q ′) − δ Q ′ }

2

2



+{(3δ Q′) − (2δ Q′) } + ...

2 C

 

2

2

+ { Q − ( Q − δ Q) }]

(2.71)

2

1

Q

 

2

=

[ Q − 0]=

(2.72)

2 C

2 C

The same result can be obtained directly from Eq. (2.68) by integration

Q

2 Q



2

Q ′

1 Q ′

Q

W =

δ Q ' =

=

∫ C

C 2

2 C

0

0

This is not surprising since integration is nothing but summation of

a large number of small terms.

We can write the final result, Eq. (2.72) in different ways

2

Q

1

1

2



W =

= CV = QV

(2.73)

2 C

2

2

Since electrostatic force is conservative, this work is stored in the form

of potential energy of the system. For the same reason, the final result for

potential energy [Eq. (2.73)] is independent of the manner in which the

charge configuration of the capacitor is built up. When the capacitor

discharges, this stored-up energy is released. It is possible to view the

potential energy of the capacitor as ‘stored’ in the electric field between

the plates. To see this, consider for simplicity, a parallel plate capacitor

[of area A(of each plate) and separation d between the plates].

Energy stored in the capacitor

2

2

1 Q

( Aσ )



d

=

=

×

(2.74)

2 C

2

ε A

0

The surface charge density σ is related to the electric field E between the
plates,

σ

E = ε

(2.75)

0

From Eqs. (2.74) and (2.75) , we get

Energy stored in the capacitor
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U = (1/2)

2

ε E × A d



(2.76)

0

Physics

Note that Ad is the volume of the region between the plates (where

electric field alone exists). If we define energy density as energy stored

per unit volume of space, Eq (2.76) shows that

Energy density of electric field,

u =(1/2)ε E 2

(2.77)

0

Though we derived Eq. (2.77) for the case of a parallel plate capacitor,

the result on energy density of an electric field is, in fact, very general and
holds true for electric field due to any configuration of charges.

Example 2.10 (a) A 900 pF capacitor is charged by 100 V battery

[Fig. 2.31(a)]. How much electrostatic energy is stored by the capacitor?

(b) The capacitor is disconnected from the battery and connected to

another 900 pF capacitor [Fig. 2.31(b)]. What is the electrostatic energy
stored by the system?

FIGURE 2.31

Solution

(a) The charge on the capacitor is



Q = CV = 900 × 10–12 F × 100 V = 9 × 10–8 C

The energy stored by the capacitor is

= (1/2) CV 2 = (1/2) QV

= (1/2) × 9 × 10–8C × 100 V = 4.5 × 10–6 J

(b) In the steady situation, the two capacitors have their positive

plates at the same potential, and their negative plates at the

same potential. Let the common potential difference be V′. The

charge on each capacitor is then Q′ = CV′. By charge conservation, Q′ =
Q/2. This implies V′ = V/2. The total energy of the system is 1

1

6

2

Q ' V '

QV

2.25 10−

= ×

=

=

×

J

2



4

Thus in going from (a) to (b), though no charge is lost; the final

energy is only half the initial energy. Where has the remaining

2.10

energy gone?

There is a transient period before the system settles to the

situation (b). During this period, a transient current flows from

XAMPLE

the first capacitor to the second. Energy is lost during this time
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E

in the form of heat and electromagnetic radiation.
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2.16 VAN DE GRAAFF GENERATOR

This is a machine that can build up high voltages of the order of a few

million volts. The resulting large electric fields are used to accelerate

charged particles (electrons, protons, ions) to high energies needed for

experiments to probe the small scale structure of matter. The principle

underlying the machine is as follows.



http://www.coe.ufrj.br/~acmg/myvdg.html
http://amasce.com/emotor/vdg.html V

Suppose we have a large spherical conducting shell of radius R, on

an de Graaff generator

which we place a charge Q. This charge spreads itself uniformly all over the
sphere. As we have seen in Section 1.14, the field outside the sphere is just
that of a point charge Q at the centre; while the field inside the sphere
vanishes. So the potential outside is that of a point charge; and inside it is
constant, namely the value at the radius R. We thus have:

Potential inside conducting spherical shell of radius R carrying charge Q

= constant

1

Q

, principle and demonstration:

=

(2.78)

4 ε

π R

0

Now, as shown in Fig. 2.32, let us suppose that in some way we

introduce a small sphere of radius r, carrying some charge q, into the large
one, and place it at the centre. The potential due to this new charge clearly
has the following values at the radii indicated:



Potential due to small sphere of radius r carrying charge q

1

q

=

at surface of small sphere

4 ε

π r

0

1

q

=

at large shell of radius R.

(2.79)

4 ε

π R

0

Taking both charges q and Q into account we have for the total

potential V and the potential difference the values

1

 Q q 



V ( R) =



+ 

4 ε

π  R R

0

1

 Q q

V ( r ) =



+ 

4πε  R

r 

0

q

1 1 

V ( r ) – V ( R ) =

–







(2.80)

4 ε

π  r

R 

0

Assume now that q is positive. We see that,

independent of the amount of charge Q that may have

accumulated on the larger sphere and even if it is

positive, the inner sphere is always at a higher

potential: the difference V ( r )– V ( R) is positive. The potential due to Q is
constant upto radius R and so FIGURE 2.32 Illustrating the principle

cancels out in the difference!

of the electrostatic generator.

This means that if we now connect the smaller and
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larger sphere by a wire, the charge q on the former
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will immediately flow onto the matter, even

though the charge Q may be quite large. The

natural tendency is for positive charge to

move from higher to lower potential. Thus,



provided we are somehow able to introduce

the small charged sphere into the larger one,

we can in this way keep piling up larger and

larger amount of charge on the latter. The

potential (Eq. 2.78) at the outer sphere would

also keep rising, at least until we reach the

breakdown field of air.

This is the principle of the van de Graaff

generator. It is a machine capable of building

up potential difference of a few million volts,

and fields close to the breakdown field of air

which is about 3 × 106 V/m. A schematic

diagram of the van de Graaff generator is given

in Fig. 2.33. A large spherical conducting

FIGURE 2.33 Principle of construction

shell (of few metres radius) is supported at a

of Van de Graaff generator.

height several meters above the ground on

an insulating column. A long narrow endless

belt insulating material, like rubber or silk, is wound around two pulleys –



one at ground level, one at the centre of the shell. This belt is kept

continuously moving by a motor driving the lower pulley. It continuously

carries positive charge, sprayed on to it by a brush at ground level, to the

top. There it transfers its positive charge to another conducting brush

connected to the large shell. Thus positive charge is transferred to the

shell, where it spreads out uniformly on the outer surface. In this way,

voltage differences of as much as 6 or 8 million volts (with respect to

ground) can be built up.

SUMMARY

1.

Electrostatic force is a conservative force. Work done by an external

force (equal and opposite to the electrostatic force) in bringing a charge

q from a point R to a point P is V – V , which is the difference in P

R

potential energy of charge q between the final and initial points.

2.

Potential at a point is the work done per unit charge (by an external

agency) in bringing a charge from infinity to that point. Potential at a

point is arbitrary to within an additive constant, since it is the potential

difference between two points which is physically significant. If potential



at infinity is chosen to be zero; potential at a point with position vector

r due to a point charge Q placed at the origin is given is given by 1

Q

V (r) = 4πε r

o

3.

The electrostatic potential at a point with position vector r due to a

point dipole of dipole moment p placed at the origin is

1

pCˆr

V (r) =

2
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4 ε

π

r

o
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The result is true also for a dipole (with charges – q and q separated by 2 a)
for r >> a.



4.

For a charge configuration q , q , ..., q with position vectors r , 1

2

n

1

r , ... r , the potential at a point P is given by the superposition principle 2

n

1

q

q

q

1

2

V =

(

+

+ ...

n

+

)



4 ε

π

r

r

r

0

1P

2P

P

n

where r is the distance between q and P, as and so on.

1P

1

5.

An equipotential surface is a surface over which potential has a constant

value. For a point charge, concentric spheres centered at a location of

the charge are equipotential surfaces. The electric field E at a point is
perpendicular to the equipotential surface through the point. E is in the
direction of the steepest decrease of potential.

6.

Potential energy stored in a system of charges is the work done (by an



external agency) in assembling the charges at their locations. Potential

energy of two charges q , q at r , r is given by 1

2

1

2

1

q q

1

2

U = 4πε r

0

12

where r is distance between q and q .

12

1

2

7.

The potential energy of a charge q in an external potential V(r) is qV(r).

The potential energy of a dipole moment p in a uniform electric field E

is –p.E.



8. Electrostatics field E is zero in the interior of a conductor; just outside
the surface of a charged conductor, E is normal to the surface given by σ

E =

ˆ

ε n where ˆn is the unit vector along the outward normal to the 0

surface and σ is the surface charge density. Charges in a conductor can

reside only at its surface. Potential is constant within and on the surface

of a conductor. In a cavity within a conductor (with no charges), the

electric field is zero.

9.

A capacitor is a system of two conductors separated by an insulator. Its

capacitance is defined by C = Q/V, where Q and –Q are the charges on the
two conductors and V is the potential difference between them. C is
determined purely geometrically, by the shapes, sizes and relative positions
of the two conductors. The unit of capacitance is farad:,

1 F = 1 C V –1. For a parallel plate capacitor (with vacuum between the

plates),

A

C = ε0 d

where A is the area of each plate and d the separation between them.

10. If the medium between the plates of a capacitor is filled with an
insulating substance (dielectric), the electric field due to the charged plates



induces a net dipole moment in the dielectric. This effect, called
polarisation,

gives rise to a field in the opposite direction. The net electric field inside

the dielectric and hence the potential difference between the plates is

thus reduced. Consequently, the capacitance C increases from its value

C when there is no medium (vacuum),

0

C = KC 0

where K is the dielectric constant of the insulating substance.
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11. For capacitors in the series combination, the total capacitance C is given
by 1

1

1

1

=

+

+

+ ...

C



C

C

C

1

2

3

In the parallel combination, the total capacitance C is:

C = C + C + C + ...

1

2

3

where C , C , C ... are individual capacitances.

1

2

3

12. The energy U stored in a capacitor of capacitance C, with charge Q and
voltage V is 2

1

1

Q

2



1

U =

QV =

CV

=

2

2

2 C

The electric energy density (energy per unit volume) in a region with

electric field is (1/2)ε E2.

0

13. A Van de Graaff generator consists of a large spherical conducting shell

(a few metre in diameter). By means of a moving belt and suitable brushes,

charge is continuously transferred to the shell and potential difference

of the order of several million volts is built up, which can be used for

accelerating charged particles.

Physical quantity

Symbol

Dimensions

Unit



Remark

Potential

φ or V

[M1 L2 T–3 A–1]

V

Potential difference is

physically significant

Capacitance

C

[M–1 L–2 T–4 A2]

F

Polarisation

P

[L–2 AT]

C m-2

Dipole moment per unit



volume

Dielectric constant

K

[Dimensionless]

POINTS TO PONDER

1.

Electrostatics deals with forces between charges at rest. But if there is a

force on a charge, how can it be at rest? Thus, when we are talking of

electrostatic force between charges, it should be understood that each

charge is being kept at rest by some unspecified force that opposes the

net Coulomb force on the charge.

2.

A capacitor is so configured that it confines the electric field lines within

a small region of space. Thus, even though field may have considerable

strength, the potential difference between the two conductors of a

capacitor is small.

3.

Electric field is discontinuous across the surface of a spherical charged

σ



shell. It is zero inside and

ˆ

ε n outside. Electric potential is, however

0

continuous across the surface, equal to q/4πε R at the surface.

0

4.

The torque p × E on a dipole causes it to oscillate about E. Only if there is a
dissipative mechanism, the oscillations are damped and the dipole 86

eventually aligns with E.

Electrostatic Potential

and Capacitance

5.

Potential due to a charge q at its own location is not defined – it is

infinite.

6.

In the expression qV (r) for potential energy of a charge q, V (r) is the
potential due to external charges and not the potential due to q. As seen in
point 5, this expression will be ill-defined if V (r) includes potential due to a
charge q itself.

7.

A cavity inside a conductor is shielded from outside electrical influences.



It is worth noting that electrostatic shielding does not work the other

way round; that is, if you put charges inside the cavity, the exterior of

the conductor is not shielded from the fields by the inside charges.

EXERCISES

2.1

Two charges 5 × 10–8 C and –3 × 10–8 C are located 16 cm apart. At

what point(s) on the line joining the two charges is the electric

potential zero? Take the potential at infinity to be zero.

2.2

A regular hexagon of side 10 cm has a charge 5 µC at each of its

vertices. Calculate the potential at the centre of the hexagon.

2.3

Two charges 2 µC and –2 µC are placed at points A and B 6 cm

apart.

(a)

Identify an equipotential surface of the system.

(b)

What is the direction of the electric field at every point on this

surface?

2.4



A spherical conductor of radius 12 cm has a charge of 1.6 × 10–7C

distributed uniformly on its surface. What is the electric field

(a)

inside the sphere

(b)

just outside the sphere

(c)

at a point 18 cm from the centre of the sphere?

2.5

A parallel plate capacitor with air between the plates has a

capacitance of 8 pF (1pF = 10–12 F). What will be the capacitance if

the distance between the plates is reduced by half, and the space

between them is filled with a substance of dielectric constant 6?

2.6

Three capacitors each of capacitance 9 pF are connected in series.

(a)

What is the total capacitance of the combination?

(b)

What is the potential difference across each capacitor if the

combination is connected to a 120 V supply?



2.7

Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected

in parallel.

(a)

What is the total capacitance of the combination?

(b)

Determine the charge on each capacitor if the combination is

connected to a 100 V supply.

2.8

In a parallel plate capacitor with air between the plates, each plate

has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm.

Calculate the capacitance of the capacitor. If this capacitor is

connected to a 100 V supply, what is the charge on each plate of
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the capacitor?
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2.9

Explain what would happen if in the capacitor given in Exercise

2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted

between the plates,



(a)

while the voltage supply remained connected.

(b)

after the supply was disconnected.

2.10

A 12pF capacitor is connected to a 50V battery. How much

electrostatic energy is stored in the capacitor?

2.11

A 600pF capacitor is charged by a 200V supply. It is then

disconnected from the supply and is connected to another

uncharged 600 pF capacitor. How much electrostatic energy is lost

in the process?

ADDITIONAL EXERCISES

2.12

A charge of 8 mC is located at the origin. Calculate the work done in

taking a small charge of –2 × 10–9 C from a point P (0, 0, 3 cm) to a

point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

2.13

A cube of side b has a charge q at each of its vertices. Determine the
potential and electric field due to this charge array at the centre of the cube.

2.14



Two tiny spheres carrying charges 1.5 µC and 2.5 µC are located 30 cm

apart. Find the potential and electric field:

(a)

at the midpoint of the line joining the two charges, and

(b)

at a point 10 cm from this midpoint in a plane normal to the

line and passing through the midpoint.

2.15

A spherical conducting shell of inner radius r and outer radius r

1

2

has a charge Q.

(a)

A charge q is placed at the centre of the shell. What is the

surface charge density on the inner and outer surfaces of the

shell?

(b)

Is the electric field inside a cavity (with no charge) zero, even if

the shell is not spherical, but has any irregular shape? Explain.

2.16



(a)

Show that the normal component of electrostatic field has a

discontinuity from one side of a charged surface to another

given by

σ

(E − E )C ˆ

n =

2

1

ε0

where ˆ

n is a unit vector normal to the surface at a point and

σ is the surface charge density at that point. (The direction of

ˆ

n is from side 1 to side 2.) Hence show that just outside a

conductor, the electric field is σ ˆ

n /ε .

0

(b)

Show that the tangential component of electrostatic field is



continuous from one side of a charged surface to another. [Hint:

For (a), use Gauss’s law. For, (b) use the fact that work done by

electrostatic field on a closed loop is zero.]

2.17

A long charged cylinder of linear charged density λ is surrounded

by a hollow co-axial conducting cylinder. What is the electric field in

the space between the two cylinders?

2.18

In a hydrogen atom, the electron and proton are bound at a distance
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of about 0.53 Å:
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(a)

Estimate the potential energy of the system in eV, taking the

zero of the potential energy at infinite separation of the electron

from proton.

(b)

What is the minimum work required to free the electron, given

that its kinetic energy in the orbit is half the magnitude of



potential energy obtained in (a)?

(c)

What are the answers to (a) and (b) above if the zero of potential

energy is taken at 1.06 Å separation?

2.19

If one of the two electrons of a H molecule is removed, we get a

2

hydrogen molecular ion H+. In the ground state of an H+, the two

2

2

protons are separated by roughly 1.5 Å, and the electron is roughly

1 Å from each proton. Determine the potential energy of the system.

Specify your choice of the zero of potential energy.

2.20

Two charged conducting spheres of radii a and b are connected to each
other by a wire. What is the ratio of electric fields at the surfaces of the two
spheres? Use the result obtained to explain why charge

density on the sharp and pointed ends of a conductor is higher

than on its flatter portions.

2.21



Two charges –q and +q are located at points (0, 0, – a) and (0, 0, a),
respectively.

(a)

What is the electrostatic potential at the points (0, 0, z) and

( x, y, 0) ?

(b)

Obtain the dependence of potential on the distance r of a point

from the origin when r/ a >> 1.

(c)

How much work is done in moving a small test charge from the

point (5,0,0) to (–7,0,0) along the x-axis? Does the answer

change if the path of the test charge between the same points

is not along the x-axis?

2.22

Figure 2.34 shows a charge array known as an electric quadrupole.

For a point on the axis of the quadrupole, obtain the dependence

of potential on r for r/ a >> 1, and contrast your results with that due to an
electric dipole, and an electric monopole (i.e., a single charge).

FIGURE 2.34

2.23

An electrical technician requires a capacitance of 2 µF in a circuit



across a potential difference of 1 kV. A large number of 1 µF capacitors

are available to him each of which can withstand a potential

difference of not more than 400 V. Suggest a possible arrangement

that requires the minimum number of capacitors.

2.24

What is the area of the plates of a 2 F parallel plate capacitor, given

that the separation between the plates is 0.5 cm? [You will realise

from your answer why ordinary capacitors are in the range of µF or

less. However, electrolytic capacitors do have a much larger

capacitance (0.1 F) because of very minute separation between the
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2.25

Obtain the equivalent capacitance of the network in Fig. 2.35. For a

300 V supply, determine the charge and voltage across each capacitor.

FIGURE 2.35

2.26

The plates of a parallel plate capacitor have an area of 90 cm2 each

and are separated by 2.5 mm. The capacitor is charged by connecting



it to a 400 V supply.

(a)

How much electrostatic energy is stored by the capacitor?

(b)

View this energy as stored in the electrostatic field between

the plates, and obtain the energy per unit volume u. Hence

arrive at a relation between u and the magnitude of electric

field E between the plates.

2.27

A 4 µF capacitor is charged by a 200 V supply. It is then disconnected

from the supply, and is connected to another uncharged 2 µF

capacitor. How much electrostatic energy of the first capacitor is

lost in the form of heat and electromagnetic radiation?

2.28

Show that the force on each plate of a parallel plate capacitor has a

magnitude equal to (½) QE, where Q is the charge on the capacitor, and E is
the magnitude of electric field between the plates. Explain the origin of the
factor ½.

2.29

A spherical capacitor consists of two concentric spherical conductors,

held in position by suitable insulating supports (Fig. 2.36). Show
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FIGURE 2.36
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that the capacitance of a spherical capacitor is given by

4 ε

π r r

0 1 2

C = r – r

1

2

where r

and r are the radii of outer and inner spheres,

1

2

respectively.

2.30

A spherical capacitor has an inner sphere of radius 12 cm and an

outer sphere of radius 13 cm. The outer sphere is earthed and the

inner sphere is given a charge of 2.5 µC. The space between the



concentric spheres is filled with a liquid of dielectric constant 32.

(a)

Determine the capacitance of the capacitor.

(b)

What is the potential of the inner sphere?

(c)

Compare the capacitance of this capacitor with that of an

isolated sphere of radius 12 cm. Explain why the latter is much

smaller.

2.31

Answer carefully:

(a)

Two large conducting spheres carrying charges Q and Q are

1

2

brought close to each other. Is the magnitude of electrostatic

force between them exactly given by Q Q /4πε r 2, where r is 1

2

0

the distance between their centres?



(b)

If Coulomb’s law involved 1/ r 3 dependence (instead of 1/ r 2),

would Gauss’s law be still true ?

(c)

A small test charge is released at rest at a point in an

electrostatic field configuration. Will it travel along the field

line passing through that point?

(d)

What is the work done by the field of a nucleus in a complete

circular orbit of the electron? What if the orbit is elliptical?

(e)

We know that electric field is discontinuous across the surface

of a charged conductor. Is electric potential also discontinuous

there?

(f )

What meaning would you give to the capacitance of a single

conductor?

(g)

Guess a possible reason why water has a much greater

dielectric constant (= 80) than say, mica (= 6).



2.32

A cylindrical capacitor has two co-axial cylinders of length 15 cm

and radii 1.5 cm and 1.4 cm. The outer cylinder is earthed and the

inner cylinder is given a charge of 3.5 µC. Determine the capacitance

of the system and the potential of the inner cylinder. Neglect end

effects (i.e., bending of field lines at the ends).

2.33

A parallel plate capacitor is to be designed with a voltage rating

1 kV, using a material of dielectric constant 3 and dielectric strength

about 107 Vm–1. (Dielectric strength is the maximum electric field a

material can tolerate without breakdown, i.e., without starting to

conduct electricity through partial ionisation.) For safety, we should

like the field never to exceed, say 10% of the dielectric strength.

What minimum area of the plates is required to have a capacitance

of 50 pF?

2.34

Describe schematically the equipotential surfaces corresponding to

(a)

a constant electric field in the z-direction,

(b)



a field that uniformly increases in magnitude but remains in a

91

constant (say, z) direction,
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(c)

a single positive charge at the origin, and

(d)

a uniform grid consisting of long equally spaced parallel charged

wires in a plane.

2.35

In a Van de Graaff type generator a spherical metal shell is to be a

15 × 106 V electrode. The dielectric strength of the gas surrounding

the electrode is 5 × 107 Vm–1. What is the minimum radius of the

spherical shell required? (You will learn from this exercise why one

cannot build an electrostatic generator using a very small shell

which requires a small charge to acquire a high potential.)

2.36

A small sphere of radius r and charge q is enclosed by a spherical 1

1

shell of radius r and charge q . Show that if q is positive, charge 2



2

1

will necessarily flow from the sphere to the shell (when the two are

connected by a wire) no matter what the charge q on the shell is.

2

2.37

Answer the following:

(a)

The top of the atmosphere is at about 400 kV with respect to

the surface of the earth, corresponding to an electric field that

decreases with altitude. Near the surface of the earth, the field

is about 100 Vm–1. Why then do we not get an electric shock as

we step out of our house into the open? (Assume the house to

be a steel cage so there is no field inside!)

(b)

A man fixes outside his house one evening a two metre high

insulating slab carrying on its top a large aluminium sheet of

area 1m2. Will he get an electric shock if he touches the metal

sheet next morning?

(c)



The discharging current in the atmosphere due to the small

conductivity of air is known to be 1800 A on an average over

the globe. Why then does the atmosphere not discharge itself

completely in due course and become electrically neutral? In

other words, what keeps the atmosphere charged?

(d)

What are the forms of energy into which the electrical energy

of the atmosphere is dissipated during a lightning?

(Hint: The earth has an electric field of about 100 Vm–1 at its

surface in the downward direction, corresponding to a surface

charge density = –10–9 C m–2. Due to the slight conductivity of

the atmosphere up to about 50 km (beyond which it is good

conductor), about + 1800 C is pumped every second into the

earth as a whole. The earth, however, does not get discharged

since thunderstorms and lightning occurring continually all

over the globe pump an equal amount of negative charge on

the earth.)
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Chapter Three

CURRENT



ELECTRICITY

3.1 INTRODUCTION

In Chapter 1, all charges whether free or bound, were considered to be at

rest. Charges in motion constitute an electric current. Such currents occur

naturally in many situations. Lightning is one such phenomenon in

which charges flow from the clouds to the earth through the atmosphere,

sometimes with disastrous results. The flow of charges in lightning is not

steady, but in our everyday life we see many devices where charges flow

in a steady manner, like water flowing smoothly in a river. A torch and a

cell-driven clock are examples of such devices. In the present chapter, we

shall study some of the basic laws concerning steady electric currents.

3.2 ELECTRIC CURRENT

Imagine a small area held normal to the direction of flow of charges. Both

the positive and the negative charges may flow forward and backward

across the area. In a given time interval t, let q be the net amount ( i.e.,

+

forward minus backward) of positive charge that flows in the forward
direction across the area. Similarly, let q be the net amount of negative –
charge flowing across the area in the forward direction. The net amount

of charge flowing across the area in the forward direction in the time



interval t, then, is q = q – q . This is proportional to t for steady current +

–

Physics

and the quotient

q

I =

(3.1)

t

is defined to be the current across the area in the forward direction. (If it
turn out to be a negative number, it implies a current in the backward
direction.)

Currents are not always steady and hence more generally, we define

the current as follows. Let ∆ Q be the net charge flowing across a cross-
section of a conductor during the time interval ∆ t [i.e., between times t and
( t + ∆ t)]. Then, the current at time t across the cross-section of the
conductor is defined as the value of the ratio of ∆ Q to ∆ t in the limit of ∆ t
tending to zero, ( )

∆ Q

I t ≡ lim

t

∆ →0 ∆

(3.2)

t



In SI units, the unit of current is ampere. An ampere is defined

through magnetic effects of currents that we will study in the following

chapter. An ampere is typically the order of magnitude of currents in

domestic appliances. An average lightning carries currents of the order

of tens of thousands of amperes and at the other extreme, currents in

our nerves are in microamperes.

3.3 ELECTRIC CURRENTS IN CONDUCTORS

An electric charge will experience a force if an electric field is applied. If it
is free to move, it will thus move contributing to a current. In nature, free
charged particles do exist like in upper strata of atmosphere called the

ionosphere. However, in atoms and molecules, the negatively charged

electrons and the positively charged nuclei are bound to each other and

are thus not free to move. Bulk matter is made up of many molecules, a

gram of water, for example, contains approximately 1022 molecules. These

molecules are so closely packed that the electrons are no longer attached

to individual nuclei. In some materials, the electrons will still be bound,

i.e., they will not accelerate even if an electric field is applied. In other

materials, notably metals, some of the electrons are practically free to move

within the bulk material. These materials, generally called conductors,

develop electric currents in them when an electric field is applied.

If we consider solid conductors, then of course the atoms are tightly



bound to each other so that the current is carried by the negatively

charged electrons. There are, however, other types of conductors like

electrolytic solutions where positive and negative charges both can move.

In our discussions, we will focus only on solid conductors so that the

current is carried by the negatively charged electrons in the background

of fixed positive ions.

Consider first the case when no electric field is present. The electrons

will be moving due to thermal motion during which they collide with the

fixed ions. An electron colliding with an ion emerges with the same speed

as before the collision. However, the direction of its velocity after the

collision is completely random. At a given time, there is no preferential
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direction for the velocities of the electrons. Thus on the average, the
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number of electrons travelling in any direction will be equal to the number

of electrons travelling in the opposite direction. So, there will be no net

electric current.

Let us now see what happens to such a

piece of conductor if an electric field is applied.



To focus our thoughts, imagine the conductor

in the shape of a cylinder of radius R (Fig. 3.1).

Suppose we now take two thin circular discs

FIGURE 3.1 Charges + Q and – Q put at the ends

of a dielectric of the same radius and put

of a metallic cylinder. The electrons will drift

positive charge + Q distributed over one disc

because of the electric field created to

and similarly – Q at the other disc. We attach

neutralise the charges. The current thus

the two discs on the two flat surfaces of the

will stop after a while unless the charges + Q

cylinder. An electric field will be created and

and – Q are continuously replenished.

is directed from the positive towards the

negative charge. The electrons will be accelerated due to this field towards

+ Q. They will thus move to neutralise the charges. The electrons, as long as
they are moving, will constitute an electric current. Hence in the situation
considered, there will be a current for a very short while and no

current thereafter.

We can also imagine a mechanism where the ends of the cylinder are



supplied with fresh charges to make up for any charges neutralised by

electrons moving inside the conductor. In that case, there will be a steady

electric field in the body of the conductor. This will result in a continuous

current rather than a current for a short period of time. Mechanisms,

which maintain a steady electric field are cells or batteries that we shall

study later in this chapter. In the next sections, we shall study the steady

current that results from a steady electric field in conductors.

3.4 OHM’S LAW

A basic law regarding flow of currents was discovered by G.S. Ohm in

1828, long before the physical mechanism responsible for flow of currents

was discovered. Imagine a conductor through which a current I is flowing
and let V be the potential difference between the ends of the conductor.

Then Ohm’s law states that

V ∝ I

or, V = R I

(3.3)

where the constant of proportionality R is called the resistance of the
conductor. The SI units of resistance is ohm, and is denoted by the symbol
Ω. The resistance R not only depends on the material of the conductor but
also on the dimensions of the conductor. The dependence of R on the
dimensions of the conductor can easily be determined as follows.

FIGURE 3.2



Consider a conductor satisfying Eq. (3.3) to be in the form of a slab of

Illustrating the

length l and cross sectional area A [Fig. 3.2(a)]. Imagine placing two such
relation R = ρ l/ A for identical slabs side by side [Fig. 3.2(b)], so that the
length of the

a rectangular slab

combination is 2 l. The current flowing through the combination is the

of length l and area

of cross-section A.

same as that flowing through either of the slabs. If V is the potential
difference across the ends of the first slab, then V is also the potential 95

difference across the ends of the second slab since the second slab is
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identical to the first and the same current I flows through

both. The potential difference across the ends of the

combination is clearly sum of the potential difference

across the two individual slabs and hence equals 2 V. The



current through the combination is I and the resistance

)4

of the combination R is [from Eq. (3.3)],

C

58

2 V

1

R =

= 2 R

C

(3.4)

I

since V/I = R, the resistance of either of the slabs. Thus,

doubling the length of a conductor doubles the

(1787–

resistance. In general, then resistance is proportional to

length,

R ∝ l

(3.5)

Georg Simon Ohm (1787–



Next, imagine dividing the slab into two by cutting it

1854) German physicist,

lengthwise so that the slab can be considered as a

professor at Munich. Ohm

combination of two identical slabs of length l , but each

was led to his law by an

having a cross sectional area of A/2 [Fig. 3.2(c)].

analogy between the

For a given voltage V across the slab, if I is the current

conduction of heat: the

through the entire slab, then clearly the current flowing

electric field is analogous to

through each of the two half-slabs is I/2. Since the

the temperature gradient,

potential difference across the ends of the half-slabs is V,

GEORG SIMON OHM

and the electric current is

analogous to the heat flow.

i.e., the same as across the full slab, the resistance of each

of the half-slabs R is



1

V

V

R =

= 2 = 2 .

R

1

(3.6)

( I /2)

I

Thus, halving the area of the cross-section of a conductor doubles

the resistance. In general, then the resistance R is inversely proportional to
the cross-sectional area, 1

R ∝

(3.7)

A

Combining Eqs. (3.5) and (3.7), we have

l

R ∝

(3.8)



A

and hence for a given conductor

l

R = ρ

(3.9)

A

where the constant of proportionality ρ depends on the material of the

conductor but not on its dimensions. ρ is called resistivity.

Using the last equation, Ohm’s law reads

I l

ρ

V = I × R =

(3.10)

A

Current per unit area (taken normal to the current), I/ A, is called current
density and is denoted by j. The SI units of the current density are A/m2.
Further, if E is the magnitude of uniform electric field in the conductor
whose length is l, then the potential difference V across its 96

ends is El. Using these, the last equation reads

Current

Electricity



E l = j ρ l

or, E = j ρ

(3.11)

The above relation for magnitudes E and j can indeed be cast in a vector
form. The current density, (which we have defined as the current through
unit area normal to the current) is also directed along E, and is also a vector
j (≡ j E/E). Thus, the last equation can be written as, E = jρ

(3.12)

or, j = σ E

(3.13)

where σ ≡1/ρ is called the conductivity. Ohm’s law is often stated in an
equivalent form, Eq. (3.13) in addition to Eq.(3.3). In the next section, we
will try to understand the origin of the Ohm’s law as arising from the

characteristics of the drift of electrons.

3.5 DRIFT OF ELECTRONS AND THE ORIGIN OF

RESISTIVITY

As remarked before, an electron will suffer collisions with the heavy fixed

ions, but after collision, it will emerge with the same speed but in random

directions. If we consider all the electrons, their average velocity will be

zero since their directions are random. Thus, if there are N electrons and the
velocity of the i th electron ( i = 1, 2, 3, ... N) at a given time is v , then i 1 N

∑v =0

i



N

(3.14)

i =1

Consider now the situation when an electric field is

present. Electrons will be accelerated due to this

field by

– e

=

E

a

(3.15)

m

where – e is the charge and m is the mass of an electron.

Consider again the i th electron at a given time t. This

electron would have had its last collision some time

before t, and let t be the time elapsed after its last

i

collision. If v was its velocity immediately after the last

i

collision, then its velocity V at time t is



i

e

=

E

V

v –

t

i

i

i

(3.16)

m

FIGURE 3.3 A schematic picture of

since starting with its last collision it was accelerated

an electron moving from a point A to

(Fig. 3.3) with an acceleration given by Eq. (3.15) for a

another point B through repeated

time interval t . The average velocity of the electrons at

i

collisions, and straight line travel



time t is the average of all the V ’s. The average of v ’s is i

i

between collisions (full lines). If an

zero [Eq. (3.14)] since immediately after any collision,

electric field is applied as shown, the

the direction of the velocity of an electron is completely

electron ends up at point B′ (dotted

random. The collisions of the electrons do not occur at

lines). A slight drift in a direction

regular intervals but at random times. Let us denote by

opposite the electric field is visible.

τ, the average time between successive collisions. Then
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at a given time, some of the electrons would have spent
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time more than τ and some less than τ. In other words, the time t in

i

Eq. (3.16) will be less than τ for some and more than τ for others as we go

through the values of i = 1, 2 ..... N. The average value of t then is τ

i



(known as relaxation time). Thus, averaging Eq. (3.16) over the

N-electrons at any given time t gives us for the average velocity v d e

≡

=

− E

v

V

v

t

d

( i )

( i )

( i

average

average

) average

m

e E

e

=



E

0 –

τ = −

τ

(3.17)

m

m

This last result is surprising. It tells us that the

electrons move with an average velocity which is

independent of time, although electrons are

accelerated. This is the phenomenon of drift and the

velocity v in Eq. (3.17) is called the drift velocity.

d

Because of the drift, there will be net transport of

charges across any area perpendicular to E. Consider

a planar area A, located inside the conductor such that

FIGURE 3.4 Current in a metallic

the normal to the area is parallel to E

conductor. The magnitude of current

(Fig. 3.4). Then because of the drift, in an infinitesimal



density in a metal is the magnitude of

amount of time ∆ t, all electrons to the left of the area at

charge contained in a cylinder of unit

distances upto |v |∆ t would have crossed the area. If

d

area and length v .

d

n is the number of free electrons per unit volume in

the metal, then there are n ∆ t |v | A such electrons.

d

Since each electron carries a charge – e, the total charge transported across
this area A to the right in time ∆ t is – ne A|v |∆ t. E is directed towards the d
left and hence the total charge transported along E across the area is

negative of this. The amount of charge crossing the area A in time ∆ t is by
definition [Eq. (3.2)] I ∆ t, where I is the magnitude of the current. Hence, I
∆ t = + n e A v t

∆

(3.18)

d

Substituting the value of |v | from Eq. (3.17)

d

2



e A

I ∆ t =

τ n ∆ t E

(3.19)

m

By definition I is related to the magnitude |j| of the current density by I = |j|
A (3.20)

Hence, from Eqs.(3.19) and (3.20),

2

ne

j =

τ E

(3.21)

m

The vector j is parallel to E and hence we can write Eq. (3.21) in the vector
form

2

ne

j =

τE

(3.22)



m

Comparison with Eq. (3.13) shows that Eq. (3.22) is exactly the Ohm’s
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law, if we identify the conductivity σ as
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2

ne

σ =

τ

(3.23)

m

We thus see that a very simple picture of electrical conduction

reproduces Ohm’s law. We have, of course, made assumptions that τ

and n are constants, independent of E. We shall, in the next section, discuss
the limitations of Ohm’s law.

Example 3.1 (a) Estimate the average drift speed of conduction

electrons in a copper wire of cross-sectional area 1.0 × 10–7 m2 carrying

a current of 1.5 A. Assume that each copper atom contributes roughly

one conduction electron. The density of copper is 9.0 × 103 kg/m3,

and its atomic mass is 63.5 u. (b) Compare the drift speed obtained



above with, (i) thermal speeds of copper atoms at ordinary

temperatures, (ii) speed of propagation of electric field along the

conductor which causes the drift motion.

Solution

(a) The direction of drift velocity of conduction electrons is opposite

to the electric field direction, i.e., electrons drift in the direction

of increasing potential. The drift speed v is given by Eq. (3.18)

d

v = ( I/ neA)

d

Now, e = 1.6 × 10–19 C, A = 1.0 × 10–7m2, I = 1.5 A. The density of
conduction electrons, n is equal to the number of atoms per cubic metre
(assuming one conduction electron per Cu atom as is

reasonable from its valence electron count of one). A cubic metre

of copper has a mass of 9.0 × 103 kg. Since 6.0 × 1023 copper

atoms have a mass of 63.5 g,

23

6.0 ×10

6

n =

× 9.0 ×10



63.5

= 8.5 × 1028 m–3

which gives,

1.5

vd =

28

–19

–7

8.5 ×10

×1.6 ×10

×1.0 ×10

= 1.1 × 10–3 m s–1 = 1.1 mm s–1

(b) (i) At a temperature T, the thermal speed* of a copper atom of mass M is
obtained from [<(1/2) Mv 2 > = (3/2) k T ] and is thus B

typically of the order of k

/

T M

B

, where k is the Boltzmann

B

constant. For copper at 300 K, this is about 2 × 102 m/s. This



figure indicates the random vibrational speeds of copper atoms

in a conductor. Note that the drift speed of electrons is much

smaller, about 10–5 times the typical thermal speed at ordinary

E

temperatures.

XAMPLE

(ii) An electric field travelling along the conductor has a speed of

an electromagnetic wave, namely equal to 3.0 × 108 m s–1

3.1

(You will learn about this in Chapter 8). The drift speed is, in

comparison, extremely small; smaller by a factor of 10–11.

* See Eq. (13.23) of Chapter 13 from Class XI book.
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Example 3.2

(a) In Example 3.1, the electron drift speed is estimated to be only a

few mm s–1 for currents in the range of a few amperes? How then

is current established almost the instant a circuit is closed?

(b) The electron drift arises due to the force experienced by electrons

in the electric field inside the conductor. But force should cause



acceleration. Why then do the electrons acquire a steady average

drift speed?

(c) If the electron drift speed is so small, and the electron’s charge is

small, how can we still obtain large amounts of current in a

conductor?

(d) When electrons drift in a metal from lower to higher potential,

does it mean that all the ‘free’ electrons of the metal are moving

in the same direction?

(e) Are the paths of electrons straight lines between successive

collisions (with the positive ions of the metal) in the (i) absence of

electric field, (ii) presence of electric field?

Solution

(a) Electric field is established throughout the circuit, almost instantly

(with the speed of light) causing at every point a local electron

drift. Establishment of a current does not have to wait for electrons

from one end of the conductor travelling to the other end. However,

it does take a little while for the current to reach its steady value.

(b) Each ‘free’ electron does accelerate, increasing its drift speed until

it collides with a positive ion of the metal. It loses its drift speed

after collision but starts to accelerate and increases its drift speed



again only to suffer a collision again and so on. On the average,

therefore, electrons acquire only a drift speed.

(c) Simple, because the electron number density is enormous,

3.2

~1029 m–3.

(d) By no means. The drift velocity is superposed over the large

random velocities of electrons.

XAMPLE

(e) In the absence of electric field, the paths are straight lines; in the

E

presence of electric field, the paths are, in general, curved.

3.5.1 Mobility

As we have seen, conductivity arises from mobile charge carriers. In

metals, these mobile charge carriers are electrons; in an ionised gas, they

are electrons and positive charged ions; in an electrolyte, these can be

both positive and negative ions.

An important quantity is the mobility µ defined as the magnitude of

the drift velocity per unit electric field:

|v d |

µ =



(3.24)

E

The SI unit of mobility is m2/Vs and is 104 of the mobility in practical

units (cm2/Vs). Mobility is positive. From Eq. (3.17), we have

e τ E

100

v =

d

m

Current

Electricity

Hence,

v

e τ

d

µ =

=

(3.25)

E

m



where τ is the average collision time for electrons.

3.6 LIMITATIONS OF OHM’S LAW

Although Ohm’s law has been found valid over a large class

of materials, there do exist materials and devices used in

electric circuits where the proportionality of V and I does not hold. The
deviations broadly are one or more of the following FIGURE 3.5 The
dashed line

types:

represents the linear Ohm’s

(a) V ceases to be proportional to I (Fig. 3.5).

law. The solid line is the voltage

(b) The relation between V and I depends on the sign of V. In V versus
current I for a good other words, if I is the current for a certain V, then
reversing conductor.

the direction of V keeping its magnitude fixed, does not

produce a current of the same magnitude as I in the opposite direction

(Fig. 3.6). This happens, for example, in a diode which we will study

in Chapter 14.

FIGURE 3.6 Characteristic curve

FIGURE 3.7 Variation of current

of a diode. Note the different

versus voltage for GaAs.



scales for negative and positive

values of the voltage and current.

(c) The relation between V and I is not unique, i.e., there is more than one
value of V for the same current I (Fig. 3.7). A material exhibiting such
behaviour is GaAs.

Materials and devices not obeying Ohm’s law in the form of Eq. (3.3)

are actually widely used in electronic circuits. In this and a few

subsequent chapters, however, we will study the electrical currents in

materials that obey Ohm’s law.

3.7 RESISTIVITY OF VARIOUS MATERIALS

The resistivities of various common materials are listed in Table 3.1. The
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materials are classified as conductors, semiconductors and insulators
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depending on their resistivities, in an increasing order of their values.

Metals have low resistivities in the range of 10–8 Ωm to 10–6 Ωm. At the

other end are insulators like ceramic, rubber and plastics having

resistivities 1018 times greater than metals or more. In between the two

are the semiconductors. These, however, have resistivities

characteristically decreasing with a rise in temperature. The resistivities

of semiconductors are also affected by presence of small amount of



impurities. This last feature is exploited in use of semiconductors for

electronic devices.

TABLE 3.1 RESISTIVITIES OF SOME MATERIALS

Material

Resistivity, ρ

Temperature coefficient

(Ω m) at 0°C

of resistivity, α (°C) –1

1  dρ  at 0





°C

ρ  d T 

Conductors

Silver

1.6 × 10–8

0.0041

Copper

1.7 × 10–8

0.0068



Aluminium

2.7 × 10–8

0.0043

Tungsten

5.6 × 10–8

0.0045

Iron

10 × 10–8

0.0065

Platinum

11 × 10–8

0.0039

Mercury

98 × 10–8

0.0009

Nichrome

~100 × 10–8

0.0004

(alloy of Ni, Fe, Cr)

Manganin (alloy)



48 × 10–8

0.002 × 10–3

Semiconductors

Carbon (graphite)

3.5 × 10–5

– 0.0005

Germanium

0.46

– 0.05

Silicon

2300

– 0.07

Insulators

Pure Water

2.5 × 105

Glass

1010 – 1014

Hard Rubber

1013 – 1016

NaCl



~1014

Fused Quartz

~1016

Commercially produced resistors for domestic use or in laboratories

are of two major types: wire bound resistors and carbon resistors. Wire
bound resistors are made by winding the wires of an alloy, viz., manganin,
constantan, nichrome or similar ones. The choice of these materials is

dictated mostly by the fact that their resistivities are relatively insensitive to
temperature. These resistances are typically in the range of a fraction 102

of an ohm to a few hundred ohms.
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Resistors in the higher range are made mostly from carbon. Carbon

resistors are compact, inexpensive and thus find extensive use in electronic

circuits. Carbon resistors are small in size and hence their values are

given using a colour code.

TABLE 3.2 RESISTOR COLOUR CODES

Colour

Number

Multiplier

Tolerance (%)

Black

0

1

Brown



1

101

Red

2

102

Orange

3

103

Yellow

4

104

Green

5

105

Blue

6

106

Violet

7

107



Gray

8

108

White

9

109

Gold

10–1

5

Silver

10–2

10

No colour

20

The resistors have a set of co-axial coloured rings

on them whose significance are listed in Table 3.2. The

first two bands from the end indicate the first two

significant figures of the resistance in ohms. The third

band indicates the decimal multiplier (as listed in Table

3.2). The last band stands for tolerance or possible



variation in percentage about the indicated values.

Sometimes, this last band is absent and that indicates

a tolerance of 20% (Fig. 3.8). For example, if the four

colours are orange, blue, yellow and gold, the resistance

value is 36 × 104 Ω, with a tolerence value of 5%.

3.8

TEMPERATURE DEPENDENCE OF

RESISTIVITY

The resistivity of a material is found to be dependent on

the temperature. Different materials do not exhibit the

same dependence on temperatures. Over a limited range

FIGURE 3.8 Colour coded resistors

(a) (22 × 102 Ω) ± 10%,

of temperatures, that is not too large, the resistivity of a

(b) (47 × 10 Ω) ± 5%.

metallic conductor is approximately given by,

ρ = ρ [1 + α ( T– T )]

(3.26)

T

0



0

where ρ is the resistivity at a temperature T and ρ is the same at a

T

0

reference temperature T . α is called the temperature coefficient of 0
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resistivity, and from Eq. (3.26), the dimension of α is (Temperature)–1.
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For metals, α is positive and values of α for some metals at T = 0°C are 0

listed in Table 3.1.

The relation of Eq. (3.26) implies that a graph of ρ plotted against T

T

would be a straight line. At temperatures much lower than 0°C, the graph,

however, deviates considerably from a straight line (Fig. 3.9).

Equation (3.26) thus, can be used approximately over a limited range

of T around any reference temperature T , where the graph can be 0

approximated as a straight line.

FIGURE 3.9

FIGURE 3.10 Resistivity

FIGURE 3.11



Resistivity ρ of

ρ of nichrome as a

Temperature dependence

T

T

copper as a function

function of absolute

of resistivity for a typical

of temperature T.

temperature T.

semiconductor.

Some materials like Nichrome (which is an alloy of nickel, iron and

chromium) exhibit a very weak dependence of resistivity with temperature

(Fig. 3.10). Manganin and constantan have similar properties. These

materials are thus widely used in wire bound standard resistors since

their resistance values would change very little with temperatures.

Unlike metals, the resistivities of semiconductors decrease with

increasing temperatures. A typical dependence is shown in Fig. 3.11.

We can qualitatively understand the temperature dependence of

resistivity, in the light of our derivation of Eq. (3.23). From this equation,



resistivity of a material is given by

1

m

ρ = =

2

σ n e τ

(3.27)

ρ thus depends inversely both on the number n of free electrons per unit
volume and on the average time τ between collisions. As we increase
temperature, average speed of the electrons, which act as the carriers of

current, increases resulting in more frequent collisions. The average time

of collisions τ, thus decreases with temperature.

In a metal, n is not dependent on temperature to any appreciable

extent and thus the decrease in the value of τ with rise in temperature

causes ρ to increase as we have observed.

For insulators and semiconductors, however, n increases with

temperature. This increase more than compensates any decrease in τ in
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Eq.(3.23) so that for such materials, ρ decreases with temperature.
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Example 3.3 An electric toaster uses nichrome for its heating

element. When a negligibly small current passes through it, its

resistance at room temperature (27.0 °C) is found to be 75.3 Ω. When

the toaster is connected to a 230 V supply, the current settles, after

a few seconds, to a steady value of 2.68 A. What is the steady

temperature of the nichrome element? The temperature coefficient

of resistance of nichrome averaged over the temperature range

involved, is 1.70 × 10–4 °C–1.

Solution When the current through the element is very small, heating

effects can be ignored and the temperature T of the element is the

1

same as room temperature. When the toaster is connected to the

supply, its initial current will be slightly higher than its steady value

of 2.68 A. But due to heating effect of the current, the temperature

will rise. This will cause an increase in resistance and a slight

decrease in current. In a few seconds, a steady state will be reached

when temperature will rise no further, and both the resistance of the

element and the current drawn will achieve steady values. The

resistance R at the steady temperature T is

2



2

230 V

R =

= 85.8 Ω

2

2.68 A

Using the relation

R = R [1 + α ( T – T )]

2

1

2

1

with α = 1.70 × 10–4 °C–1, we get

(85.8 – 75.3)

E

T – T =

= 820 °C

2

1

–4



(75.3) ×1.70 ×10

XAMPLE

that is, T = (820 + 27.0) °C = 847 °C

2

Thus, the steady temperature of the heating element (when heating

3.3

effect due to the current equals heat loss to the surroundings) is

847 °C.

Example 3.4 The resistance of the platinum wire of a platinum

resistance thermometer at the ice point is 5 Ω and at steam point is

5.23 Ω. When the thermometer is inserted in a hot bath, the resistance

of the platinum wire is 5.795 Ω. Calculate the temperature of the

bath.

Solution R = 5 Ω, R

= 5.23 Ω and R = 5.795 Ω

0

100

t

R − R

t



0

Now,

t =

×100,

R = R (1+ α t )

t

0

R

− R

100

0

E

XAMPLE

5.795 − 5

=

×100

5.23 − 5

3.4

0.795

=



×100 = 345.65 °C

0.23

3.9 ELECTRICAL ENERGY, POWER

Consider a conductor with end points A and B, in which a current I is
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flowing from A to B. The electric potential at A and B are denoted by V (A)
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and V (B) respectively. Since current is flowing from A to B, V (A) > V (B)
and the potential difference across AB is V = V(A) – V(B) > 0.

In a time interval ∆ t, an amount of charge ∆ Q = I ∆ t travels from A to B.
The potential energy of the charge at A, by definition, was Q V (A) and
similarly at B, it is Q V(B). Thus, change in its potential energy ∆ U is pot ∆
U = Final potential energy – Initial potential energy

pot

= ∆Q[( V (B) – V (A)] = –∆ Q V

= – I V∆ t < 0

(3.28)

If charges moved without collisions through the conductor, their

kinetic energy would also change so that the total energy is unchanged.

Conservation of total energy would then imply that,

∆ K = –∆ U

(3.29)



pot

that is,

∆ K = I V∆ t > 0

(3.30)

Thus, in case charges were moving freely through the conductor under

the action of electric field, their kinetic energy would increase as they

move. We have, however, seen earlier that on the average, charge carriers

do not move with acceleration but with a steady drift velocity. This is

because of the collisions with ions and atoms during transit. During

collisions, the energy gained by the charges thus is shared with the atoms.

The atoms vibrate more vigorously, i.e., the conductor heats up. Thus,

in an actual conductor, an amount of energy dissipated as heat in the

conductor during the time interval ∆ t is,

∆ W = I V∆ t

(3.31)

The energy dissipated per unit time is the power dissipated

P = ∆ W/∆ t and we have,

P = I V

(3.32)

Using Ohm’s law V = IR, we get



P = I 2 R = V 2/ R

(3.33)

as the power loss (“ohmic loss”) in a conductor of resistance R carrying a
current I. It is this power which heats up, for example, the coil of an electric
bulb to incandescence, radiating out heat and light.

Where does the power come from? As we have

reasoned before, we need an external source to keep

a steady current through the conductor. It is clearly

this source which must supply this power. In the

simple circuit shown with a cell (Fig.3.12), it is the

chemical energy of the cell which supplies this power

for as long as it can.

The expressions for power, Eqs. (3.32) and (3.33),

FIGURE 3.12 Heat is produced in the

resistor R which is connected across

show the dependence of the power dissipated in a

the terminals of a cell. The energy

resistor R on the current through it and the voltage

dissipated in the resistor R comes from

across it.

the chemical energy of the electrolyte.



Equation (3.33) has an important application to

power transmission. Electrical power is transmitted
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from power stations to homes and factories, which
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may be hundreds of miles away, via transmission cables. One obviously

wants to minimise the power loss in the transmission cables connecting

the power stations to homes and factories. We shall see now how this

can be achieved. Consider a device R, to which a power P is to be delivered
via transmission cables having a resistance R to be dissipated by it finally.

c

If V is the voltage across R and I the current through it, then P = V I

(3.34)

The connecting wires from the power station to the device has a finite

resistance R . The power dissipated in the connecting wires, which is

c

wasted is P with

c

P = I 2 R

c



c

2

P R

 

c

=

(3.35)

2

V

from Eq. (3.32). Thus, to drive a device of power P, the power wasted in the
connecting wires is inversely proportional to V 2. The transmission cables
from power stations are hundreds of miles long and their resistance R is c
considerable. To reduce P , these wires carry current at enormous values c

of V and this is the reason for the high voltage danger signs on transmission
lines — a common sight as we move away from populated areas. Using
electricity at such voltages is not safe and hence at the other end, a device

called a transformer lowers the voltage to a value suitable for use.

3.10 COMBINATION OF RESISTORS – SERIES AND

PARALLEL

The current through a single resistor R across which there is a potential
difference V is given by Ohm’s law I = V/R. Resistors are sometimes joined
together and there are simple rules for calculation of equivalent resistance
of such combination.

FIGURE 3.13 A series combination of two resistor R and R .



1

2

Two resistors are said to be in series if only one of their end points is joined
(Fig. 3.13). If a third resistor is joined with the series combination of the
two (Fig. 3.14), then all three are said to be in series. Clearly, we

can extend this definition to series combination of any number of resistors.

FIGURE 3.14 A series combination of three resistors R , R , R .

1

2

3

Two or more resistors are said to be in parallel if one end of all the

resistors is joined together and similarly the other ends joined together

(Fig. 3.15).
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FIGURE 3.15 Two resistors R and R connected in parallel.

1

2

Physics

Consider two resistors R and R in series. The charge which leaves R

1

2



1

must be entering R . Since current measures the rate of flow of charge, 2

this means that the same current I flows through R and R . By Ohm’s law: 1

2

Potential difference across R = V = I R , and

1

1

1

Potential difference across R = V = I R .

2

2

2

The potential difference V across the combination is V + V . Hence, 1

2

V = V + V = I ( R + R )

(3.36)

1

2

1

2



This is as if the combination had an equivalent resistance R , which

eq

by Ohm’s law is

V

R ≡

= ( R + R )

(3.37)

eq

I

1

2

If we had three resistors connected in series, then similarly

V = I R + I R + I R = I ( R + R + R ).

(3.38)

1

2

3

1

2

3



This obviously can be extended to a series combination of any number

n of resistors R , R ....., R . The equivalent resistance R is 1

2

n

eq

R = R + R + . . . + R

(3.39)

eq

1

2

n

Consider now the parallel combination of two resistors (Fig. 3.15).

The charge that flows in at A from the left flows out partly through R 1

and partly through R . The currents I, I , I shown in the figure are the 2

1

2

rates of flow of charge at the points indicated. Hence,

I = I + I

(3.40)

1



2

The potential difference between A and B is given by the Ohm’s law

applied to R 1

V = I R

(3.41)

1

1

Also, Ohm’s law applied to R gives

2

V = I R

(3.42)

2

2

V

V

 1

1 

∴ I = I + I =

+



= V

+





1

2

R

R

 R

R 

(3.43)

1

2

1

2

If the combination was replaced by an equivalent resistance R , we

eq

would have, by Ohm’s law

V

I = R



(3.44)

eq

Hence,

1

1

1

=

+

R

R

R

(3.45)

eq

1

2

We can easily see how this extends to three resistors in parallel

(Fig. 3.16).
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FIGURE 3.16 Parallel combination of three resistors R , R and R .

1



2

3
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Exactly as before

I = I + I + I

(3.46)

1

2

3

and applying Ohm’s law to R , R and R we get,

1

2

3

V = I R , V = I R , V = I R

(3.47)

1

1

2

2



3

3

So that

 1

1

1 

I = I + I + I = V

+

+

(3.48)

1

2

3





 R

R

R 

1

2



3

An equivalent resistance R that replaces the combination, would be

eq

such that

V

I = R

(3.49)

eq

and hence

1

1

1

1

=

+

+

R

R

R

R



(3.50)

eq

1

2

3

We can reason similarly for any number of resistors in parallel. The

equivalent resistance of n resistors R , R . . . , R is 1

2

n

1

1

1

1

=

+

+ ...+

R

R

R

R



(3.51)

eq

1

2

n

These formulae for equivalent resistances can be used to find out

currents and voltages in more complicated circuits. Consider for example,

the circuit in Fig. (3.17), where there are three resistors R , R and R .

1

2

3

R and R are in parallel and hence we can

2

3

replace them by an equivalent 23

Req between

point B and C with

1

1



1

=

+

23

R

R

R

eq

2

3

R R

23

2

3

or, R

=

eq

R + R

(3.52)

2



3

The circuit now has R and 23

R

in series

1

eq

and hence their combination can be

replaced by an equivalent resistance 123

Req

FIGURE 3.17 A combination of three resistors R ,

with

1

R and R . R , R are in parallel with an

2

3

2

3

123

23

R



= R + R

(3.53)

equivalent resistance 23

R

. R and 23

R

are in

eq

eq

1

eq

1

eq

If the voltage between A and C is V, the

series with an equivalent resistance 123

Req .

current I is given by

V

V



I =

=

123

R

R +  R R

R + R 

eq

/

1

2

3



( 2

3 )

V ( R + R

2

3 )

= R R + R R +

(3.54)

R R
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3.11 CELLS, EMF, INTERNAL RESISTANCE

We have already mentioned that a simple device to maintain a steady

current in an electric circuit is the electrolytic cell. Basically a cell has

two electrodes, called the positive (P) and the negative (N), as shown in

Fig. 3.18. They are immersed in an electrolytic solution. Dipped in the

solution, the electrodes exchange charges with the electrolyte. The

positive electrode has a potential difference V (V > 0) between

+

+

itself and the electrolyte solution immediately adjacent to it marked

A in the figure. Similarly, the negative electrode develops a negative



potential – ( V ) ( V ≥ 0) relative to the electrolyte adjacent to it,

–

–

marked as B in the figure. When there is no current, the electrolyte

has the same potential throughout, so that the potential difference

between P and N is V – (– V ) = V + V . This difference is called the

+

–

+

–

electromotive force (emf) of the cell and is denoted by ε. Thus

ε = V + V > 0

(3.55)

+

–

Note that ε is, actually, a potential difference and not a force. The

name emf, however, is used because of historical reasons, and was

given at a time when the phenomenon was not understood properly.

To understand the significance of ε, consider a resistor R

connected across the cell (Fig. 3.18). A current I flows across R



from C to D. As explained before, a steady current is maintained

because current flows from N to P through the electrolyte. Clearly,

across the electrolyte the same current flows through the electrolyte

FIGURE 3.18 (a) Sketch of

but from N to P, whereas through R, it flows from P to N.

an electrolyte cell with

The electrolyte through which a current flows has a finite

positive terminal P and

resistance r, called the internal resistance. Consider first the negative
terminal N. The

gap between the electrodes

situation when R is infinite so that I = V/ R = 0, where V is the is
exaggerated for clarity. A potential difference between P and N. Now,

and B are points in the

V = Potential difference between P and A

electrolyte typically close to

+ Potential difference between A and B

P and N. (b) the symbol for

+ Potential difference between B and N

a cell, + referring to P and

= ε



(3.56)

– referring to the N

Thus, emf ε is the potential difference between the positive and

electrode. Electrical

negative electrodes in an open circuit, i.e., when no current is

connections to the cell are

flowing through the cell.

made at P and N.

If however R is finite, I is not zero. In that case the potential difference
between P and N is V = V + V – I r

+

–

= ε – I r

(3.57)

Note the negative sign in the expression ( I r ) for the potential difference
between A and B. This is because the current I flows from B to A in the
electrolyte.

In practical calculations, internal resistances of cells in the circuit

may be neglected when the current I is such that ε >> I r. The actual values
of the internal resistances of cells vary from cell to cell. The internal
resistance of dry cells, however, is much higher than the common 110

electrolytic cells.



Current

Electricity

We also observe that since V is the potential difference across R, we have
from Ohm’s law

V = I R

(3.58)

Combining Eqs. (3.57) and (3.58), we get

I R = ε – I r

ε

Or, I =

(3.59)

R + r

The maximum current that can be drawn from a cell is for R = 0 and

it is I

= ε/ r. However, in most cells the maximum allowed current is

max

much lower than this to prevent permanent damage to the cell.

CHARGES IN CLOUDS

In olden days lightning was considered as an atmospheric flash of
supernatural origin.



It was believed to be the great weapon of Gods. But today the phenomenon
of lightning can be explained scientifically by elementary principles of
physics.

Atmospheric electricity arises due to the separation of electric charges. In
the ionosphere and magnetosphere strong electric current is generated from
the solar-terrestrial interaction. In the lower atmosphere the current is
weaker and is maintained by thunderstorm.

There are ice particles in the clouds, which grow, collide, fracture and break
apart.

The smaller particles acquire positive charge and the larger ones negative
charge. These charged particles get separated by updrafts in the clouds and
gravity. The upper portion of the cloud becomes positively charged and the
middle negatively charged, leading to dipole structure. Sometimes a very
weak positive charge is found near the base of the cloud. The ground is
positively charged at the time of thunderstorm development. Also cosmic
and radioactive radiations ionise air into positive and negative ions and air
becomes (weakly) electrically conductive. The separation of charges
produce tremendous amount of electrical potential within the cloud as well
as between the cloud and ground. This can amount to millions of volts and
eventually the electrical resistance in the air breaks down and lightning
flash begins and thousands of amperes of current flows. The electric field is
of the order of 105 V/m. A lightning flash is composed of a series of strokes
with an average of about four and the duration of each flash is about 30
seconds. The average peak power per stroke is about 1012 watts.

During fair weather also there is charge in the atmosphere. The fair weather
electric field arises due to the existence of a surface charge density at
ground and an atmospheric conductivity as well as due to the flow of
current from the ionosphere to the earth’s surface, which is of the order of
picoampere square metre. The surface charge density at ground is negative;
the electric field is directed downward. Over land the average electric field
is about 120 Vm, which corresponds to a surface charge density of –1.2 ×
10–9 C/m2. Over the entire earth’s surface, the total negative charge
amount to about 600 kC. An equal positive charge exists in the atmosphere.
This electric field is not noticeable in daily life. The reason why it is not



noticed is that virtually everything, including our bodies, is conductor
compared to air.
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Example 3.5 A network of resistors is connected to a 16 V battery

with internal resistance of 1Ω, as shown in Fig. 3.19: (a) Compute

the equivalent resistance of the network. (b) Obtain the current in

each resistor. (c) Obtain the voltage drops V , V and V .

AB

BC

CD

FIGURE 3.19

Solution

(a) The network is a simple series and parallel combination of

resistors. First the two 4Ω resistors in parallel are equivalent to a

resistor = [(4 × 4)/(4 + 4)] Ω = 2 Ω.

In the same way, the 12 Ω and 6 Ω resistors in parallel are

equivalent to a resistor of

[(12 × 6)/(12 + 6)] Ω = 4 Ω.

The equivalent resistance R of the network is obtained by

combining these resistors (2 Ω and 4 Ω) with 1 Ω in series,



that is,

R = 2 Ω + 4 Ω + 1 Ω = 7 Ω.

(b) The total current I in the circuit is

ε

16 V

I =

=

= 2 A

R + r

(7 +1) Ω

Consider the resistors between A and B. If I is the current in one

1

of the 4 Ω resistors and I the current in the other,

2

I × 4 = I × 4

1

2

that is, I = I , which is otherwise obvious from the symmetry of 1

2

the two arms. But I + I = I = 2 A. Thus,



1

2

I = I = 1 A

1

2

that is, current in each 4 Ω resistor is 1 A. Current in 1 Ω resistor

between B and C would be 2 A.

Now, consider the resistances between C and D. If I is the current

3

in the 12 Ω resistor, and I in the 6 Ω resistor,

4

I × 12 = I × 6, i.e., I = 2 I

3

4

4

3

But, I + I = I = 2 A

3

4

 2



 4

Thus, I =  



=  

3

 3 A, I 4

 3 A

that is, the current in the 12 Ω resistor is (2/3) A, while the current

in the 6 Ω resistor is (4/3) A.

3.5

(c) The voltage drop across AB is

V = I × 4 = 1 A × 4 Ω = 4 V,

AB

1

XAMPLE

This can also be obtained by multiplying the total current between

112

E

A and B by the equivalent resistance between A and B, that is,

Current

Electricity

V = 2 A × 2 Ω = 4 V

AB



The voltage drop across BC is

V = 2 A × 1 Ω = 2 V

BC

Finally, the voltage drop across CD is

 2

V = 12 Ω × I = 12 Ω ×  

CD

3

 3 A = 8 V.

This can alternately be obtained by multiplying total current

between C and D by the equivalent resistance between C and D,

that is,

E

V = 2 A × 4 Ω = 8 V

XAMPLE

CD

Note that the total voltage drop across AD is 4 V + 2 V + 8 V = 14 V.

Thus, the terminal voltage of the battery is 14 V, while its emf is 16 V.

3.5

The loss of the voltage (= 2 V) is accounted for by the internal resistance



1 Ω of the battery [2 A × 1 Ω = 2 V].

3.12 CELLS IN SERIES AND IN PARALLEL

Like resistors, cells can be combined together in an electric circuit. And

like resistors, one can, for calculating currents and voltages in a circuit,

replace a combination of cells by an equivalent cell.

FIGURE 3.20 Two cells of emf’s ε and ε in the series. r , r are their 1

2

1

2

internal resistances. For connections across A and C, the combination

can be considered as one cell of emf ε and an internal resistance r .

eq

eq

Consider first two cells in series (Fig. 3.20), where one terminal of the

two cells is joined together leaving the other terminal in either cell free.

ε , ε are the emf’s of the two cells and r , r their internal resistances, 1

2

1

2

respectively.



Let V (A), V (B), V (C) be the potentials at points A, B and C shown in Fig.
3.20. Then V (A) – V (B) is the potential difference between the positive and
negative terminals of the first cell. We have already calculated it in Eq.
(3.57) and hence,

V

≡ V (A) – V (B) = ε – I r

(3.60)

AB

1

1

Similarly,

V

≡ V (B) – V (C)= ε – I r

(3.61)

BC

2

2

Hence, the potential difference between the terminals A and C of the

combination is

V



≡ V (A) – V (C)= V



A – V B  +  V B – V C 

AC

 ( )

( )  ( )

( )
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= (ε + ε – I r + r

(3.62)

1

2 )

( 1 2)

Physics

If we wish to replace the combination by a single cell between A and

C of emf ε and internal resistance r , we would have

eq

eq

V = ε – I r

(3.63)



AC

eq

eq

Comparing the last two equations, we get

ε = ε + ε

(3.64)

eq

1

2

and r = r + r

(3.65)

eq

1

2

In Fig.3.20, we had connected the negative electrode of the first to the

positive electrode of the second. If instead we connect the two negatives,

Eq. (3.61) would change to V = –ε – Ir and we will get

BC

2

2



ε = ε – ε

> ε )

(3.66)

eq

1

2 (ε1

2

The rule for series combination clearly can be extended to any number

of cells:

(i) The equivalent emf of a series combination of n cells is just the sum of

their individual emf’s, and

(ii) The equivalent internal resistance of a series combination of n cells is

just the sum of their internal resistances.

This is so, when the current leaves each cell from the positive

electrode. If in the combination, the current leaves any cell from

the negative electrode, the emf of the cell enters the expression

for ε with a negative sign, as in Eq. (3.66).

eq

Next, consider a parallel combination of the cells (Fig. 3.21).

I and I are the currents leaving the positive electrodes of the 1



2

cells. At the point B , I and I flow in whereas the current I flows 1

1

2

out. Since as much charge flows in as out, we have

I = I + I

(3.67)

FIGURE 3.21 Two cells in

1

2

parallel. For connections

Let V ( B ) and V ( B ) be the potentials at B and B , respectively.

1

2

1

2

across A and C, the

Then, considering the first cell, the potential difference across its

combination can be

terminals is V ( B ) – V ( B ). Hence, from Eq. (3.57) 1



2

replaced by one cell of emf

ε

V

and internal resistances

≡ V ( B – V B = ε – I r

(3.68)

1 )

( 2) 1 1 1

eq

r whose values are given in

eq

Points B and B are connected exactly similarly to the second

1

2

Eqs. (3.64) and (3.65).

cell. Hence considering the second cell, we also have

V ≡ V ( B – V B = ε – I r

(3.69)

1 )



( 2) 2 2 2

Combining the last three equations

I = I + I

1

2

ε – V ε – V  ε

ε 

 1

1 

1

2

1

2

=

+

=

+



– V

+









r

r

 r

r 

 r

r 

(3.70)

1

2

1

2

1

2

Hence, V is given by,



ε r + ε r

r r

1 2

2 1

1 2

V =

– I

r + r

r + r

(3.71)

1

2

1

2

If we want to replace the combination by a single cell, between B and

1

B , of emf ε and internal resistance r , we would have

2

eq

eq
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V = ε – I r

(3.72)

eq

eq

Current

Electricity

The last two equations should be the same and hence

ε r

ε r

1 2

2 1

ε

+

=



eq

r + r

(3.73)

GUST

1

2

r r

1 2

r =

eq

r + r

(3.74)

A

1

2

V

We can put these equations in a simpler way,

ROBER

1

1



1

= +

r

r

r

(3.75)

eq

1

2

T

ε

ε

ε

KIRCHHOFF (1824 – 1887)

eq

1

2

=

+

r



r

r

(3.76)

eq

1

2

In Fig. (3.21), we had joined the positive terminals

Gustav Robert Kirchhoff

together and similarly the two negative ones, so that the

(1824 – 1887) German

currents I , I flow out of positive terminals. If the negative 1

2

physicist, professor at

terminal of the second is connected to positive terminal

Heidelberg and at

of the first, Eqs. (3.75) and (3.76) would still be valid with

Berlin. Mainly known for

ε → –ε

2

2



his development of

Equations (3.75) and (3.76) can be extended easily.

spectroscopy, he also

If there an n cells of emf ε , . . . ε and of internal resistances

made many important

1

n

r , . . . r respectively, connected in parallel, the

contributions to mathe—

1

n

combination is equivalent to a single cell of emf ε and

matical physics, among

eq

internal resistance r , such that

them, his first and

eq

second rules for circuits.

1

1



1

=

+ L +

r

r

r

(3.77)

eq

1

n

ε

ε

ε

eq

1

n

=

+ L +

r

r



r

(3.78)

eq

1

n

3.13 KIRCHHOFF’S RULES

Electric circuits generally consist of a number of resistors and cells

interconnected sometimes in a complicated way. The formulae we have

derived earlier for series and parallel combinations of resistors are not

always sufficient to determine all the currents and potential differences

in the circuit. Two rules, called Kirchhoff’s rules, are very useful for
analysis of electric circuits.

Given a circuit, we start by labelling currents in each resistor by a

symbol, say I, and a directed arrow to indicate that a current I flows along
the resistor in the direction indicated. If ultimately I is determined to be
positive, the actual current in the resistor is in the direction of the arrow. If I
turns out to be negative, the current actually flows in a direction opposite to
the arrow. Similarly, for each source (i.e., cell or some other source of
electrical power) the positive and negative electrodes are labelled

as well as a directed arrow with a symbol for the current flowing through
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the cell. This will tell us the potential difference, V = V (P) – V (N) = ε – I r
Physics



[Eq. (3.57) between the positive terminal P and the negative terminal N; I

here is the current flowing from N to P through the cell]. If, while labelling

the current I through the cell one goes from P to N,

then of course

V = ε + I r

(3.79)

Having clarified labelling, we now state the rules

and the proof:

(a) Junction rule: At any junction, the sum of the

currents entering the junction is equal to the

sum of currents leaving the junction (Fig. 3.22).

This applies equally well if instead of a junction of

several lines, we consider a point in a line.

The proof of this rule follows from the fact that

when currents are steady, there is no accumulation

FIGURE 3.22 At junction a the current

of charges at any junction or at any point in a line.

leaving is I + I and current entering is I .

1

2



3

Thus, the total current flowing in, (which is the rate

The junction rule says I = I + I . At point

3

1

2

at which charge flows into the junction), must equal

h current entering is I . There is only one

1

the total current flowing out.

current leaving h and by junction rule

(b) Loop rule: The algebraic sum of changes in

that will also be I . For the loops ‘ahdcba’

1

and ‘ahdefga’, the loop rules give –30 I –

potential around any closed loop involving

1

41 I + 45 = 0 and –30 I + 21 I – 80 = 0.

resistors and cells in the loop is zero (Fig. 3.22).

3



1

2

This rule is also obvious, since electric potential is

dependent on the location of the point. Thus starting with any point if we

come back to the same point, the total change must be zero. In a closed

loop, we do come back to the starting point and hence the rule.

Example 3.6 A battery of 10 V and negligible internal resistance is
connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 Ω (Fig. 3.23). Determine

the equivalent resistance of the network and the current along each

edge of the cube.

3.6

XAMPLE
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FIGURE 3.23

Current

Electricity

Solution The network is not reducible to a simple series and parallel

combinations of resistors. There is, however, a clear symmetry in the

problem which we can exploit to obtain the equivalent resistance of



the network.

The paths AA′, AD and AB are obviously symmetrically placed in the

network. Thus, the current in each must be the same, say, I. Further,

at the corners A′, B and D, the incoming current I must split equally

into the two outgoing branches. In this manner, the current in all

the 12 edges of the cube are easily written down in terms of I, using

Kirchhoff’s first rule and the symmetry in the problem.

Next take a closed loop, say, ABCC′EA, and apply Kirchhoff’s second

rule:

– IR – (1/2) IR – IR + ε = 0

where R is the resistance of each edge and ε the emf of battery. Thus,

ε = 5 I R

http://www.phys.hawaii.edu/~teb/optics/java/kirch3/ Similation for
application of Kirchhoff 2

The equivalent resistance R of the network is

eq

ε

5

R

=

= R



eq

E

3 I

6

XAMPLE

For R = 1 Ω, R = (5/6) Ω and for ε = 10 V, the total current (= 3 I ) in eq

the network is

3 I = 10 V/(5/6) Ω = 12 A, i.e., I = 4 A

3.6

The current flowing in each edge can now be read off from the

Fig. 3.23.

It should be noted that because of the symmetry of the network, the

great power of Kirchhoff’s rules has not been very apparent in Example 3.6.

In a general network, there will be no such simplification due to

symmetry, and only by application of Kirchhoff’s rules to junctions and

closed loops (as many as necessary to solve the unknowns in the network)

ís r

can we handle the problem. This will be illustrated in Example 3.7.

ules:

Example 3.7 Determine the current in each branch of the network



shown in Fig. 3.24.

E

XAMPLE

3.7

FIGURE 3.24
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Solution Each branch of the network is assigned an unknown current

to be determined by the application of Kirchhoff’s rules. To reduce

the number of unknowns at the outset, the first rule of Kirchhoff is

used at every junction to assign the unknown current in each branch.

We then have three unknowns I , I and I which can be found by 1

2

3

applying the second rule of Kirchhoff to three different closed loops.

Kirchhoff’s second rule for the closed loop ADCA gives,

10 – 4( I – I ) + 2( I + I – I ) – I = 0

[3.80(a)]

1

2



2

3

1

1

that is, 7 I – 6 I – 2 I = 10

1

2

3

For the closed loop ABCA, we get

10 – 4 I – 2 ( I + I ) – I = 0

2

2

3

1

that is, I + 6 I + 2 I =10

[3.80(b)]

1

2

3

For the closed loop BCDEB, we get



5 – 2 ( I + I ) – 2 ( I + I – I ) = 0

2

3

2

3

1

that is, 2 I – 4 I – 4 I = –5

[3.80(c)]

1

2

3

Equations (3.80 a, b, c) are three simultaneous equations in three

unknowns. These can be solved by the usual method to give

5

7

I = 2.5A, I =

A, I = 1

A

1

2



8

3

8

The currents in the various branches of the network are

5

1

7

AB :

A, CA : 2

A, DEB : 1

A

8

2

8

7

1

AD : 1

A, CD : 0 A, BC : 2

A

8



2

It is easily verified that Kirchhoff’s second rule applied to the

remaining closed loops does not provide any additional independent

equation, that is, the above values of currents satisfy the second

rule for every closed loop of the network. For example, the total voltage

3.7

drop over the closed loop BADEB

 5



15



5 V +  × 4 V

 − 

× 4 V



 8



 8



XAMPLE



E

equal to zero, as required by Kirchhoff’s second rule.

3.14 WHEATSTONE BRIDGE

As an application of Kirchhoff’s rules consider the circuit shown in

Fig. 3.25, which is called the Wheatstone bridge. The bridge has

four resistors R , R , R and R . Across one pair of diagonally opposite 1

2

3

4

points (A and C in the figure) a source is connected. This ( i.e. , AC) is
called the battery arm. Between the other two vertices, B and D, a
galvanometer G (which is a device to detect currents) is connected. This

line, shown as BD in the figure, is called the galvanometer arm.

For simplicity, we assume that the cell has no internal resistance. In

general there will be currents flowing across all the resistors as well as a

current I through G. Of special interest, is the case of a balanced bridge g

where the resistors are such that I = 0. We can easily get the balance g

condition, such that there is no current through G. In this case, the

118

Kirchhoff’s junction rule applied to junctions D and B (see the figure)

Current



Electricity

immediately gives us the relations I = I and I = I . Next, we apply 1

3

2

4

Kirchhoff’s loop rule to closed loops ADBA and CBDC. The first

loop gives

– I R + 0 + I R = 0 ( I = 0)

(3.81)

1

1

2

2

g

and the second loop gives, upon using I = I , I = I 3

1

4

2

I R + 0 – I R = 0

(3.82)



2

4

1

3

From Eq. (3.81), we obtain,

I

R

1

2

=

I

R

2

1

whereas from Eq. (3.82), we obtain,

I

R

1

4

=



I

R

2

3

Hence, we obtain the condition

R

R

FIGURE 3.25

2

4

=

[3.83(a)]

R

R

1

3

This last equation relating the four resistors is called the balance

condition for the galvanometer to give zero or null deflection.

The Wheatstone bridge and its balance condition provide a practical

method for determination of an unknown resistance. Let us suppose we



have an unknown resistance, which we insert in the fourth arm; R is

4

thus not known. Keeping known resistances R and R in the first and 1

2

second arm of the bridge, we go on varying R till the galvanometer shows 3

a null deflection. The bridge then is balanced, and from the balance

condition the value of the unknown resistance R is given by,

4

R 2

R = R

4

3 R

[3.83(b)]

1

A practical device using this principle is called the meter bridge. It

will be discussed in the next section.

Example 3.8 The four arms of a Wheatstone bridge (Fig. 3.26) have

the following resistances:

AB = 100Ω, BC = 10Ω, CD = 5Ω, and DA = 60Ω.

E



XAMPLE

3.8

FIGURE 3.26
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A galvanometer of 15Ω resistance is connected across BD. Calculate

the current through the galvanometer when a potential difference of

10 V is maintained across AC.

Solution Considering the mesh BADB, we have

100 I + 15 I – 60 I = 0

1

g

2

or 20 I + 3 I – 12 I = 0

[3.84(a)]

1

g

2

Considering the mesh BCDB, we have

10 ( I – I ) – 15 I – 5 ( I + I ) = 0



1

g

g

2

g

10 I – 30 I –5 I = 0

1

g

2

2 I – 6 I – I = 0

[3.84(b)]

1

g

2

Considering the mesh ADCEA,

60 I + 5 ( I + I ) = 10

2

2

g

65 I + 5 I = 10



2

g

13 I + I = 2

[3.84(c)]

2

g

Multiplying Eq. (3.84b) by 10

20 I – 60 I – 10 I = 0

[3.84(d)]

1

g

2

From Eqs. (3.84d) and (3.84a) we have

63 I – 2 I = 0

g

2

I = 31.5 I

[3.84(e)]

2

g



Substituting the value of I into Eq. [3.84(c)], we get

2

3.8

13 (31.5 I ) + I = 2

g

g

410.5 I = 2

g

XAMPLE

E

I = 4.87 mA.

g

3.15 METER BRIDGE

The meter bridge is shown in Fig. 3.27. It consists of

a wire of length 1 m and of uniform cross sectional

area stretched taut and clamped between two thick

metallic strips bent at right angles, as shown. The

metallic strip has two gaps across which resistors can

be connected. The end points where the wire is

clamped are connected to a cell through a key. One



end of a galvanometer is connected to the metallic

FIGURE 3.27 A meter bridge. Wire AC

strip midway between the two gaps. The other end of

is 1 m long. R is a resistance to be

the galvanometer is connected to a ‘jockey’. The jockey

measured and S is a standard

is essentially a metallic rod whose one end has a

resistance.

knife-edge which can slide over the wire to make

electrical connection.

R is an unknown resistance whose value we want to determine. It is
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connected across one of the gaps. Across the other gap, we connect a
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standard known resistance S. The jockey is connected to some point D

on the wire, a distance l cm from the end A. The jockey can be moved

along the wire. The portion AD of the wire has a resistance R l, where cm

R is the resistance of the wire per unit centimetre. The portion DC of cm

the wire similarly has a resistance R (100- l ).



cm

The four arms AB, BC, DA and CD [with resistances R, S, R l and cm

R (100- l )] obviously form a Wheatstone bridge with AC as the battery cm

arm and BD the galvanometer arm. If the jockey is moved along the wire,

then there will be one position where the galvanometer will show no

current. Let the distance of the jockey from the end A at the balance

point be l= l . The four resistances of the bridge at the balance point then 1

are R, S, R l and R (100– l ). The balance condition, Eq. [3.83(a)]

cm

1

cm

1

gives

R

R

l

l

cm 1

=

=



S

R

l

l

(3.85)

cm (100 –

)

1

100 –

1

1

Thus, once we have found out l , the unknown resistance R is known 1

in terms of the standard known resistance S by

l 1

R = S

(3.86)

100 – l 1

By choosing various values of S, we would get various values of l , 1

and calculate R each time. An error in measurement of l would naturally 1

result in an error in R. It can be shown that the percentage error in R can be
minimised by adjusting the balance point near the middle of the bridge, i.e.,



when l is close to 50 cm. ( This requires a suitable choice 1

of S.)

Example 3.9 In a metre bridge (Fig. 3.27), the null point is found at a

distance of 33.7 cm from A. If now a resistance of 12Ω is connected in

parallel with S, the null point occurs at 51.9 cm. Determine the values of R
and S.

Solution From the first balance point, we get

R

33.7

=

(3.87)

S

66.3

After S is connected in parallel with a resistance of 12Ω , the resistance
across the gap changes from S to S , where eq

12 S

S

=

eq

S + 12

and hence the new balance condition now gives



51.9

R

R ( S + 12)

=

=

48.1

S

12 S

(3.88)

eq

E

Substituting the value of R/ S from Eq. (3.87), we get

XAMPLE

51.9

S + 12

33.7

=

g

48.1

12



66.3

3.9

which gives S = 13.5Ω. Using the value of R/ S above, we get R = 6.86 Ω.
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3.16 POTENTIOMETER

This is a versatile instrument. It is basically a long piece of uniform wire,

sometimes a few meters in length across which a standard cell is

connected. In actual design, the wire is sometimes cut in several pieces

placed side by side and connected at the ends by thick metal strip.

(Fig. 3.28). In the figure, the wires run from A to C. The small vertical

portions are the thick metal strips connecting the various sections of

the wire.

A current I flows through the wire which can be varied by a variable

resistance (rheostat, R) in the circuit. Since the wire is uniform, the potential
difference between A and any point at a distance l from A is ε ( l)=φ l

(3.89)

where φ is the potential drop per unit length.

Figure 3.28 (a) shows an application of the potentiometer to compare

the emf of two cells of emf ε and ε . The points marked 1, 2, 3 form a two

1



2

way key. Consider first a position of the key where 1 and 3 are connected

so that the galvanometer is connected to ε . The jockey

1

is moved along the wire till at a point N , at a distance l

1

1

from A, there is no deflection in the galvanometer. We

can apply Kirchhoff’s loop rule to the closed loop

AN G31A and get,

1

φ l + 0 – ε = 0

(3.90)

1

1

Similarly, if another emf ε is balanced against l (AN )

2

2

2

φ l + 0 – ε = 0



(3.91)

2

2

From the last two equations

ε

l

1

1

=

ε

l

(3.92)

2

2

This simple mechanism thus allows one to compare

the emf’s of any two sources. In practice one of the cells

is chosen as a standard cell whose emf is known to a

high degree of accuracy. The emf of the other cell is then

easily calculated from Eq. (3.92).

We can also use a potentiometer to measure internal



resistance of a cell [Fig. 3.28 (b)]. For this the cell (emf ε )

whose internal resistance ( r) is to be determined is

connected across a resistance box through a key K , as

2

FIGURE 3.28 A potentiometer. G is

shown in the figure. With key K open, balance is

2

a galvanometer and R a variable

obtained at length l (AN ). Then,

1

1

resistance (rheostat). 1, 2, 3 are

ε = φ l

[3.93(a)]

terminals of a two way key

1

(a) circuit for comparing emfs of two

When key K is closed, the cell sends a current ( I )

2

cells; (b) circuit for determining



through the resistance box ( R). If V is the terminal

internal resistance of a cell.

potential difference of the cell and balance is obtained at

length l (AN ),

2

2
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V = φ l

[3.93(b)]

2
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So, we have ε /V = l / l

[3.94(a)]

1

2

But, ε = I ( r + R) and V = IR. This gives

ε /V = ( r+R) /R

[3.94(b)]

From Eq. [3.94(a)] and [3.94(b)] we have



( R+r )/ R = l / l

1

2

 l



1

r = R

– 1





 l



(3.95)

2

Using Eq. (3.95) we can find the internal resistance of a given cell.

The potentiometer has the advantage that it draws no current from

the voltage source being measured. As such it is unaffected by the internal

resistance of the source.

Example 3.10 A resistance of R Ω draws current from a

potentiometer. The potentiometer has a total r esistance R Ω



0

(Fig. 3.29). A voltage V is supplied to the potentiometer. Derive an

expression for the voltage across R when the sliding contact is in the

middle of the potentiometer.

FIGURE 3.29

Solution While the slide is in the middle of the potentiometer only

half of its resistance ( R /2) will be between the points A and B. Hence, 0

the total resistance between A and B, say, R , will be given by the

1

following expression:

1

1

1

= +

R

R

( R /2)

1

0

R R



0

R =

1

R + 2 R

0

The total resistance between A and C will be sum of resistance between

A and B and B and C, i.e., R + R /2

1

0

∴ The current flowing through the potentiometer will be

V

2 V

I =

=

E

R + R / 2

2 R + R

1

0

1



0

XAMPLE

The voltage V taken from the potentiometer will be the product of

1

current I and resistance R ,

1

3.10



2 V



V = I R =

× R





1

1

1

 2 R + R 

1

0
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Substituting for R , we have a

1

2 V

R × R

0

V =

×

1

 R × R 

R + 2 R

0

0

2

+ R 0





 R + 2 R

0



2 VR

=

3.10

V 1 2 R + R +2 R

0

or V

2 VR

XAMPLE

1 =

+

.

E

R

4 R

0

SUMMARY

1.

Current through a given area of a conductor is the net charge passing

per unit time through the area.

2.



To maintain a steady current, we must have a closed circuit in which

an external agency moves electric charge from lower to higher potential

energy. The work done per unit charge by the source in taking the

charge from lower to higher potential energy (i.e., from one terminal

of the source to the other) is called the electromotive force, or emf, of the
source. Note that the emf is not a force; it is the voltage difference between
the two terminals of a source in open circuit.

3.

Ohm’s law: The electric current I flowing through a substance is
proportional to the voltage V across its ends, i.e., V ∝ I or V = RI, where R
is called the resistance of the substance. The unit of resistance is ohm: 1Ω =
1 V A–1.

4.

The resistance R of a conductor depends on its length l and constant cross-
sectional area A through the relation, ρ l

R = A

where ρ, called resistivity is a property of the material and depends on
temperature and pressure.

5.

Electrical resistivity of substances varies over a very wide range. Metals
have low resistivity, in the range of 10–8 Ω m to 10–6 Ω m. Insulators like
glass and rubber have 1022 to 1024 times greater resistivity.

Semiconductors like Si and Ge lie roughly in the middle range of

resistivity on a logarithmic scale.



6.

In most substances, the carriers of current are electrons; in some

cases, for example, ionic crystals and electrolytic liquids, positive and

negative ions carry the electric current.

7.

Current density j gives the amount of charge flowing per second per unit
area normal to the flow, j = nq v d

where n is the number density (number per unit volume) of charge

carriers each of charge q, and v is the drift velocity of the charge d

carriers. For electrons q = – e. If j is normal to a cross-sectional area A and
is constant over the area, the magnitude of the current I through the area is
nev A.
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8.

Using E = V/l, I = nev A, and Ohm’s law, one obtains

d

2

eE



ne

= ρ

vd

m

m

The proportionality between the force eE on the electrons in a metal

due to the external field E and the drift velocity v (not acceleration) d

can be understood, if we assume that the electrons suffer collisions

with ions in the metal, which deflect them randomly. If such collisions

occur on an average at a time interval τ,

v = aτ = eEτ /m

d

where a is the acceleration of the electron. This gives

m

ρ =

2

ne τ

9.

In the temperature range in which resistivity increases linearly with

temperature, the temperature coefficient of resistivity α is defined as the
fractional increase in resistivity per unit increase in temperature.



10. Ohm’s law is obeyed by many substances, but it is not a fundamental

law of nature. It fails if

(a) V depends on I non-linearly.

(b) the relation between V and I depends on the sign of V for the same
absolute value of V.

(c) The relation between V and I is non-unique.

An example of (a) is when ρ increases with I (even if temperature is

kept fixed). A rectifier combines features (a) and (b). GaAs shows the

feature (c).

11. When a source of emf ε is connected to an external resistance R, the
voltage V across R is given by ext

ε

V = IR =

R

ext

R + r

where r is the internal resistance of the source.

12. (a) Total resistance R of n resistors connected in series is given by R = R
+ R +..... + R

1

2



n

(b) Total resistance R of n resistors connected in parallel is given by 1

1

1

1

=

+

+...... +

R

R

R

R

1

2

n

13. Kirchhoff’s Rules –

(a) Junction Rule: At any junction of circuit elements, the sum of

currents entering the junction must equal the sum of currents

leaving it.

(b) Loop Rule: The algebraic sum of changes in potential around any



closed loop must be zero.

14. The Wheatstone bridge is an arrangement of four resistances – R , R , 1

2

R , R as shown in the text. The null-point condition is given by

3

4

R

R

1

3

=

R

R

2

4

using which the value of one resistance can be determined, knowing

the other three resistances.

15. The potentiometer is a device to compare potential differences. Since
the method involves a condition of no current flow, the device can be used
to measure potential difference; internal resistance of a cell and

compare emf’s of two sources.
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Physical Quantity

Symbol

Dimensions

Unit

Remark

Electric current

I

[A]

A

SI base unit

Charge

Q, q

[T A]

C

Voltage, Electric

V

[M L2 T–3 A–1]

V



Work/charge

potential difference

Electromotive force

ε

[M L2 T–3 A–1]

V

Work/charge

Resistance

R

[M L2 T –3 A–2]

Ω

R = V/ I

Resistivity

ρ

[M L3 T–3 A–2]

Ω m

R = ρ l/A

Electrical

σ

[M–1 L–3 T3 A2]



S

σ = 1/ρ

conductivity

Electric field

E

[M L T–3 A–1]

 

V m–1

Electric force

charge

e E

Drift speed

v

[L T–1]

 

m s–1

v =

τ

d

d



m

Relaxation time

τ

[T]

s

Current density

j

[L–2 A]

A m–2

current/area

Mobility

µ

[M L3 T –4 A–1]

m2 V–1s –1

v / E

d

POINTS TO PONDER

1.

Current is a scalar although we represent current with an arrow.

Currents do not obey the law of vector addition. That current is a



scalar also follows from it’s definition. The current I through an area of
cross-section is given by the scalar product of two vectors: I = j . ∆S

where j and ∆S are vectors.

2.

Refer to V-I curves of a resistor and a diode as drawn in the text. A

resistor obeys Ohm’s law while a diode does not. The assertion that

V = IR is a statement of Ohm’s law is not true. This equation defines
resistance and it may be applied to all conducting devices whether they
obey Ohm’s law or not. The Ohm’s law asserts that the plot of I

versus V is linear i.e., R is independent of V.

Equation E = ρ j leads to another statement of Ohm’s law, i.e., a conducting
material obeys Ohm’s law when the resistivity of the material does not
depend on the magnitude and direction of applied

electric field.

3.

Homogeneous conductors like silver or semiconductors like pure

germanium or germanium containing impurities obey Ohm’s law

within some range of electric field values. If the field becomes too

strong, there are departures from Ohm’s law in all cases.

4.

Motion of conduction electrons in electric field E is the sum of (i)
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motion due to random collisions and (ii) that due to E. The motion

Current

Electricity

due to random collisions averages to zero and does not contribute to

v (Chapter 11, Textbook of Class XI). v , thus is only due to applied d

d

electric field on the electron.

5.

The relation j = ρ v should be applied to each type of charge carriers
separately. In a conducting wire, the total current and charge density arises
from both positive and negative charges:

j = ρ v + ρ v

+

+

–

–

ρ = ρ + ρ

+

–

Now in a neutral wire carrying electric current,



ρ = – ρ

+

–

Further, v ~ 0 which gives

+

ρ = 0

j = ρ v

–

Thus, the relation j = ρ v does not apply to the total current charge density.

6.

Kirchhoff’s junction rule is based on conservation of charge and the

outgoing currents add up and are equal to incoming current at a

junction. Bending or reorienting the wire does not change the validity

of Kirchhoff’s junction rule.

EXERCISES

3.1

The storage battery of a car has an emf of 12 V. If the internal

resistance of the battery is 0.4 Ω, what is the maximum current

that can be drawn from the battery?

3.2



A battery of emf 10 V and internal resistance 3 Ω is connected to a

resistor. If the current in the circuit is 0.5 A, what is the resistance

of the resistor? What is the terminal voltage of the battery when the

circuit is closed?

3.3

(a) Three resistors 1 Ω, 2 Ω, and 3 Ω are combined in series. What

is the total resistance of the combination?

(b) If the combination is connected to a battery of emf 12 V and

negligible internal resistance, obtain the potential drop across

each resistor.

3.4

(a) Three resistors 2 Ω, 4 Ω and 5 Ω are combined in parallel. What

is the total resistance of the combination?

(b) If the combination is connected to a battery of emf 20 V and

negligible internal resistance, determine the current through

each resistor, and the total current drawn from the battery.

3.5

At room temperature (27.0 °C) the resistance of a heating element

is 100 Ω. What is the temperature of the element if the resistance is

found to be 117 Ω, given that the temperature coefficient of the



material of the resistor is 1.70 × 10–4 °C–1.

3.6

A negligibly small current is passed through a wire of length 15 m

and uniform cross-section 6.0 × 10–7 m2, and its resistance is

measured to be 5.0 Ω. What is the resistivity of the material at the

temperature of the experiment?

3.7

A silver wire has a resistance of 2.1 Ω at 27.5 °C, and a resistance

of 2.7 Ω at 100 °C. Determine the temperature coefficient of

resistivity of silver.

3.8

A heating element using nichrome connected to a 230 V supply
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draws an initial current of 3.2 A which settles after a few seconds to
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a steady value of 2.8 A. What is the steady temperature of the heating

element if the room temperature is 27.0 °C? Temperature coefficient

of resistance of nichrome averaged over the temperature range

involved is 1.70 × 10–4 °C–1.

3.9



Determine the current in each branch of the network shown in

Fig. 3.30:

FIGURE 3.30

3.10

(a) In a metre bridge [Fig. 3.27], the balance point is found to be at

39.5 cm from the end A, when the resistor Y is of 12.5 Ω.

Determine the resistance of X. Why are the connections between

resistors in a Wheatstone or meter bridge made of thick copper

strips?

(b) Determine the balance point of the bridge above if X and Y are
interchanged.

(c) What happens if the galvanometer and cell are interchanged at

the balance point of the bridge? Would the galvanometer show

any current?

3.11

A storage battery of emf 8.0 V and internal resistance 0.5 Ω is being

charged by a 120 V dc supply using a series resistor of 15.5 Ω. What

is the terminal voltage of the battery during charging? What is the

purpose of having a series resistor in the charging circuit?

3.12

In a potentiometer arrangement, a cell of emf 1.25 V gives a balance



point at 35.0 cm length of the wire. If the cell is replaced by another

cell and the balance point shifts to 63.0 cm, what is the emf of the

second cell?

3. 13

The number density of free electrons in a copper conductor

estimated in Example 3.1 is 8.5 × 1028 m–3. How long does an electron

take to drift from one end of a wire 3.0 m long to its other end? The

area of cross-section of the wire is 2.0 × 10–6 m2 and it is carrying a

current of 3.0 A.

ADDITIONAL EXERCISES

3. 14

The earth’s surface has a negative surface charge density of 10–9 C

m–2. The potential difference of 400 kV between the top of the

atmosphere and the surface results (due to the low conductivity of

the lower atmosphere) in a current of only 1800 A over the entire
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globe. If there were no mechanism of sustaining atmospheric electric
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field, how much time (roughly) would be required to neutralise the



earth’s surface? (This never happens in practice because there is a

mechanism to replenish electric charges, namely the continual

thunderstorms and lightning in different parts of the globe). (Radius

of earth = 6.37 × 106 m.)

3.15

(a) Six lead-acid type of secondary cells each of emf 2.0 V and internal

resistance 0.015 Ω are joined in series to provide a supply to a

resistance of 8.5 Ω. What are the current drawn from the supply

and its terminal voltage?

(b) A secondary cell after long use has an emf of 1.9 V and a large

internal resistance of 380 Ω. What maximum current can be drawn

from the cell? Could the cell drive the starting motor of a car?

3.16

Two wires of equal length, one of aluminium and the other of copper

have the same resistance. Which of the two wires is lighter? Hence

explain why aluminium wires are preferred for overhead power cables.

(ρ = 2.63 × 10–8 Ω m, ρ = 1.72 × 10–8 Ω m, Relative density of

Al

Cu

Al = 2.7, of Cu = 8.9.)



3.17

What conclusion can you draw from the following observations on a

resistor made of alloy manganin?

Current

Voltage

Current

Voltage

A

V

A

V

0.2

3.94

3.0

59.2

0.4

7.87

4.0

78.8

0.6



11.8

5.0

98.6

0.8

15.7

6.0

118.5

1.0

19.7

7.0

138.2

2.0

39.4

8.0

158.0

3.18

Answer the following questions:

(a) A steady current flows in a metallic conductor of nonuniform

cross-section. Which of these quantities is constant along the

conductor: current, current density, electric field, drift speed?



(b) Is Ohm’s law universally applicable for all conducting elements?

If not, give examples of elements which do not obey Ohm’s law.

(c) A low voltage supply from which one needs high currents must

have very low internal resistance. Why?

(d) A high tension (HT) supply of, say, 6 kV must have a very large

internal resistance. Why?

3.19

Choose the correct alternative:

(a) Alloys of metals usually have (greater/less) resistivity than that

of their constituent metals.

(b) Alloys usually have much (lower/higher) temperature

coefficients of resistance than pure metals.

(c) The resistivity of the alloy manganin is nearly independent of/

increases rapidly with increase of temperature.

(d) The resistivity of a typical insulator (e.g., amber) is greater than

that of a metal by a factor of the order of (1022/103).

3.20

(a) Given n resistors each of resistance R, how will you combine them to
get the (i) maximum (ii) minimum effective resistance?

What is the ratio of the maximum to minimum resistance?

(b) Given the resistances of 1 Ω, 2 Ω, 3 Ω, how will be combine them



to get an equivalent resistance of (i) (11/3) Ω (ii) (11/5) Ω, (iii) 6

Ω, (iv) (6/11) Ω?

(c) Determine the equivalent resistance of networks shown in
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Fig. 3.31.
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FIGURE 3.31

3.21

Determine the current drawn from a 12V supply with internal

resistance 0.5Ω by the infinite network shown in Fig. 3.32. Each

resistor has 1Ω resistance.

FIGURE 3.32

3.22

Figure 3.33 shows a potentiometer with a cell of 2.0 V and internal

resistance 0.40 Ω maintaining a potential drop across the resistor

wire AB. A standard cell which maintains a constant emf of 1.02 V

(for very moderate currents upto a few mA) gives a balance point at

67.3 cm length of the wire. To ensure very low currents drawn from

the standard cell, a very high resistance of 600 kΩ is put in series

with it, which is shorted close to the balance point. The standard



cell is then replaced by a cell of unknown emf ε and the balance

point found similarly, turns out to be at 82.3 cm length of the wire.

FIGURE 3.33

(a) What is the value ε ?
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(b) What purpose does the high resistance of 600 kΩ have?
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(c) Is the balance point affected by this high resistance?

(d) Is the balance point affected by the internal resistance of the

driver cell?

(e) Would the method work in the above situation if the driver cell

of the potentiometer had an emf of 1.0V instead of 2.0V?

(f ) Would the circuit work well for determining an extremely small

emf, say of the order of a few mV (such as the typical emf of a

thermo-couple)? If not, how will you modify the circuit?

3.23

Figure 3.34 shows a potentiometer circuit for comparison of two

resistances. The balance point with a standard resistor R = 10.0 Ω

is found to be 58.3 cm, while that with the unknown resistance X is



68.5 cm. Determine the value of X. What might you do if you failed

to find a balance point with the given cell of emf ε ?

FIGURE 3.34

3.24

Figure 3.35 shows a 2.0 V potentiometer used for the determination

of internal resistance of a 1.5 V cell. The balance point of the cell in

open circuit is 76.3 cm. When a resistor of 9.5 Ω is used in the external

circuit of the cell, the balance point shifts to 64.8 cm length of the

potentiometer wire. Determine the internal resistance of the cell.

FIGURE 3.35
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Chapter Four

MOVING CHARGES

AND MAGNETISM

4.1 INTRODUCTION

Both Electricity and Magnetism have been known for more than 2000

years. However, it was only about 200 years ago, in 1820, that it was

realised that they were intimately related*. During a lecture demonstration
in the summer of 1820, the Danish physicist Hans Christian Oersted noticed
that a current in a straight wire caused a noticeable deflection in

a nearby magnetic compass needle. He investigated this phenomenon.



He found that the alignment of the needle is tangential to an imaginary

circle which has the straight wire as its centre and has its plane

perpendicular to the wire. This situation is depicted in Fig.4.1(a). It is

noticeable when the current is large and the needle sufficiently close to

the wire so that the earth’s magnetic field may be ignored. Reversing the

direction of the current reverses the orientation of the needle [Fig. 4.1(b)].

The deflection increases on increasing the current or bringing the needle

closer to the wire. Iron filings sprinkled around the wire arrange

themselves in concentric circles with the wire as the centre [Fig. 4.1(c)].

Oersted concluded that moving charges or currents produced a

magnetic field in the surrounding space.

Following this there was intense experimentation. In 1864, the laws

obeyed by electricity and magnetism were unified and formulated by

* See the box in Chapter 1, Page 3.
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James Maxwell who then realised that light was electromagnetic waves.

Radio waves were discovered by Hertz, and produced by J.C.Bose and

G. Marconi by the end of the 19th century. A remarkable scientific and

technological progress has taken place in the 20th century. This is due to

our increased understanding of electromagnetism and the invention of

devices for production, amplification, transmission and detection of

electromagnetic waves.

FIGURE 4.1 The magnetic field due to a straight long current-carrying

wire. The wire is perpendicular to the plane of the paper. A ring of

compass needles surrounds the wire. The orientation of the needles is

shown when (a) the current emerges out of the plane of the paper,

(b) the current moves into the plane of the paper. (c) The arrangement of

iron filings around the wire. The darkened ends of the needle represent

north poles. The effect of the earth’s magnetic field is neglected.

In this chapter, we will see how magnetic field exerts

forces on moving charged particles, like electrons,

HANS CHRISTIAN OERSTED

protons, and current-carrying wires. We shall also learn

how currents produce magnetic fields. We shall see how

particles can be accelerated to very high energies in a



cyclotron. We shall study how currents and voltages are

detected by a galvanometer.

In this and subsequent Chapter on magnetism,

we adopt the following convention: A current or a

field (electric or magnetic) emerging out of the plane of the

paper is depicted by a dot (¤). A current or a field going

into the plane of the paper is depicted by a cross ( ⊗ )*.

Figures. 4.1(a) and 4.1(b) correspond to these two

Hans Christian Oersted

situations, respectively.

(1777–1851) Danish

physicist and chemist,

4.2 MAGNETIC FORCE

professor at Copenhagen.

He observed that a

 

4.2.1 Sources and fields

(

compass needle suffers a

1777–



Before we introduce the concept of a magnetic field B, we

deflection when placed

near a wire carrying an

shall recapitulate what we have learnt in Chapter 1 about

electric current. This

1

the electric field E. We have seen that the interaction

discovery gave the first

851

between two charges can be considered in two stages.

empirical evidence of a

The charge Q, the source of the field, produces an electric

connection between electric

)

field E, where

and magnetic phenomena.

* A dot appears like the tip of an arrow pointed at you, a cross is like the
feathered 133

tail of an arrow moving away from you.



Physics

E = Q ˆr / (4πε ) r 2

(4.1)

0

where ˆr is unit vector along r, and the field E is a vector field. A charge q
interacts with this field and experiences a force F given by

F = q E = q Q ˆr / (4πε ) r 2

(4.2)

0

As pointed out in the Chapter 1, the field E is not

just an artefact but has a physical role. It can convey

energy and momentum and is not established

instantaneously but takes finite time to propagate. The

concept of a field was specially stressed by Faraday and

was incorporated by Maxwell in his unification of

electricity and magnetism. In addition to depending on



)

each point in space, it can also vary with time, i.e., be a

82

Hendrik Antoon Lorentz

function of time. In our discussions in this chapter, we

9

(1853 – 1928) Dutch

will assume that the fields do not change with time.

1

theoretical physicist,

The field at a particular point can be due to one or

professor at Leiden. He

more charges. If there are more charges the fields add

53 –

investigated the

vectorially. You have already learnt in Chapter 1 that this

8

relationship between

is called the principle of superposition. Once the field is

(1



electricity, magnetism, and

mechanics. In order to

known, the force on a test charge is given by Eq. (4.2).

explain the observed effect

Just as static charges produce an electric field, the

of magnetic fields on

currents or moving charges produce (in addition) a

emitters of light (Zeeman

magnetic field, denoted by B (r), again a vector field. It

effect), he postulated the

has several basic properties identical to the electric field.

existence of electric charges

It is defined at each point in space (and can in addition

in the atom, for which he

depend on time). Experimentally, it is found to obey the

was awarded the Nobel Prize

in 1902. He derived a set of

principle of superposition: the magnetic field of several

transformation equations

sources is the vector addition of magnetic field of each



(known after him, as

individual source.

Lorentz transformation

equations) by some tangled

4.2.2 Magnetic Field, Lorentz Force

mathematical arguments,

Let us suppose that there is a point charge q (moving

but he was not aware that

with a velocity v and, located at r at a given time t) in these equations hinge
on a

HENDRIK ANTOON LORENTZ

presence of both the electric field E (r) and the magnetic

new concept of space and

field B (r). The force on an electric charge q due to both of

time.

them can be written as

F = q [ E (r) + v × B (r)] ≡ F

+F

(4.3)

electric

magnetic



This force was given first by H.A. Lorentz based on the extensive

experiments of Ampere and others. It is called the Lorentz force. You

have already studied in detail the force due to the electric field. If we

look at the interaction with the magnetic field, we find the following

features.

(i) It depends on q, v and B (charge of the particle, the velocity and the
magnetic field). Force on a negative charge is opposite to that on a positive
charge.

(ii) The magnetic force q [ v × B ] includes a vector product of velocity 134

and magnetic field. The vector product makes the force due to magnetic
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field vanish (become zero) if velocity and magnetic field are parallel

or antiparallel. The force acts in a (sideways) direction perpendicular

to both the velocity and the magnetic field.

Its direction is given by the screw rule or

right hand rule for vector (or cross) product

as illustrated in Fig. 4.2.

(iii) The magnetic force is zero if charge is not

moving (as then |v|= 0). Only a moving

charge feels the magnetic force.



The expression for the magnetic force helps

us to define the unit of the magnetic field, if

one takes q, F and v, all to be unity in the force

equation F = q [ v × B] = q v B sin θ ˆ

n

FIGURE 4.2 The direction of the magnetic

, where θ

force acting on a charged particle. (a) The

is the angle between v and B [see Fig. 4.2 (a)].

force on a positively charged particle with

The magnitude of magnetic field B is 1 SI unit,

velocity v and making an angle θ with the

when the force acting on a unit charge (1 C),

magnetic field B is given by the right-hand

moving perpendicular to B with a speed 1m/s,

rule. (b) A moving charged particle q is

is one newton.

deflected in an opposite sense to – q in the

Dimensionally, we have [ B] = [ F/qv] and the unit

presence of magnetic field.



of B are Newton second / (coulomb metre). This

unit is called tesla (T ) named after Nikola Tesla

(1856 – 1943). Tesla is a rather large unit. A smaller unit (non-SI) called

gauss (=10–4 tesla) is also often used. The earth’s magnetic field is about
3.6 × 10–5 T. Table 4.1 lists magnetic fields over a wide range in the
universe.

TABLE 4.1 ORDER OF MAGNITUDES OF MAGNETIC FIELDS IN
A VARIETY OF PHYSICAL SITUATIONS

Physical situation

Magnitude of B (in tesla)

Surface of a neutron star

108

Typical large field in a laboratory

1

Near a small bar magnet

10–2

On the earth’s surface

10–5

Human nerve fibre

10–10

Interstellar space



10–12

4.2.3 Magnetic force on a current-carrying conductor

We can extend the analysis for force due to magnetic field on a single

moving charge to a straight rod carrying current. Consider a rod of a

uniform cross-sectional area A and length l. We shall assume one kind of
mobile carriers as in a conductor (here electrons). Let the number density of
these mobile charge carriers in it be n. Then the total number of mobile
charge carriers in it is nAl. For a steady current I in this 135

conducting rod, we may assume that each mobile carrier has an average

Physics

drift velocity v (see Chapter 3). In the presence of an external magnetic d

field B, the force on these carriers is:

F = ( nAl) q v × B

d

where q is the value of the charge on a carrier. Now nqv is the current d

density j and |( nq v )| A is the current I (see Chapter 3 for the discussion d
of current and current density). Thus,

F = [( nqev ) Al ] × B = [ j Al ] × B

d

= I1 × B

(4.4)



where l is a vector of magnitude l, the length of the rod, and with a direction
identical to the current I. Note that the current I is not a vector. In the last
step leading to Eq. (4.4), we have transferred the vector sign from j to l.

Equation (4.4) holds for a straight rod. In this equation, B is the external
magnetic field. It is not the field produced by the current-carrying rod. If the
wire has an arbitrary shape we can calculate the Lorentz force on it

by considering it as a collection of linear strips dl and summing

j

F =

d

I

∑ l × B

j

j

This summation can be converted to an integral in most cases.

ON PERMITTIVITY AND PERMEABILITY

In the universal law of gravitation, we say that any two point masses exert a
force on each other which is proportional to the product of the masses m , m
and inversely 1

2

proportional to the square of the distance r between them. We write it as F =
Gm m / r 2

1



2

where G is the universal constant of gravitation. Similarly in Coulomb’s
law of electrostatics we write the force between two point charges q , q ,
separated by a distance r as 1

2

F = kq q / r 2 where k is a constant of proportionality. In SI units, k is taken
as 1 2

1/4πε where ε is the permittivity of the medium. Also in magnetism, we get
another constant, which in SI units, is taken as µ/4π where µ is the
permeability of the medium.

Although G, ε and µ arise as proportionality constants, there is a difference
between gravitational force and electromagnetic force. While the
gravitational force does not depend on the intervening medium, the
electromagnetic force depends on the medium between the two charges or
magnets. Hence while G is a universal constant, ε and µ depend on the
medium. They have different values for different media. The product εµ
turns out to be related to the speed v of electromagnetic radiation in the
medium through εµ =1/ v 2.

Electric permittivity ε is a physical quantity that describes how an electric
field affects and is affected by a medium. It is determined by the ability of a
material to polarise in response to an applied field, and thereby to cancel,
partially, the field inside the material.

Similarly, magnetic permeability µ is the ability of a substance to acquire
magnetisation in magnetic fields. It is a measure of the extent to which
magnetic field can penetrate matter.

4.1

Example 4.1 A straight wire of mass 200 g and length 1.5 m carries

a current of 2 A. It is suspended in mid-air by a uniform horizontal



magnetic field B (Fig. 4.3). What is the magnitude of the magnetic

XAMPLE

field?
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FIGURE 4.3

Solution From Eq. (4.4), we find that there is an upward force F, of
magnitude IlB, . For mid-air suspension, this must be balanced by the force
due to gravity:

m g = I lB

m g

B = I l

E

http://www.phys.hawaii.edu/~teb/optics/java/partmagn/index.html
Interactive demonstration: Charged particles moving in a magnetic
field.

XAMPLE

0.2 × 9.8

=

= 0.65 T



2 × 1.5

Note that it would have been sufficient to specify m/ l, the mass per

4.1

unit length of the wire. The earth’s magnetic field is approximately

4 × 10–5 T and we have ignored it.

Example 4.2 If the magnetic field is parallel to the positive y-axis and the
charged particle is moving along the positive x-axis (Fig. 4.4), which way
would the Lorentz force be for (a) an electron (negative charge), (b) a
proton (positive charge).

E

FIGURE 4.4

XAMPLE

Solution The velocity v of particle is along the x-axis, while B, the
magnetic field is along the y-axis, so v × B is along the z-axis (screw 4.2

rule or right-hand thumb rule). So, (a) for electron it will be along – z

axis. (b) for a positive charge (proton) the force is along + z axis.

4.3 MOTION IN A MAGNETIC FIELD

We will now consider, in greater detail, the motion of a charge moving in

a magnetic field. We have learnt in Mechanics (see Class XI book, Chapter

6) that a force on a particle does work if the force has a component along

(or opposed to) the direction of motion of the particle. In the case of motion

137
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of a charge in a magnetic field, the magnetic force is

perpendicular to the velocity of the particle. So no work is done

and no change in the magnitude of the velocity is produced

(though the direction of momentum may be changed). [Notice

that this is unlike the force due to an electric field, q E, which can have a
component parallel (or antiparallel) to motion and thus can transfer energy
in addition to momentum.]

We shall consider motion of a charged particle in a uniform

magnetic field. First consider the case of v perpendicular to B.

The perpendicular force, q v × B, acts as a centripetal force and produces a
circular motion perpendicular to the magnetic field.

The particle will describe a circle if v and B are perpendicular to each
other (Fig. 4.5).

If velocity has a component along B, this component

FIGURE 4.5 Circular motion

remains unchanged as the motion along the magnetic field will

not be affected by the magnetic field. The motion

in a plane perpendicular to B is as before a

circular one, thereby producing a helical motion

(Fig. 4.6).

You have already learnt in earlier classes



(See Class XI, Chapter 4) that if r is the radius

of the circular path of a particle, then a force of

m v 2 / r, acts perpendicular to the path towards

the centre of the circle, and is called the

centripetal force. If the velocity v is

perpendicular to the magnetic field B, the

magnetic force is perpendicular to both v and

B and acts like a centripetal force. It has a

magnitude q v B. Equating the two expressions

for centripetal force,

m v 2/ r = q v B, which gives

r = m v / qB

(4.5)

FIGURE 4.6 Helical motion

for the radius of the circle described by the

charged particle. The larger the momentum,

the larger is the radius and bigger the circle described. If ω is the angular

frequency, then v = ω r. So,

ω = 2π ν = q B/ m

[4.6(a)]



which is independent of the velocity or energy . Here ν is the frequency of

rotation. The independence of ν from energy has important application

in the design of a cyclotron (see Section 4.4.2).

The time taken for one revolution is T= 2π/ω ≡ 1/ν. If there is a

component of the velocity parallel to the magnetic field (denoted by v ), it

||

will make the particle move along the field and the path of the particle

would be a helical one (Fig. 4.6). The distance moved along the magnetic

field in one rotation is called pitch p. Using Eq. [4.6 (a)], we have p = v T =
2π m v / q B

[4.6(b)]

||

||

The radius of the circular component of motion is called the radius of
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the helix.
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Example 4.3 What is the radius of the path of an electron (mass

9 × 10-31 kg and charge 1.6 × 10–19 C) moving at a speed of 3 ×107 m/s in

a magnetic field of 6 × 10–4 T perpendicular to it? What is its



frequency? Calculate its energy in keV. ( 1 eV = 1.6 × 10–19 J).

E

Solution Using Eq. (4.5) we find

XAMPLE

r = m v / ( qB) = 9 ×10–31 kg × 3 × 107 m s–1 / ( 1.6 × 10–19 C × 6 × 10–4
T )

= 26 × 10–2 m = 26 cm

ν = v / (2 π r) = 2×106 s–1 = 2×106 Hz =2 MHz.

4.3

E = (½ ) mv 2 = (½ ) 9 × 10–31 kg × 9 × 1014 m2/s2 = 40.5 ×10–17 J

≈ 4×10–16 J = 2.5 keV.

HELICAL MOTION OF CHARGED PARTICLES AND AURORA
BORIOLIS

In polar regions like Alaska and Northern Canada, a splendid display of
colours is seen in the sky. The appearance of dancing green pink lights is
fascinating, and equally puzzling. An explanation of this natural
phenomenon is now found in physics, in terms of what we have studied
here.

Consider a charged particle of mass m and charge q, entering a region of
magnetic field B with an initial velocity v. Let this velocity have a
component v parallel to the p magnetic field and a component v normal to
it. There is no force on a charged particle in n

the direction of the field. Hence the particle continues to travel with the
velocity v parallel p



to the field. The normal component v of the particle results in a Lorentz
force (v × B) n n

which is perpendicular to both v and B. As seen in Section 4.3.1 the particle
thus has a n

tendency to perform a circular motion in a plane perpendicular to the
magnetic field.

When this is coupled with the velocity parallel to the field, the resulting
trajectory will be a helix along the magnetic field line, as shown in Figure
(a) here. Even if the field line bends, the helically moving particle is trapped
and guided to move around the field line.

Since the Lorentz force is normal to the velocity of each point, the field
does no work on the particle and the magnitude of velocity remains the
same.

During a solar flare, a large number of electrons and protons are ejected
from the sun.

Some of them get trapped in the earth’s magnetic field and move in helical
paths along the field lines. The field lines come closer to each other near the
magnetic poles; see figure (b).

Hence the density of charges increases near the poles. These particles
collide with atoms and molecules of the atmosphere. Excited oxygen atoms
emit green light and excited nitrogen atoms emits pink light. This
phenomenon is called Aurora Boriolis in physics.
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4.4

MOTION IN COMBINED ELECTRIC AND MAGNETIC

FIELDS



4.4.1 Velocity selector

You know that a charge q moving with velocity v in presence of both
electric and magnetic fields experiences a force given by Eq. (4.3), that is, F
= q (E + v × B) = F + F

E

B

We shall consider the simple case in which electric and magnetic

fields are perpendicular to each other and also perpendicular to

the velocity of the particle, as shown in Fig. 4.7. We have,

ˆ

ˆ

ˆ

E = E , ,

j B = B k v = v i

ˆ

F = qE = qE j F = qv × B = q ( ˆ

ˆ

v i × Bk)

ˆ

,

,



= – qB j

E

B

Therefore, F = q ( E vB) ˆ

–

j .

Thus, electric and magnetic forces are in opposite directions as

shown in the figure. Suppose, we adjust the value of E and B such that
magnitude of the two forces are equal. Then, total force on the charge is
zero and the charge will move in the fields undeflected.

FIGURE 4.7

This happens when,

E

qE = qvB or v =

(4.7)

B

This condition can be used to select charged particles of a particular

velocity out of a beam containing charges moving with different speeds

(irrespective of their charge and mass). The crossed E and B fields,
therefore, serve as a velocity selector. Only particles with speed E/ B pass
undeflected through the region of crossed fields. This method was
employed by J. J. Thomson in 1897 to measure the charge to mass ratio



( e/ m) of an electron. The principle is also employed in Mass Spectrometer
–

a device that separates charged particles, usually ions, according to their

charge to mass ratio.

4.4.2 Cyclotron

The cyclotron is a machine to accelerate charged particles or ions to high

energies. It was invented by E.O. Lawrence and M.S. Livingston in 1934

to investigate nuclear structure. The cyclotron uses both electric and

magnetic fields in combination to increase the energy of charged particles.

As the fields are perpendicular to each other they are called crossed

fields. Cyclotron uses the fact that the frequency of revolution of the
charged particle in a magnetic field is independent of its energy. The
particles move most of the time inside two semicircular disc-like metal

containers, D and D , which are called dees as they look like the letter 1

2

Cyclotron

Interactive demonstration:



http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=50

D. Figure 4.8 shows a schematic view of the cyclotron. Inside the metal

boxes the particle is shielded and is not acted on by the electric field. The

magnetic field, however, acts on the particle and makes it go round in a

circular path inside a dee. Every time the particle moves from one dee to

another it is acted upon by the electric field. The sign of the electric field

is changed alternately in tune with the circular motion of the particle.

This ensures that the particle is always accelerated by the electric field.
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Each time the acceleration increases the energy of the particle. As energy
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increases, the radius of the circular path increases. So the path is a

spiral one.

The whole assembly is evacuated to minimise collisions between the

ions and the air molecules. A high frequency alternating voltage is applied

to the dees. In the sketch shown in Fig. 4.8, positive ions or positively

charged particles (e.g., protons) are released at the centre P. They move

in a semicircular path in one of the dees and arrive in the gap between



the dees in a time interval T/2; where T, the period of revolution, is given by
Eq. (4.6), 1

2 m

π

T =

=

ν

qB

c

qB

or ν =

c

2π

(4.8)

m

This frequency is called the cyclotron frequency for obvious reasons

and is denoted by ν .

c

The frequency ν of the applied voltage is adjusted so that the polarity

a

of the dees is reversed in the same time that it takes the ions to complete



one half of the revolution. The requirement ν = ν is called the resonance a

c

condition. The phase of the supply is adjusted so that when the positive ions
arrive at the edge of D , D is at a lower 1

2

potential and the ions are accelerated across the

gap. Inside the dees the particles travel in a region

free of the electric field. The increase in their

kinetic energy is qV each time they cross from

one dee to another ( V refers to the voltage across

the dees at that time). From Eq. (4.5), it is clear

that the radius of their path goes on increasing

each time their kinetic energy increases. The ions

are repeatedly accelerated across the dees until

they have the required energy to have a radius

approximately that of the dees. They are then

deflected by a magnetic field and leave the system

via an exit slit. From Eq. (4.5) we have,

qBR

v =

(4.9)



m

where R is the radius of the trajectory at exit, and

equals the radius of a dee.

Hence, the kinetic energy of the ions is,

FIGURE 4.8 A schematic sketch of the

cyclotron. There is a source of charged

2

2

2

1

q B R

2

mv =

(4.10)

particles or ions at P which move in a

2

2 m

circular fashion in the dees, D and D , on

1

2



account of a uniform perpendicular

The operation of the cyclotron is based on the

magnetic field B. An alternating voltage

fact that the time for one revolution of an ion is

source accelerates these ions to high

independent of its speed or radius of its orbit.

speeds. The ions are eventually ‘extracted’

The cyclotron is used to bombard nuclei with

at the exit port.
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energetic particles, so accelerated by it, and study
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the resulting nuclear reactions. It is also used to implant ions into solids

and modify their properties or even synthesise new materials. It is used

in hospitals to produce radioactive substances which can be used in

diagnosis and treatment.

Example 4.4 A cyclotron’s oscillator frequency is 10 MHz. What

should be the operating magnetic field for accelerating protons? If

the radius of its ‘dees’ is 60 cm, what is the kinetic energy (in MeV) of

the proton beam produced by the accelerator.



( e =1.60 × 10–19 C, m = 1.67 × 10–27 kg, 1 MeV = 1.6 × 10–13 J).

p

Solution The oscillator frequency should be same as proton’s

cyclotron frequency.

Using Eqs. (4.5) and [4.6(a)] we have

B = 2π m ν/ q =6.3 ×1.67 × 10–27 × 107 / (1.6 × 10–19) = 0.66 T

4.4

Final velocity of protons is

v = r × 2π ν = 0.6 m × 6.3 ×107 = 3.78 × 107 m/s.

XAMPLE

E = ½ mv 2 = 1.67 ×10–27 × 14.3 × 1014 / (2 × 1.6 × 10–13) = 7 MeV.

E

ACCELERATORS IN INDIA

India has been an early entrant in the area of accelerator-based research.
The vision of Dr. Meghnath Saha created a 37" Cyclotron in the Saha
Institute of Nuclear Physics in Kolkata in 1953. This was soon followed by
a series of Cockroft-Walton type of accelerators established in Tata Institute
of Fundamental Research (TIFR), Mumbai, Aligarh Muslim University
(AMU), Aligarh, Bose Institute, Kolkata and Andhra University, Waltair.

The sixties saw the commissioning of a number of Van de Graaff
accelerators: a 5.5 MV

terminal machine in Bhabha Atomic Research Centre (BARC), Mumbai
(1963); a 2 MV terminal machine in Indian Institute of Technology (IIT),
Kanpur; a 400 kV terminal machine in Banaras Hindu University (BHU),



Varanasi; and Punjabi University, Patiala. One 66 cm Cyclotron donated by
the Rochester University of USA was commissioned in Panjab University,
Chandigarh. A small electron accelerator was also established in University
of Pune, Pune.

In a major initiative taken in the seventies and eighties, a Variable Energy
Cyclotron was built indigenously in Variable Energy Cyclotron Centre
(VECC), Kolkata; 2 MV Tandem Van de Graaff accelerator was developed
and built in BARC and a 14 MV Tandem Pelletron accelerator was installed
in TIFR.

This was soon followed by a 15 MV Tandem Pelletron established by
University Grants Commission (UGC), as an inter-university facility in
Inter-University Accelerator Centre (IUAC), New Delhi; a 3 MV Tandem
Pelletron in Institute of Physics, Bhubaneshwar; and two 1.7 MV
Tandetrons in Atomic Minerals Directorate for Exploration and Research,
Hyderabad and Indira Gandhi Centre for Atomic Research, Kalpakkam.
Both TIFR and IUAC are augmenting their facilities with the addition of
superconducting LINAC modules to accelerate the ions to higher energies.

Besides these ion accelerators, the Department of Atomic Energy (DAE)
has developed many electron accelerators. A 2 GeV Synchrotron Radiation
Source is being built in Raja Ramanna Centre for Advanced Technologies,
Indore.

The Department of Atomic Energy is considering Accelerator Driven
Systems (ADS) for power production and fissile material breeding as future
options.
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4.5

MAGNETIC FIELD DUE TO A CURRENT ELEMENT,



BIOT-SAVART LAW

All magnetic fields that we know are due to currents (or moving charges)

and due to intrinsic magnetic moments of particles. Here, we shall study

the relation between current and the magnetic field it produces.

It is given by the Biot-Savart’s law. Figure 4.9 shows a finite

conductor XY carrying current I. Consider an infinitesimal

element d l of the conductor. The magnetic field dB due to this element is to
be determined at a point P which is at a distance r from it. Let θ be the angle
between dl and the displacement vector

r. According to Biot-Savart’s law, the magnitude of the magnetic

field dB is proportional to the current I, the element length |dl|, and
inversely proportional to the square of the distance r. Its direction* is
perpendicular to the plane containing dl and r .

Thus, in vector notation,

I d ×

d

∝

l

r

B

3

r



FIGURE 4.9 Illustration of

µ

the Biot-Savart law. The

I d l × r

0

=

current element I dl

 

3

[4.11(a)]

4π

r

produces a field dB at a

where µ /4π is a constant of proportionality. The above

distance r. The ⊗ sign

0

expression holds when the medium is vacuum.

indicates that the

The magnitude of this field is,

field is perpendicular



to the plane of this

µ I d l sinθ

0

page and directed

dB =

2

[4.11(b)]

4π

r

into it.

where we have used the property of cross-product. Equation [4.11 (a)]

constitutes our basic equation for the magnetic field. The proportionality

constant in SI units has the exact value,

µ0

7

10−

=

Tm/A

4π

[4.11(c)]



We call µ the permeability of free space (or vacuum).

0

The Biot-Savart law for the magnetic field has certain similarities as

well as differences with the Coulomb’s law for the electrostatic field. Some

of these are:

(i) Both are long range, since both depend inversely on the square of

distance from the source to the point of interest. The principle of

superposition applies to both fields. [In this connection, note that

the magnetic field is linear in the source I dl just as the electrostatic field is
linear in its source: the electric charge.]

(ii) The electrostatic field is produced by a scalar source, namely, the

electric charge. The magnetic field is produced by a vector source

I dl.

* The sense of dl×r is also given by the Right Hand Screw rule : Look at
the plane containing vectors dl and r. Imagine moving from the first vector
towards second vector. If the movement is anticlockwise, the resultant is
towards you. If it is 143

clockwise, the resultant is away from you.

Physics

(iii) The electrostatic field is along the displacement vector joining the

source and the field point. The magnetic field is perpendicular to the

plane containing the displacement vector r and the current element



I dl.

(iv) There is an angle dependence in the Biot-Savart law which is not

present in the electrostatic case. In Fig. 4.9, the magnetic field at any

point in the direction of dl (the dashed line) is zero. Along this line, θ = 0,
sin θ = 0 and from Eq. [4.11(a)], |dB| = 0.

There is an interesting relation between ε , the permittivity of free

0

space; µ , the permeability of free space; and c, the speed of light in 0

vacuum:

(

 µ

ε µ



=



1



1

1

4 ε

π ) 0



7

=

10−

=

=

0

0

0











9

( )

4π

 9 ×10 

8 2

2

(3 × 10 )



c

We will discuss this connection further in Chapter 8 on the

electromagnetic waves. Since the speed of light in vacuum is constant,

the product µ ε is fixed in magnitude. Choosing the value of either ε or

0 0

0

µ , fixes the value of the other. In SI units, µ is fixed to

0

0

be equal to

4π × 10–7 in magnitude.

Example 4.5 An element

ˆ

∆l = x

∆ i is placed at the origin and carries

a large current I = 10 A (Fig. 4.10). What is the magnetic field on the y-axis
at a distance of 0.5 m. ∆ x = 1 cm.

FIGURE 4.10

Solution

µ I d l sin θ

 



0

|dB|=

2

[using Eq. (4.11)]

4π

r

−2

T m

d l = x

∆ = 10 m , I = 10 A, r = 0.5 m = y,

7

µ /4

10−

π =

0

A

θ = 90° ; sin θ = 1

7

−

2



10

×10 ×10−

dB =

−

= 4 × 10–8 T

2

25 × 10

The direction of the field is in the + z-direction. This is so since,

ˆ

ˆ

dl ×

ˆ

ˆ

r = x

∆ i × y j = y x

∆ (i × j)

ˆ

= y x

∆ k

4.5



We remind you of the following cyclic property of cross-products,

ˆ

ˆ

ˆ ˆ

ˆ

ˆ ˆ

ˆ

ˆ

i × j = k ; j × k = i; k × i = j XAMPLE
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Note that the field is small in magnitude.
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In the next section, we shall use the Biot-Savart law to calculate the

magnetic field due to a circular loop.

4.6 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR

CURRENT LOOP

In this section, we shall evaluate the magnetic field due to a circular coil

along its axis. The evaluation entails summing up the effect of infinitesimal



current elements ( I dl) mentioned in the previous section.

We assume that the current I is steady and that the

evaluation is carried out in free space (i.e., vacuum).

Figure 4.11 depicts a circular loop carrying a steady

current I. The loop is placed in the y-z plane with its

centre at the origin O and has a radius R. The x-axis is

the axis of the loop. We wish to calculate the magnetic

field at the point P on this axis. Let x be the distance of

P from the centre O of the loop.

Consider a conducting element dl of the loop. This is

shown in Fig. 4.11. The magnitude d B of the magnetic

field due to d l is given by the Biot-Savart law [Eq. 4.11(a)],

µ I d

0

dB =

l × r

(4.12)

3

4π

r



FIGURE 4.11 Magnetic field on the

Now r 2 = x 2 + R 2 . Further, any element of the loop

axis of a current carrying circular

will be perpendicular to the displacement vector from

loop of radius R. Shown are the

the element to the axial point. For example, the element

magnetic field dB (due to a line

dl in Fig. 4.11 is in the y-z plane whereas the

element dl ) and its

displacement vector r from dl to the axial point P is in

components along and

the x-y plane. Hence | dl × r|= r dl. Thus, perpendicular to the axis.

µ

d

I l

0

d B =

 

4ð ( 2

2



x + R )

(4.13)

The direction of dB is shown in Fig. 4.11. It is perpendicular to the

plane formed by dl and r. It has an x-component dB and a component x

perpendicular to x-axis, dB⊥. When the components perpendicular to the x-
axis are summed over, they cancel out and we obtain a null result.

For example, the dB⊥ component due to dl is cancelled by the

contribution due to the diametrically opposite dl element, shown in

Fig. 4.11. Thus, only the x-component survives. The net contribution

along x-direction can be obtained by integrating d B = d B cos θ over the x

loop. For Fig. 4.11,

R

cosθ =

2

2 1/ 2

( x +

(4.14)

R )

From Eqs. (4.13) and (4.14),

µ d



I l

R

0

d B =

x

4ð

3 / 2

2

2
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( x + R )
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The summation of elements d l over the loop yields 2π R, the

circumference of the loop. Thus, the magnetic field at P due to entire

circular loop is

2

µ I R

0

ˆ

ˆ



B = B i =

i

x

(4.15)

2 ( x + R )3/2

2

2

As a special case of the above result, we may obtain the field at the centre

of the loop. Here x = 0, and we obtain,

µ I

0

ˆ

B =

i

0

(4.16)

2 R

The magnetic field lines due to a circular wire form closed loops and

are shown in Fig. 4.12. The direction of the magnetic field is given by

(another) right-hand thumb rule stated below:



Curl the palm of your right hand around the circular wire with the

fingers pointing in the direction of the current. The right-hand thumb

gives the direction of the magnetic field.

FIGURE 4.12 The magnetic field lines for a current loop. The direction of
the field is given by the right-hand thumb rule described in the text. The
upper side of the loop may be thought of as the north pole and the lower

side as the south pole of a magnet.

Example 4.6 A straight wire carrying a current of 12 A is bent into a

semicircular arc of radius 2.0 cm as shown in Fig. 4.13(a). Consider

the magnetic field B at the centre of the arc. (a) What is the magnetic

field due to the straight segments? (b) In what way the contribution

to B from the semicircle differs from that of a circular loop and in

what way does it resemble? (c) Would your answer be different if the

wire were bent into a semicircular arc of the same radius but in the

opposite way as shown in Fig. 4.13(b)?

4.6

XAMPLE

146

E

FIGURE 4.13
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Solution

(a) dl and r for each element of the straight segments are parallel.

Therefore, dl × r = 0. Straight segments do not contribute to

|B|.

(b) For all segments of the semicircular arc, dl × r are all parallel to E

each other (into the plane of the paper). All such contributions

XAMPLE

add up in magnitude. Hence direction of B for a semicircular arc

is given by the right-hand rule and magnitude is half that of a

circular loop. Thus B is 1.9 × 10–4 T normal to the plane of the

4.6

paper going into it.

(c) Same magnitude of B but opposite in direction to that in (b).

Example 4.7 Consider a tightly wound 100 turn coil of radius 10 cm,

carrying a current of 1 A. What is the magnitude of the magnetic

field at the centre of the coil?

E

Solution Since the coil is tightly wound, we may take each circular

element to have the same radius R = 10 cm = 0.1 m. The number of



XAMPLE

turns N = 100. The magnitude of the magnetic field is,

–7

2

µ NI

4π × 10

×10 ×1

4.7

0

B =

=

4

−

=

×

–1

2

10−

= π ×

4



6 2

. 8 10

T

2 R

2 × 10

4.7 AMPERE’S CIRCUITAL LAW

There is an alternative and appealing way in which the Biot-Savart law

may be expressed. Ampere’s circuital law considers an open surface

with a boundary (Fig. 4.14). The surface has current passing

through it. We consider the boundary to be made up of a number

of small line elements. Consider one such element of length dl. We

take the value of the tangential component of the magnetic field,

B , at this element and multiply it by the length of that element dl t

[Note: B dl=B. d l]. All such products are added together. We t

consider the limit as the lengths of elements get smaller and their

number gets larger. The sum then tends to an integral. Ampere’s

law states that this integral is equal to µ times the total current

0

FIGURE 4.14

passing through the surface, i.e.,



d

g = µ I

∫ B l 0

Ñ

[4.17(a)]

where I is the total current through the surface. The integral is taken over
the closed loop coinciding with the boundary C of the surface. The relation
above involves a sign-convention, given by the right-hand rule.

Let the fingers of the right-hand be curled in the sense the boundary is

traversed in the loop integral “B. dl. Then the direction of the thumb gives
the sense in which the current I is regarded as positive.

For several applications, a much simplified version of Eq. [4.17(a)]

proves sufficient. We shall assume that, in such cases, it is possible to

choose the loop (called an amperian loop) such that at each point of the 147

loop, either
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(i)

B is tangential to the loop and is a nonzero constant

B, or

(ii) B is normal to the loop, or

(iii) B vanishes.

Now, let L be the length (part) of the loop for which B

is tangential. Let I be the current enclosed by the loop.

e

Then, Eq. (4.17) reduces to,

BL =µ I

[4.17(b)]

0 e

When there is a system with a symmetry such as for

a straight infinite current-carrying wire in Fig. 4.15, the

Ampere’s law enables an easy evaluation of the magnetic

field, much the same way Gauss’ law helps in

determination of the electric field. This is exhibited in the

Example 4.8 below. The boundary of the loop chosen is

Andre Ampere (1775 –

1836) Andre Marie Ampere



a circle and magnetic field is tangential to the

was a French physicist,

circumference of the circle. The law gives, for the left hand

mathematician and

side of Eq. [4.17 (b)], B. 2π r. We find that the magnetic

chemist who founded the

field at a distance r outside the wire is tangential and

science of electrodynamics.

given by

Ampere was a child prodigy

who mastered advanced

B × 2π r = µ I,

0

mathematics by the age of

B = µ I/ (2π r)

(4.18)

0

12. Ampere grasped the

significance of Oersted’s

The above result for the infinite wire is interesting



discovery. He carried out a

from several points of view.

large series of experiments

(i) It implies that the field at every point on a circle of

to explore the relationship

radius r, (with the wire along the axis), is same in

between current electricity

magnitude. In other words, the magnetic field

and magnetism. These

possesses what is called a cylindrical symmetry. The

investigations culminated

field that normally can depend on three coordinates

)

in 1827 with the

depends only on one: r. Whenever there is symmetry,

publication of the

the solutions simplify.

‘Mathematical Theory of

(ii) The field direction at any point on this circle is

Electrodynamic Phenomena Deduced Solely from



tangential to it. Thus, the lines of constant magnitude

Experiments’. He hypo—

of magnetic field form concentric circles. Notice now,

thesised that all magnetic

in Fig. 4.1(c), the iron filings form concentric circles.

(1775 –1836

phenomena are due to

These lines called magnetic field lines form closed

circulating electric

loops. This is unlike the electrostatic field lines which

currents. Ampere was

originate from positive charges and end at negative

humble and absent—

charges. The expression for the magnetic field of a

minded. He once forgot an

straight wire provides a theoretical justification to

invitation to dine with the

Oersted’s experiments.

Emperor Napoleon. He died

of pneumonia at the age of



(iii) Another interesting point to note is that even though

61. His gravestone bears

the wire is infinite, the field due to it at a nonzero

ANDRE AMPERE

the epitaph: Tandem Felix

distance is not infinite. It tends to blow up only when

(Happy at last).

we come very close to the wire. The field is directly

proportional to the current and inversely proportional

to the distance from the (infinitely long) current

148

source.

Moving Charges and

Magnetism

(iv) There exists a simple rule to determine the direction of the magnetic

field due to a long wire. This rule, called the right-hand rule*, is: Grasp the
wire in your right hand with your extended thumb pointing in the direction
of the current. Your fingers will curl around in the

direction of the magnetic field.

Ampere’s circuital law is not new in content from Biot-Savart law.

Both relate the magnetic field and the current, and both express the same



physical consequences of a steady electrical current. Ampere’s law is to

Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s

and Gauss’s law relate a physical quantity on the periphery or boundary

(magnetic or electric field) to another physical quantity, namely, the source,

in the interior (current or charge). We also note that Ampere’s circuital

law holds for steady currents which do not fluctuate with time. The

following example will help us understand what is meant by the term

enclosed current.

Example 4.8 Figure 4.15 shows a long straight wire of a circular

cross-section (radius a) carrying steady current I. The current I is uniformly
distributed across this cross-section. Calculate the magnetic field in the
region r < a and r > a.

FIGURE 4.15

Solution (a) Consider the case r > a . The Amperian loop, labelled 2, is a
circle concentric with the cross-section. For this loop, L = 2 π r

I = Current enclosed by the loop = I

e

The result is the familiar expression for a long straight wire

B (2π r) = µ I

0

µ I



0

B =

[4.19(a)]

2 ð r

E

1

XAMPLE

B ∝

( r > a)

r

(b) Consider the case r < a. The Amperian loop is a circle labelled 1.

4.8

For this loop, taking the radius of the circle to be r,

L = 2 π r

* Note that there are two distinct right-hand rules: One which gives the
direction of B on the axis of current-loop and the other which gives
direction of B

for a straight conducting wire. Fingers and thumb play different roles in

149

the two.
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Now the current enclosed I is not I, but is less than this value.

e

Since the current distribution is uniform, the current enclosed is,

2

 π r 

2

Ir

I = I

=

e



2 

 π a 

2

a

2

I r

Using Ampere’s law, B (2 ð r ) = µ0

2

a



 µ I 

0

B =

r

 ð 2 

 2 a 

[4.19(b)]

B ∝ r ( r < a)

FIGURE 4.16

Figure (4.16) shows a plot of the magnitude of B with distance r

from the centre of the wire. The direction of the field is tangential to

4.8

the respective circular loop (1 or 2) and given by the right-hand

rule described earlier in this section.

This example possesses the required symmetry so that Ampere’s

XAMPLE

E

law can be applied readily.

It should be noted that while Ampere’s circuital law holds for any

loop, it may not always facilitate an evaluation of the magnetic field in



every case. For example, for the case of the circular loop discussed in

Section 4.6, it cannot be applied to extract the simple expression

B = µ I/2R [Eq. (4.16)] for the field at the centre of the loop. However, 0

there exists a large number of situations of high symmetry where the law

can be conveniently applied. We shall use it in the next section to calculate

the magnetic field produced by two commonly used and very useful

magnetic systems: the solenoid and the toroid.

4.8 THE SOLENOID AND THE TOROID

The solenoid and the toroid are two pieces of equipment which generate

magnetic fields. The television uses the solenoid to generate magnetic

fields needed. The synchrotron uses a combination of both to generate

the high magnetic fields required. In both, solenoid and toroid, we come

across a situation of high symmetry where Ampere’s law can be

150

conveniently applied.
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4.8.1 The solenoid

We shall discuss a long solenoid. By long solenoid we mean that the

solenoid’s length is large compared to its radius. It consists of a long



wire wound in the form of a helix where the neighbouring turns are closely

spaced. So each turn can be regarded as a circular loop. The net magnetic

field is the vector sum of the fields due to all the turns. Enamelled wires

are used for winding so that turns are insulated from each other.

FIGURE 4.17 (a) The magnetic field due to a section of the solenoid which
has been stretched out for clarity. Only the exterior semicircular part is
shown. Notice how the circular loops between neighbouring turns tend to
cancel.

(b) The magnetic field of a finite solenoid.

Figure 4.17 displays the magnetic field lines for a finite solenoid. We

show a section of this solenoid in an enlarged manner in Fig. 4.17(a).

Figure 4.17(b) shows the entire finite solenoid with its magnetic field. In

Fig. 4.17(a), it is clear from the circular loops that the field between two

neighbouring turns vanishes. In Fig. 4.17(b), we see that the field at the

interior midpoint P is uniform, strong and along the axis of the solenoid.

The field at the exterior midpoint Q is weak and moreover is along the

axis of the solenoid with no perpendicular or normal component. As the

solenoid is made longer it appears like a long cylindrical metal sheet.

Figure 4.18 represents this idealised picture. The field outside the solenoid

approaches zero. We shall assume that the field outside is zero. The field

inside becomes everywhere parallel to the axis.



FIGURE 4.18 The magnetic field of a very long solenoid. We consider a
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rectangular Amperian loop abcd to determine the field.
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Consider a rectangular Amperian loop abcd. Along cd the field is zero

as argued above. Along transverse sections bc and ad, the field component

is zero. Thus, these two sections make no contribution. Let the field along

ab be B. Thus, the relevant length of the Amperian loop is, L = h.

Let n be the number of turns per unit length, then the total number

of turns is nh. The enclosed current is, Ie = I (n h), where I is the current in
the solenoid. From Ampere’s circuital law [Eq. 4.17 (b)]

BL = µ I , B h = µ I (n h)

0 e



0

B = µ n I

(4.20)

0

The direction of the field is given by the right-hand rule. The solenoid

is commonly used to obtain a uniform magnetic field. We shall see in the

next chapter that a large field is possible by inserting a soft

iron core inside the solenoid.

4.8.2 The toroid

The toroid is a hollow circular ring on which a large number

of turns of a wire are closely wound. It can be viewed as a

solenoid which has been bent into a circular shape to close

on itself. It is shown in Fig. 4.19(a) carrying a current I. We

shall see that the magnetic field in the open space inside

(point P) and exterior to the toroid (point Q) is zero. The

field B inside the toroid is constant in magnitude for the

ideal toroid of closely wound turns.

Figure 4.19(b) shows a sectional view of the toroid. The

direction of the magnetic field inside is clockwise as per the

right-hand thumb rule for circular loops. Three circular



Amperian loops 1, 2 and 3 are shown by dashed lines. By

symmetry, the magnetic field should be tangential to each

of them and constant in magnitude for a given loop. The

circular areas bounded by loops 2 and 3 both cut the toroid:

so that each turn of current carrying wire is cut once by

the loop 2 and twice by the loop 3.

Let the magnetic field along loop 1 be B in magnitude.

1

Then in Ampere’s circuital law [Eq. 4.17(a)], L = 2π r .

1

However, the loop encloses no current, so I = 0. Thus,

e

B (2 π r ) = µ (0), B = 0

1

1

0

1

FIGURE 4.19 (a) A toroid carrying

Thus, the magnetic field at any point P in the open space

a current I. (b) A sectional view of



inside the toroid is zero.

the toroid. The magnetic field can

We shall now show that magnetic field at Q is likewise

be obtained at an arbitrary

zero. Let the magnetic field along loop 3 be B . Once again

distance r from the centre O of

3

from Ampere’s law L = 2

the toroid by Ampere’s circuital

π r . However, from the sectional

3

law. The dashed lines labelled

cut, we see that the current coming out of the plane of the

1, 2 and 3 are three circular

paper is cancelled exactly by the current going into it. Thus,

Amperian loops.

I = 0, and B = 0. Let the magnetic field inside the solenoid

e

3

be B. We shall now consider the magnetic field at S. Once again we employ
Ampere’s law in the form of Eq. [4.17 (a)]. We find, L = 2π r.



The current enclosed I is (for N turns of toroidal coil) N I.

e
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B (2π r) = µ NI

0
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µ NI

0

B = 2 r

π

(4.21)

We shall now compare the two results: for a toroid and solenoid. We

re-express Eq. (4.21) to make the comparison easier with the solenoid

result given in Eq. (4.20). Let r be the average radius of the toroid and n be
the number of turns per unit length. Then N = 2π r n = (average) perimeter
of the toroid

× number of turns per unit length

and thus,

B = µ

0 n I,



(4.22)

i.e., the result for the solenoid!

In an ideal toroid the coils are circular. In reality the turns of the

toroidal coil form a helix and there is always a small magnetic field external

to the toroid.

MAGNETIC CONFINEMENT

We have seen in Section 4.3 (see also the box on helical motion of charged
particles earlier in this chapter) that orbits of charged particles are helical. If
the magnetic field is nonuniform, but does not change much during one
circular orbit, then the radius of the helix will decrease as it enters stronger
magnetic field and the radius will increase when it enters weaker magnetic
fields. We consider two solenoids at a distance from each other, enclosed in
an evacuated container (see figure below where we have not shown the
container).

Charged particles moving in the region between the two solenoids will start
with a small radius. The radius will increase as field decreases and the
radius will decrease again as field due to the second solenoid takes over.
The solenoids act as a mirror or reflector. [See the direction of F as the
particle approaches coil 2 in the figure. It has a horizontal component
against the forward motion.] This makes the particles turn back when they
approach the solenoid. Such an arrangement will act like magnetic bottle or
magnetic container. The particles will never touch the sides of the container.
Such magnetic bottles are of great use in confining the high energy plasma
in fusion experiments. The plasma will destroy any other form of material
container because of it’s high temperature. Another useful container is a
toroid. Toroids are expected to play a key role in the tokamak, an equipment
for plasma confinement in fusion power reactors. There is an international
collaboration called the International Thermonuclear Experimental Reactor
(ITER), being set up in France, for achieving controlled fusion, of which
India is a collaborating nation. For details of ITER



collaboration and the project, you may visit http://www.iter.org.
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Example 4.9 A solenoid of length 0.5 m has a radius of 1 cm and is

made up of 500 turns. It carries a current of 5 A. What is the

magnitude of the magnetic field inside the solenoid?

Solution The number of turns per unit length is,

500

n =

= 1000 turns/m

0.5

4.9

The length l = 0.5 m and radius r = 0.01 m. Thus, l/ a = 50 i.e., l >> a .

Hence, we can use the long solenoid formula, namely, Eq. (4.20)

B = µ n I

0

XAMPLE

= 4π × 10–7 × 103 × 5

E

= 6.28 × 10–3 T



4.9 FORCE BETWEEN TWO PARALLEL CURRENTS,

THE AMPERE

We have learnt that there exists a magnetic field due to a conductor

carrying a current which obeys the Biot-Savart law. Further, we have

learnt that an external magnetic field will exert a force on

a current-carrying conductor. This follows from the

Lorentz force formula. Thus, it is logical to expect that

two current-carrying conductors placed near each other

will exert (magnetic) forces on each other. In the period

1820-25, Ampere studied the nature of this magnetic

force and its dependence on the magnitude of the current,

on the shape and size of the conductors as well as the

distances between the conductors. In this section, we

shall take the simple example of two parallel current-carrying conductors,
which will perhaps help us to

appreciate Ampere’s painstaking work.

Figure 4.20 shows two long parallel conductors a

FIGURE 4.20 Two long straight

and b separated by a distance d and carrying (parallel)

parallel conductors carrying steady

currents I and I , respectively. The conductor ‘a’



currents I and I and separated by a

a

b

a

b

distance d. B is the magnetic field set

produces, the same magnetic field B at all points along

a

a

up by conductor ‘a’ at conductor ‘b’.

the conductor ‘b’. The right-hand rule tells us that the

direction of this field is downwards (when the conductors

are placed horizontally). Its magnitude is given by Eq. [4.19(a)] or from

Ampere’s circuital law,

µ I

0 a

B =

a

2 π d

The conductor ‘b’ carrying a current I will experience a sideways



b

force due to the field B . The direction of this force is towards the

a

conductor ‘a’ (Verify this). We label this force as F , the force on a

ba

segment L of ‘b’ due to ‘a’. The magnitude of this force is given by
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Eq. (4.4),
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F = I L B

ba

b

a

µ I I

0

a

b

=

L



2 π

(4.23)

d

It is of course possible to compute the force on ‘a’ due to ‘b’. From

considerations similar to above we can find the force F , on a segment of ab

length L of ‘a’ due to the current in ‘b’. It is equal in magnitude to F , ba

and directed towards ‘b’. Thus,

F = –F

(4.24)

ba

ab

Note that this is consistent with Newton’s third Law. Thus, at least for

parallel conductors and steady currents, we have shown that the

Biot-Savart law and the Lorentz force yield results in accordance with

Newton’s third Law*.

We have seen from above that currents flowing in the same direction

attract each other. One can show that oppositely directed currents repel

each other. Thus,

Parallel currents attract, and antiparallel currents repel.

This rule is the opposite of what we find in electrostatics. Like (same



sign) charges repel each other, but like (parallel) currents attract each

other.

Let f represent the magnitude of the force F per unit length. Then, ba

ba

from Eq. (4.23),

µ I I

0 a b

f

=

ba

(4.25)

2 ð d

The above expression is used to define the ampere (A), which is one

of the seven SI base units.

The ampere is the value of that steady current which, when maintained

in each of the two very long, straight, parallel conductors of negligible

cross-section, and placed one metre apart in vacuum, would produce

on each of these conductors a force equal to 2 × 10–7 newtons per metre

of length.

This definition of the ampere was adopted in 1946. It is a theoretical



definition. In practice one must eliminate the effect of the earth’s magnetic

field and substitute very long wires by multiturn coils of appropriate

geometries. An instrument called the current balance is used to measure

this mechanical force.

The SI unit of charge, namely, the coulomb, can now be defined in

terms of the ampere.

When a steady current of 1A is set up in a conductor, the quantity of

charge that flows through its cross-section in 1s is one coulomb (1C).

* It turns out that when we have time-dependent currents and/or charges in
motion, Newton’s third law may not hold for forces between charges and/or
conductors. An essential consequence of the Newton’s third law in
mechanics

is conservation of momentum of an isolated system. This, however, holds
even

for the case of time-dependent situations with electromagnetic fields,
provided 155

the momentum carried by fields is also taken into account.
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ROGET’S SPIRAL FOR ATTRACTION BETWEEN PARALLEL
CURRENTS

Magnetic effects are generally smaller than electric effects. As a
consequence, the force between currents is rather small, because of the
smallness of the factor µ. Hence it is difficult to demonstrate attraction or
repulsion between currents. Thus for 5 A current in each wire at a separation
of 1cm, the force per metre would be 5 × 10–4 N, which is about 50 mg
weight. It would be like pulling a wire by a string going over a pulley to
which a 50 mg weight is attached. The displacement of the wire would be
quite unnoticeable.

With the use of a soft spring, we can increase the effective length of the
parallel current and by using mercury, we can make the displacement of
even a few mm observable very dramatically. You will also need a constant-
current supply giving a constant current of about 5 A.



Take a soft spring whose natural period of

oscillations is about 0.5 – 1s. Hang it vertically and

attach a pointed tip to its lower end, as shown in the

figure here. Take some mercury in a dish and adjust the

spring such that the tip is just above the mercury

surface. Take the DC current source, connect one of its

terminals to the upper end of the spring, and dip the

other terminal in mercury. If the tip of the spring touches

mercury, the circuit is completed through mercury.

Let the DC source be put off to begin with. Let the tip be adjusted so that it
just touches the mercury surface. Switch on the constant current supply, and
watch the fascinating outcome. The spring shrinks with a jerk, the tip comes
out of mercury (just by a mm or so), the circuit is broken, the current stops,
the spring relaxes and tries to come back to its original position, the tip
again touches mercury establishing a current in the circuit, and the cycle
continues with tick, tick, tick, . . . . In the beginning, you may require some
small adjustments to get a good effect.

Keep your face away from mercury vapours as they are poisonous. Do not
inhale

mercury vapours for long.

Example 4.10 The horizontal component of the earth’s magnetic field

at a certain place is 3.0 ×10–5 T and the direction of the field is from

the geographic south to the geographic north. A very long straight

conductor is carrying a steady current of 1A. What is the force per



unit length on it when it is placed on a horizontal table and the

direction of the current is (a) east to west; (b) south to north?

Solution F = I l × B

F = IlB sinθ

The force per unit length is

f = F/ l = I B sinθ

4.10

(a) When the current is flowing from east to west,

θ = 90°

Hence,

XAMPLE

f = I B
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E

= 1 × 3 × 10–5 = 3 × 10–5 N m–1
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This is larger than the value 2×10–7 Nm–1 quoted in the definition

of the ampere. Hence it is important to eliminate the effect of the

earth’s magnetic field and other stray fields while standardising



the ampere.

E

The direction of the force is downwards. This direction may be

XAMPLE

obtained by the directional property of cross product of vectors.

(b) When the current is flowing from south to north,

4.10

θ = 0o

f = 0

Hence there is no force on the conductor.

4.10 TORQUE ON CURRENT LOOP, MAGNETIC DIPOLE

4.10.1 Torque on a rectangular current loop in a uniform

magnetic field

We now show that a rectangular loop carrying a steady current I and

placed in a uniform magnetic field experiences a torque. It does not

experience a net force. This behaviour is analogous to

that of electric dipole in a uniform electric field

(Section 1.10).

We first consider the simple case when the

rectangular loop is placed such that the uniform



magnetic field B is in the plane of the loop. This is

illustrated in Fig. 4.21(a).

The field exerts no force on the two arms AD and BC

of the loop. It is perpendicular to the arm AB of the loop

and exerts a force F on it which is directed into the

1

plane of the loop. Its magnitude is,

F = I b B

1

Similarly it exerts a force F on the arm CD and F

2

2

is directed out of the plane of the paper.

F = I b B = F

2

1

Thus, the net force on the loop is zero. There is a

torque on the loop due to the pair of forces F and F .

1

2



Figure 4.21(b) shows a view of the loop from the AD

end. It shows that the torque on the loop tends to rotate

it anticlockwise. This torque is (in magnitude),

a

a

τ = F

+ F

1

2

2

2

a

a

FIGURE 4.21 (a) A rectangular

= IbB + IbB

= I ( ab) B

current-carrying coil in uniform

2

2

magnetic field. The magnetic moment



= I A B

(4.26)

m points downwards. The torque τ is

where A = ab is the area of the rectangle.

along the axis and tends to rotate the

coil anticlockwise. (b) The couple

We next consider the case when the plane of the loop,

acting on the coil.

is not along the magnetic field, but makes an angle with
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it. We take the angle between the field and the normal to
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the coil to be angle θ (The previous case

corresponds to θ = π/2) . Figure 4.22 illustrates

this general case.

The forces on the arms BC and DA are equal,

opposite, and act along the axis of the coil, which

connects the centres of mass of BC and DA. Being

collinear along the axis they cancel each other,

resulting in no net force or torque. The forces on



arms AB and CD are F and F . They too are equal

1

2

and opposite, with magnitude,

F = F = I b B

1

2

But they are not collinear! This results in a

couple as before. The torque is, however, less than

the earlier case when plane of loop was along the

magnetic field. This is because the perpendicular

distance between the forces of the couple has

decreased. Figure 4.22(b) is a view of the

arrangement from the AD end and it illustrates

these two forces constituting a couple. The

magnitude of the torque on the loop is,

a

a

τ = F

sin θ + F



sin θ

1

2

2

2

FIGURE 4.22 (a) The area vector of the loop

ABCD makes an arbitrary angle θ with

= I ab B sin θ

the magnetic field. (b) Top view of

= I A B sin θ

(4.27)

the loop. The forces F and F acting

1

2

As θ

on the arms AB and CD

à 0, the perpendicular distance between

are indicated.

the forces of the couple also approaches zero. This

makes the forces collinear and the net force and



torque zero. The torques in Eqs. (4.26) and (4.27)

can be expressed as vector product of the magnetic moment of the coil

and the magnetic field. We define the magnetic moment of the current

loop as,

m = I A

(4.28)

where the direction of the area vector A is given by the right-hand thumb
rule and is directed into the plane of the paper in Fig. 4.21. Then as the
angle between m and B is θ , Eqs. (4.26) and (4.27) can be expressed by
one expression

τ = m × B

(4.29)

This is analogous to the electrostatic case (Electric dipole of dipole

moment p in an electric field E).

e

τ = p × E

e

As is clear from Eq. (4.28), the dimensions of the magnetic moment are

[A][L2] and its unit is Am2.

From Eq. (4.29), we see that the torque τ vanishes when m is either parallel
or antiparallel to the magnetic field B. This indicates a state of equilibrium
as there is no torque on the coil (this also applies to any 158



object with a magnetic moment m). When m and B are parallel the
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equilibrium is a stable one. Any small rotation of the coil produces a

torque which brings it back to its original position. When they are

antiparallel, the equilibrium is unstable as any rotation produces a torque

which increases with the amount of rotation. The presence of this torque

is also the reason why a small magnet or any magnetic dipole aligns

itself with the external magnetic field.

If the loop has N closely wound turns, the expression for torque, Eq.

(4.29), still holds, with

m = N I A

(4.30)

Example 4.11 A 100 turn closely wound circular coil of radius 10 cm

carries a current of 3.2 A. (a) What is the field at the centre of the

coil? (b) What is the magnetic moment of this coil?

The coil is placed in a vertical plane and is free to rotate about a

horizontal axis which coincides with its diameter. A uniform magnetic

field of 2T in the horizontal direction exists such that initially the

axis of the coil is in the direction of the field. The coil rotates through



an angle of 90º under the influence of the magnetic field.

(c) What are the magnitudes of the torques on the coil in the initial

and final position? (d) What is the angular speed acquired by the

coil when it has rotated by 90º? The moment of inertia of the coil is

0.1 kg m2.

Solution

(a) From Eq. (4.16)

µ NI

0

B = 2 R

Here, N = 100; I = 3.2 A, and R = 0.1 m. Hence,

7

−

2

4π × 10

×10 × 3.2

5

4 × 10− × 10

B =

=



1

2 ×

 

10−

−1

2 ×

(using π × 3.2 = 10)

10

= 2 × 10–3 T

The direction is given by the right-hand thumb rule.

(b) The magnetic moment is given by Eq. (4.30),

m = N I A = N I π r 2 = 100 × 3.2 × 3.14 × 10–2 = 10 A m2

The direction is once again given by the right hand thumb rule.

(c) τ = m × B [from Eq. (4.29)]

= m B sin θ

Initially, θ = 0. Thus, initial torque τ = 0. Finally, θ = π/2 (or 90º).

i

Thus, final torque τ = m B = 10 × 2 = 20 N m.

f

(d) From Newton’s second law,



dω

1

= m B sinθ

d t

E

where 1 is the moment of inertia of the coil. From chain rule,

XAMPLE

dω

dω dθ

dω

=

=

ω

d t

dθ d t

dθ

4.11

Using this,

1 ω dω = m B sinθ dθ
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Integrating from θ = 0 to θ = π/2,

ω f

ð / 2

1

ω dω = m B

sin θ dθ

∫

∫

0

0

2

ω

4.11

f

/ 2

1

m B cosθ π

= −

= m B



0

2

1/ 2

2 m B

1/ 2

 2 × 20

XAMPLE

ω





=

=

f









1

E

 1 



 10− 

= 20 s–1.

Example 4.12

(a) A current-carrying circular loop lies on a smooth horizontal plane.

Can a uniform magnetic field be set up in such a manner that

the loop turns around itself (i.e., turns about the vertical axis).

(b) A current-carrying circular loop is located in a uniform external

magnetic field. If the loop is free to turn, what is its orientation

of stable equilibrium? Show that in this orientation, the flux of

the total field (external field + field produced by the loop) is

maximum.

(c) A loop of irregular shape carrying current is located in an external

magnetic field. If the wire is flexible, why does it change to a

circular shape?

Solution

(a) No, because that would require τ to be in the vertical direction.

But τ = I A × B, and since A of the horizontal loop is in the vertical
direction, τ would be in the plane of the loop for any B.

(b) Orientation of stable equilibrium is one where the area vector A

of the loop is in the direction of external magnetic field. In this

orientation, the magnetic field produced by the loop is in the same



4.12

direction as external field, both normal to the plane of the loop,

thus giving rise to maximum flux of the total field.

(c) It assumes circular shape with its plane normal to the field to

XAMPLE

maximize flux, since for a given perimeter, a circle encloses greater

E

area than any other shape.

4.10.2 Circular current loop as a magnetic dipole

In this section, we shall consider the elementary magnetic element: the

current loop. We shall show that the magnetic field (at large distances)

due to current in a circular current loop is very similar in behavior to the

electric field of an electric dipole. In Section 4.6, we have evaluated the

magnetic field on the axis of a circular loop, of a radius R, carrying a steady
current I. The magnitude of this field is [(Eq. (4.15)], 2

µ I R

0

B =

( x + R )3/2

2

2



2

and its direction is along the axis and given by the right-hand thumb

rule (Fig. 4.12). Here, x is the distance along the axis from the centre of 160

the loop. For x >> R, we may drop the R 2 term in the denominator. Thus,
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2

µ R

0

B =

3

2 x

Note that the area of the loop A = π R 2. Thus,

µ IA

0

B =

3

2π x

As earlier, we define the magnetic moment m to have a magnitude IA,

m = I A. Hence,



µ m

0

B ;

ð 3

2 x

µ 2

 

0

=

m

[4.31(a)]

4ð

3

x

The expression of Eq. [4.31(a)] is very similar to an expression obtained

earlier for the electric field of a dipole. The similarity may be seen if we

substitute,

µ → 1/ ε

0

0



m → p (electrostatic dipole)

e

B → E (electrostatic field)

We then obtain,

2p e

E =

3

4 π ε x

0

which is precisely the field for an electric dipole at a point on its axis.

considered in Chapter 1, Section 1.10 [Eq. (1.20)].

It can be shown that the above analogy can be carried further. We

had found in Chapter 1 that the electric field on the perpendicular bisector

of the dipole is given by [See Eq.(1.21)],

p e

E ;

3

4 ε

π x

0



where x is the distance from the dipole. If we replace p à m and µ → 1/ ε

0

0

in the above expression, we obtain the result for B for a point in the plane of
the loop at a distance x from the centre. For x >>R, µ m 0

B ;

;

x >> R

3

[4.31(b)]

4π x

The results given by Eqs. [4.31(a)] and [4.31(b)] become exact for a

point magnetic dipole.

The results obtained above can be shown to apply to any planar loop:

a planar current loop is equivalent to a magnetic dipole of dipole moment

m = I A, which is the analogue of electric dipole moment p. Note, however,
a fundamental difference: an electric dipole is built up of two elementary
units — the charges (or electric monopoles). In magnetism, a magnetic

dipole (or a current loop) is the most elementary element. The equivalent

of electric charges, i.e., magnetic monopoles, are not known to exist.

We have shown that a current loop (i) produces a magnetic field (see
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Fig. 4.12) and behaves like a magnetic dipole at large distances, and
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(ii) is subject to torque like a magnetic needle. This led Ampere to suggest

that all magnetism is due to circulating currents. This seems to be partly

true and no magnetic monopoles have been seen so far. However,

elementary particles such as an electron or a proton also carry an intrinsic
magnetic moment, not accounted by circulating currents.

4.10.3 The magnetic dipole moment of a revolving electron

In Chapter 12 we shall read about the Bohr model of the hydrogen atom.

You may perhaps have heard of this model which was proposed by the

Danish physicist Niels Bohr in 1911 and was a stepping stone

to a new kind of mechanics, namely, quantum mechanics.

In the Bohr model, the electron (a negatively charged particle)

revolves around a positively charged nucleus much as a

planet revolves around the sun. The force in the former case

is electrostatic (Coulomb force) while it is gravitational for

the planet-Sun case. We show this Bohr picture of the electron

in Fig. 4.23.

The electron of charge (– e) ( e = + 1.6 × 10–19 C) performs

uniform circular motion around a stationary heavy nucleus



of charge + Ze. This constitutes a current I, where,

e

I =

(4.32)

FIGURE 4.23 In the Bohr model

T

of hydrogen-like atoms, the

and T is the time period of revolution. Let r be the orbital

negatively charged electron is

radius of the electron, and v the orbital speed. Then,

revolving with uniform speed

around a centrally placed

2ð r

T =

(4.33)

positively charged (+ Z e)

v

nucleus. The uniform circular

Substituting in Eq. (4.32), we have I = ev/2π r.

motion of the electron



There will be a magnetic moment, usually denoted by µ ,

constitutes a current. The

l

associated with this circulating current. From Eq. (4.28) its

direction of the magnetic

moment is into the plane of the

magnitude is, µ = Iπ r 2 = evr/2.

l

paper and is indicated

The direction of this magnetic moment is into the plane

separately by ⊗.

of the paper in Fig. 4.23. [This follows from the right-hand

rule discussed earlier and the fact that the negatively charged

electron is moving anticlockwise, leading to a clockwise current.]

Multiplying and dividing the right-hand side of the above expression by

the electron mass m , we have,

e

e

µ =

( m v r )



l

2

e

me

e

=

l

[4.34(a)]

2 me

Here, l is the magnitude of the angular momentum of the electron

about the central nucleus (“orbital” angular momentum). Vectorially,

e

µ = −

l

l

[4.34(b)]

2 me

The negative sign indicates that the angular momentum of the electron
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is opposite in direction to the magnetic moment. Instead of electron with
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charge (– e), if we had taken a particle with charge (+ q), the angular
momentum and magnetic moment would be in the same direction. The ratio

µ

e

l =

(4.35)

l

2 me

is called the gyromagnetic ratio and is a constant. Its value is 8.8 × 1010 C
/kg for an electron, which has been verified by experiments.

The fact that even at an atomic level there is a magnetic moment,

confirms Ampere’s bold hypothesis of atomic magnetic moments. This

according to Ampere, would help one to explain the magnetic properties

http://patsy.hunter.cuny.edu/CORE/CORE4/LectureNotes/Electricity/electri
c6.htm Conversion of galvanometer into ameter and voltmeter: of
materials. Can one assign a value to this atomic dipole moment? The
answer is Yes. One can do so within the Bohr model. Bohr hypothesised

that the angular momentum assumes a discrete set of values, namely,

n h

l = 2π



(4.36)

where n is a natural number, n = 1, 2, 3, .... and h is a constant named after
Max Planck (Planck’s constant) with a value h = 6.626 × 10–34 J s.

This condition of discreteness is called the Bohr quantisation condition.

We shall discuss it in detail in Chapter 12. Our aim here is merely to use

it to calculate the elementary dipole moment. Take the value n = 1, we

have from Eq. (4.34) that,

e

(µ )

=

h

l min

4 π me

19

−

34

1.60 × 10

× 6.63 ×10−

=

31

4 × 3.14 × 9.11 × 10−



= 9.27 × 10–24 Am2

(4.37)

where the subscript ‘min’ stands for minimum. This value is called the

Bohr magneton.

Any charge in uniform circular motion would have an associated

magnetic moment given by an expression similar to Eq. (4.34). This dipole

moment is labelled as the orbital magnetic moment. Hence the subscript

‘ l’ in µ . Besides the orbital moment, the electron has an intrinsic magnetic
l

moment, which has the same numerical value as given in Eq. (4.37). It is

called the spin magnetic moment. But we hasten to add that it is not as
though the electron is spinning. The electron is an elementary particle and it
does not have an axis to spin around like a top or our earth.

Nevertheless it does possess this intrinsic magnetic moment. The

microscopic roots of magnetism in iron and other materials can be traced

back to this intrinsic spin magnetic moment.

4.11 THE MOVING COIL GALVANOMETER

Currents and voltages in circuits have been discussed extensively in

Chapters 3. But how do we measure them? How do we claim that

current in a circuit is 1.5 A or the voltage drop across a resistor is 1.2 V?

163



Figure 4.24 exhibits a very useful instrument for this purpose: the moving
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coil galvanometer (MCG). It is a device whose principle can be understood
on the basis of our discussion in Section 4.10.

The galvanometer consists of a coil, with many turns, free to rotate

about a fixed axis (Fig. 4.24), in a uniform radial magnetic field. There is

a cylindrical soft iron core which not only makes the field radial but also

increases the strength of the magnetic field. When a current flows through

the coil, a torque acts on it. This torque is given by Eq. (4.26) to be

τ = NI AB

where the symbols have their usual meaning. Since the field is radial by

design, we have taken sin θ = 1 in the above expression for the torque.

The magnetic torque NIAB tends to rotate the coil. A spring S provides a p

counter torque kφ that balances the magnetic torque NIAB; resulting in a
steady angular deflection φ. In equilibrium kφ = NI AB

where k is the torsional constant of the spring; i.e. the restoring torque per
unit twist. The deflection φ is indicated on the scale by a pointer attached to
the spring. We have

NAB

φ 



=



I





 k 

(4.38)

The quantity in brackets is a constant for a given

galvanometer.

The galvanometer can be used in a number of ways.

It can be used as a detector to check if a current is

flowing in the circuit. We have come across this usage

in the Wheatstone’s bridge arrangement. In this usage

the neutral position of the pointer (when no current is

flowing through the galvanometer) is in the middle of

the scale and not at the left end as shown in Fig.4.24.

Depending on the direction of the current, the pointer

deflection is either to the right or the left.

The galvanometer cannot as such be used as an

ammeter to measure the value of the current in a given

circuit. This is for two reasons: (i) Galvanometer is a

very sensitive device, it gives a full-scale deflection for



a current of the order of µA. (ii) For measuring

currents, the galvanometer has to be connected in

series, and as it has a large resistance, this will change

the value of the current in the circuit. To overcome

these difficulties, one attaches a small resistance r ,

s

FIGURE 4.24 The moving coil

called shunt resistance, in parallel with

galvanometer. Its elements are

the galvanometer coil; so that most of the current

described in the text. Depending on

passes through the shunt. The resistance of this

the requirement, this device can be

arrangement is,

used as a current detector or for

R r / (R + r )

measuring the value of the current

; r if R >> r

G

s



G

s

s

G

s

(ammeter) or voltage (voltmeter).

If r has small value, in relation to the resistance of

s

the rest of the circuit R , the effect of introducing the

c
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arrangement is schematically shown in Fig. 4.25. The scale of this

ammeter is calibrated and then graduated to read off the current value

with ease. We define the current sensitivity of the galvanometer as the

deflection per unit current. From Eq. (4.38) this current sensitivity is, φ

NAB

=



(4.39)

I

k

A convenient way for the manufacturer to increase the sensitivity is

to increase the number of turns N. We choose galvanometers having

sensitivities of value, required by our experiment.

The galvanometer can also be used as a voltmeter to measure the

FIGURE 4.25

voltage across a given section of the circuit. For this it must be connected

Conversion of a

in parallel with that section of the circuit. Further, it must draw a very
galvanometer (G) to

small current, otherwise the voltage measurement will disturb the original

an ammeter by the

set up by an amount which is very large. Usually we like to keep the

introduction of a

disturbance due to the measuring device below one per cent. To ensure
shunt resistance r of s

this, a large resistance R is connected in series with the galvanometer.

very small value in

This arrangement is schematically depicted in Fig.4.26. Note that the



parallel.

resistance of the voltmeter is now,

R + R ; R : large

G

The scale of the voltmeter is calibrated to read off the voltage value

with ease. We define the voltage sensitivity as the deflection per unit

voltage. From Eq. (4.38),

φ

 NAB  I

 NAB  1

= 



= 



V

 k  V

 k 

(4.40)

R

An interesting point to note is that increasing the current sensitivity



may not necessarily increase the voltage sensitivity. Let us take Eq. (4.39)

which provides a measure of current sensitivity. If N → 2N, i.e., we double
FIGURE 4.26

the number of turns, then

Conversion of a

φ

φ

galvanometer (G) to a

→ 2

voltmeter by the

I

I

introduction of a

Thus, the current sensitivity doubles. However, the resistance of the

resistance R of large

galvanometer is also likely to double, since it is proportional to the length

value in series.

of the wire. In Eq. (4.40), N → 2N, and R → 2R, thus the voltage
sensitivity, φ

φ

→



V

V

remains unchanged. So in general, the modification needed for conversion

of a galvanometer to an ammeter will be different from what is needed

for converting it into a voltmeter.

Example 4.13 In the circuit (Fig. 4.27) the current is to be

EXAMPLE

measured. What is the value of the current if the ammeter shown

(a) is a galvanometer with a resistance R = 60.00 Ω; (b) is a

G

galvanometer described in (a) but converted to an ammeter by a

4.13

shunt resistance r = 0.02 Ω; (c) is an ideal ammeter with zero

s

resistance?
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FIGURE 4.27

Solution

(a) Total resistance in the circuit is,



R + 3 = 63 Ω . Hence, I = 3/63 = 0.048 A.

G

(b) Resistance of the galvanometer converted to an ammeter is,

R r

60 Ω × 0.02Ω

G

s

=

- 0.02 Ω

E

R + r

(60 + 0.02)Ω %

XAMPLE

G

s

Total resistance in the circuit is,

0.02 Ω + 3 Ω = 3.02 Ω . Hence, I = 3/3.02 = 0.99 A.

4.13

(c) For the ideal ammeter with zero resistance,

I = 3/3 = 1.00 A



SUMMARY

1.

The total force on a charge q moving with velocity v in the presence of
magnetic and electric fields B and E, respectively is called the Lorentz
force. It is given by the expression: F = q (v × B + E)

The magnetic force q (v × B) is normal to v and work done by it is zero.

2.

A straight conductor of length l and carrying a steady current I

experiences a force F in a uniform external magnetic field B,

F = I l × B

where|l| = l and the direction of l is given by the direction of the current.

3.

In a uniform magnetic field B, a charge q executes a circular orbit in a plane
normal to B. Its frequency of uniform circular motion is called the cyclotron
frequency and is given by:

q B

ν =

c

2 π m

This frequency is independent of the particle’s speed and radius. This

fact is exploited in a machine, the cyclotron, which is used to

accelerate charged particles.



4.

The Biot-Savart law asserts that the magnetic field dB due to an element dl
carrying a steady current I at a point P at a distance r from the current
element is: µ

dl × r

0

dB =

I
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To obtain the total field at P, we must integrate this vector expression

over the entire length of the conductor.

5.

The magnitude of the magnetic field due to a circular coil of radius R

carrying a current I at an axial distance x from the centre is

2

µ IR



0

B =

2

2 3 / 2

2( x + R )

At the center this reduces to

µ I

0

B = 2 R

6.

Ampere’s Circuital Law: Let an open surface S be bounded by a loop

C. Then the Ampere’s law states that

d

g = µ I

∫ B l 0

Ñ

where I refers to

C

the current passing through S. The sign of I is determined from the

right-hand rule. We have discussed a simplified form of this law. If B



is directed along the tangent to every point on the perimeter L of a

closed curve and is constant in magnitude along perimeter then,

BL = µ I

0

e

where I is the net current enclosed by the closed circuit.

e

7.

The magnitude of the magnetic field at a distance R from a long,

straight wire carrying a current I is given by:

µ I

0

B = 2ð R

The field lines are circles concentric with the wire.

8.

The magnitude of the field B inside a long solenoid carrying a current I is

B = µ nI

0

where n is the number of turns per unit length. For a toroid one obtains,

µ NI



0

B = 2π r

where N is the total number of turns and r is the average radius.

9.

Parallel currents attract and antiparallel currents repel.

10. A planar loop carrying a current I, having N closely wound turns, and an
area A possesses a magnetic moment m where, m = N I A

and the direction of m is given by the right-hand thumb rule : curl

the palm of your right hand along the loop with the fingers pointing

in the direction of the current. The thumb sticking out gives the

direction of m (and A)

When this loop is placed in a uniform magnetic field B, the force F on it is:
F = 0

And the torque on it is,

τ = m × B

In a moving coil galvanometer, this torque is balanced by a counter—

torque due to a spring, yielding

kφ = NI AB
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where φ is the equilibrium deflection and k the torsion constant of



the spring.

11. An electron moving around the central nucleus has a magnetic moment

µ given by:

l

e

µ =

l

l

2 m

where l is the magnitude of the angular momentum of the circulating

electron about the central nucleus. The smallest value of µ is called

l

the Bohr magneton µ and it is µ = 9.27×10–24 J/T

B

B

12. A moving coil galvanometer can be converted into a ammeter by

introducing a shunt resistance r , of small value in parallel. It can be s

converted into a voltmeter by introducing a resistance of a large value

in series.

Physical Quantity



Symbol

Nature

Dimensions

Units

Remarks

Permeability of free

µ

Scalar

[MLT –2A–2]

 

T m A–1

4π × 10–7 T m A–1

0

space

Magnetic Field

B

Vector

[M T –2A–1]

T (telsa)

Magnetic Moment



m

Vector

[L2A]

A m2 or J/T

Torsion Constant

k

 

Scalar

[M L2T –2]

N m rad–1

Appears in MCG

POINTS TO PONDER

1.

Electrostatic field lines originate at a positive charge and terminate at a

negative charge or fade at infinity. Magnetic field lines always form

closed loops.

2.

The discussion in this Chapter holds only for steady currents which do

not vary with time.



When currents vary with time Newton’s third law is valid only if
momentum

carried by the electromagnetic field is taken into account.

3.

Recall the expression for the Lorentz force,

F = q (v × B + E)

This velocity dependent force has occupied the attention of some of the

greatest scientific thinkers. If one switches to a frame with instantaneous

velocity v, the magnetic part of the force vanishes. The motion of the

charged particle is then explained by arguing that there exists an

appropriate electric field in the new frame. We shall not discuss the

details of this mechanism. However, we stress that the resolution of this

paradox implies that electricity and magnetism are linked phenomena

( electromagnetism) and that the Lorentz force expression does not imply a
universal preferred frame of reference in nature.

4.

Ampere’s Circuital law is not independent of the Biot-Savart law. It

can be derived from the Biot-Savart law. Its relationship to the

Biot-Savart law is similar to the relationship between Gauss’s law and
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Coulomb’s law.
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EXERCISES

4.1

A circular coil of wire consisting of 100 turns, each of radius 8.0 cm

carries a current of 0.40 A. What is the magnitude of the magnetic

field B at the centre of the coil?

4.2

A long straight wire carries a current of 35 A. What is the magnitude

of the field B at a point 20 cm from the wire?

4.3

A long straight wire in the horizontal plane carries a current of 50 A

in north to south direction. Give the magnitude and direction of B

at a point 2.5 m east of the wire.

4.4

A horizontal overhead power line carries a current of 90 A in east to

west direction. What is the magnitude and direction of the magnetic

field due to the current 1.5 m below the line?

4.5

What is the magnitude of magnetic force per unit length on a wire



carrying a current of 8 A and making an angle of 30º with the

direction of a uniform magnetic field of 0.15 T ?

4.6

A 3.0 cm wire carrying a current of 10 A is placed inside a solenoid

perpendicular to its axis. The magnetic field inside the solenoid is

given to be 0.27 T. What is the magnetic force on the wire?

4.7

Two long and parallel straight wires A and B carrying currents of

8.0 A and 5.0 A in the same direction are separated by a distance of

4.0 cm. Estimate the force on a 10 cm section of wire A.

4.8

A closely wound solenoid 80 cm long has 5 layers of windings of 400

turns each. The diameter of the solenoid is 1.8 cm. If the current

carried is 8.0 A, estimate the magnitude of B inside the solenoid

near its centre.

4.9



A square coil of side 10 cm consists of 20 turns and carries a current

of 12 A. The coil is suspended vertically and the normal to the plane

of the coil makes an angle of 30º with the direction of a uniform

horizontal magnetic field of magnitude 0.80 T. What is the magnitude

of torque experienced by the coil?

4.10

Two moving coil meters, M and M have the following particulars:

1

2

R = 10 Ω, N = 30,

1

1

A = 3.6 × 10–3 m2 , B = 0.25 T

1

1

R = 14 Ω, N = 42,

2

2

A = 1.8 × 10–3 m2, B = 0.50 T

2



2

(The spring constants are identical for the two meters).

Determine the ratio of (a) current sensitivity and (b) voltage

sensitivity of M and M .

2

1

4.11

In a chamber, a uniform magnetic field of 6.5 G (1 G = 10–4 T ) is

maintained. An electron is shot into the field with a speed of

4.8 × 106 m s–1 normal to the field. Explain why the path of the

electron is a circle. Determine the radius of the circular orbit.

( e = 1.6 × 10–19 C, m = 9.1×10–31 kg )

e

4.12

In Exercise 4.11 obtain the frequency of revolution of the electron in

its circular orbit. Does the answer depend on the speed of the

electron? Explain.

4.13

(a) A circular coil of 30 turns and radius 8.0 cm carrying a current

of 6.0 A is suspended vertically in a uniform horizontal magnetic
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with the normal of the coil. Calculate the magnitude of the

counter torque that must be applied to prevent the coil from

turning.

(b) Would your answer change, if the circular coil in (a) were replaced

by a planar coil of some irregular shape that encloses the same

area? (All other particulars are also unaltered.)

ADDITIONAL EXERCISES

4.14

Two concentric circular coils X and Y of radii 16 cm and 10 cm,

respectively, lie in the same vertical plane containing the north to

south direction. Coil X has 20 turns and carries a current of 16 A;

coil Y has 25 turns and carries a current of 18 A. The sense of the

current in X is anticlockwise, and clockwise in Y, for an observer

looking at the coils facing west. Give the magnitude and direction of

the net magnetic field due to the coils at their centre.

4.15

A magnetic field of 100 G (1 G = 10–4 T) is required which is uniform



in a region of linear dimension about 10 cm and area of cross-section

about 10–3 m2. The maximum current-carrying capacity of a given

coil of wire is 15 A and the number of turns per unit length that can

be wound round a core is at most 1000 turns m–1. Suggest some

appropriate design particulars of a solenoid for the required purpose.

Assume the core is not ferromagnetic.

4.16

For a circular coil of radius R and N turns carrying current I, the magnitude
of the magnetic field at a point on its axis at a distance x from its centre is
given by,

2

µ IR N

0

B =

( x + R )3/2

2

2

2

(a) Show that this reduces to the familiar result for field at the

centre of the coil.

(b) Consider two parallel co-axial circular coils of equal radius R,



and number of turns N, carrying equal currents in the same

direction, and separated by a distance R. Show that the field on

the axis around the midpoint between the coils is uniform over

a distance that is small as compared to R, and is given by,

µ NI

0

B = 0.72

, approximately.

R

[Such an arrangement to produce a nearly uniform magnetic

field over a small region is known as Helmholtz coils.]

4.17

A toroid has a core (non-ferromagnetic) of inner radius 25 cm and

outer radius 26 cm, around which 3500 turns of a wire are wound.

If the current in the wire is 11 A, what is the magnetic field

(a) outside the toroid, (b) inside the core of the toroid, and (c) in the

empty space surrounded by the toroid.

4.18

Answer the following questions:

(a) A magnetic field that varies in magnitude from point to point



but has a constant direction (east to west) is set up in a chamber.
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along a straight path with constant speed. What can you say

about the initial velocity of the particle?

(b) A charged particle enters an environment of a strong and

nonuniform magnetic field varying from point to point both in

magnitude and direction, and comes out of it following a

complicated trajectory. Would its final speed equal the initial

speed if it suffered no collisions with the environment?

(c) An electron travelling west to east enters a chamber having a

uniform electrostatic field in north to south direction. Specify

the direction in which a uniform magnetic field should be set

up to prevent the electron from deflecting from its straight line

path.

4.19

An electron emitted by a heated cathode and accelerated through a

potential difference of 2.0 kV, enters a region with uniform magnetic



field of 0.15 T. Determine the trajectory of the electron if the field

(a) is transverse to its initial velocity, (b) makes an angle of 30º with

the initial velocity.

4.20

A magnetic field set up using Helmholtz coils (described in Exercise

4.16) is uniform in a small region and has a magnitude of 0.75 T. In

the same region, a uniform electrostatic field is maintained in a

direction normal to the common axis of the coils. A narrow beam of

(single species) charged particles all accelerated through 15 kV

enters this region in a direction perpendicular to both the axis of

the coils and the electrostatic field. If the beam remains undeflected

when the electrostatic field is 9.0 × 10–5 V m–1, make a simple guess

as to what the beam contains. Why is the answer not unique?

4.21

A straight horizontal conducting rod of length 0.45 m and mass

60 g is suspended by two vertical wires at its ends. A current of 5.0 A

is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor

in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of



current is reversed keeping the magnetic field same as before?

(Ignore the mass of the wires.) g = 9.8 m s–2.

4.22

The wires which connect the battery of an automobile to its starting

motor carry a current of 300 A (for a short time). What is the force

per unit length between the wires if they are 70 cm long and 1.5 cm

apart? Is the force attractive or repulsive?

4.23

A uniform magnetic field of 1.5 T exists in a cylindrical region of

radius10.0 cm, its direction parallel to the axis along east to west. A

wire carrying current of 7.0 A in the north to south direction passes

through this region. What is the magnitude and direction of the

force on the wire if,

(a) the wire intersects the axis,

(b) the wire is turned from N-S to northeast-northwest direction,

(c) the wire in the N-S direction is lowered from the axis by a distance

of 6.0 cm?

4.24

A uniform magnetic field of 3000 G is established along the positive

z-direction. A rectangular loop of sides 10 cm and 5 cm carries a



current of 12 A. What is the torque on the loop in the different cases

shown in Fig. 4.28? What is the force on each case? Which case
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FIGURE 4.28

4.25

A circular coil of 20 turns and radius 10 cm is placed in a uniform

magnetic field of 0.10 T normal to the plane of the coil. If the current

in the coil is 5.0 A, what is the

(a) total torque on the coil,

(b) total force on the coil,

(c) average force on each electron in the coil due to the magnetic

field?

(The coil is made of copper wire of cross-sectional area 10–5 m2, and

the free electron density in copper is given to be about

1029 m–3.)

4.26

A solenoid 60 cm long and of radius 4.0 cm has 3 layers of windings

of 300 turns each. A 2.0 cm long wire of mass 2.5 g lies inside the



solenoid (near its centre) normal to its axis; both the wire and the

axis of the solenoid are in the horizontal plane. The wire is connected

through two leads parallel to the axis of the solenoid to an external

battery which supplies a current of 6.0 A in the wire. What value of

current (with appropriate sense of circulation) in the windings of

the solenoid can support the weight of the wire? g = 9.8 m s–2.

4.27

A galvanometer coil has a resistance of 12 Ω and the metre shows

full scale deflection for a current of 3 mA. How will you convert the

metre into a voltmeter of range 0 to 18 V?

4.28

A galvanometer coil has a resistance of 15 Ω and the metre shows

full scale deflection for a current of 4 mA. How will you convert the

metre into an ammeter of range 0 to 6 A?
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Chapter Five

MAGNETISM AND

MATTER

5.1 INTRODUCTION

Magnetic phenomena are universal in nature. Vast, distant galaxies, the



tiny invisible atoms, men and beasts all are permeated through and

through with a host of magnetic fields from a variety of sources. The earth’s

magnetism predates human evolution. The word magnet is derived from

the name of an island in Greece called magnesia where magnetic ore

deposits were found, as early as 600 BC. Shepherds on this island

complained that their wooden shoes (which had nails) at times stayed

struck to the ground. Their iron-tipped rods were similarly affected. This

attractive property of magnets made it difficult for them to move around.

The directional property of magnets was also known since ancient

times. A thin long piece of a magnet, when suspended freely, pointed in

the north-south direction. A similar effect was observed when it was placed

on a piece of cork which was then allowed to float in still water. The name

lodestone (or loadstone) given to a naturally occurring ore of iron-
magnetite means leading stone. The technological exploitation of this
property is generally credited to the Chinese. Chinese texts dating 400

BC mention the use of magnetic needles for navigation on ships. Caravans

crossing the Gobi desert also employed magnetic needles.

A Chinese legend narrates the tale of the victory of the emperor Huang-ti

about four thousand years ago, which he owed to his craftsmen (whom
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nowadays you would call engineers). These ‘engineers’

built a chariot on which they placed a magnetic figure

with arms outstretched. Figure 5.1 is an artist’s

description of this chariot. The figure swiveled around

so that the finger of the statuette on it always pointed

south. With this chariot, Huang-ti’s troops were able

to attack the enemy from the rear in thick fog, and to

defeat them.

In the previous chapter we have learned that moving



charges or electric currents produce magnetic fields.

This discovery, which was made in the early part of the

nineteenth century is credited to Oersted, Ampere, Biot

and Savart, among others.

In the present chapter, we take a look at magnetism

FIGURE 5.1 The arm of the statuette

as a subject in its own right.

mounted on the chariot always points

Some of the commonly known ideas regarding

south. This is an artist’s sketch of one

of the earliest known compasses,

magnetism are:

thousands of years old.

(i) The earth behaves as a magnet with the magnetic

field pointing approximately from the geographic

south to the north.

(ii) When a bar magnet is freely suspended, it points in the north-south

direction. The tip which points to the geographic north is called the

north pole and the tip which points to the geographic south is called

the south pole of the magnet.



(iii) There is a repulsive force when north poles ( or south poles ) of two

magnets are brought close together. Conversely, there is an attractive

force between the north pole of one magnet and the south pole of

the other.

(iv) We cannot isolate the north, or south pole of a magnet. If a bar magnet

is broken into two halves, we get two similar bar magnets with

somewhat weaker properties. Unlike electric charges, isolated magnetic

north and south poles known as magnetic monopoles do not exist.

(v) It is possible to make magnets out of iron and its alloys.

We begin with a description of a bar magnet and its behaviour in an

external magnetic field. We describe Gauss’s law of magnetism. We then

follow it up with an account of the earth’s magnetic field. We next describe

how materials can be classified on the basis of their magnetic properties.

We describe para-, dia-, and ferromagnetism. We conclude with a section

on electromagnets and permanent magnets.

5.2 THE BAR MAGNET

One of the earliest childhood memories of the famous physicist Albert

Einstein was that of a magnet gifted to him by a relative. Einstein was

fascinated, and played endlessly with it. He wondered how the magnet

could affect objects such as nails or pins placed away from it and not in
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We begin our study by examining iron filings sprinkled on a sheet of

glass placed over a short bar magnet. The arrangement of iron filings is

shown in Fig. 5.2.

The pattern of iron filings suggests that the magnet has two poles similar to
the positive and negative charge of an electric dipole. As mentioned in the
introductory section, one pole is designated the North

pole and the other, the South pole. When suspended freely, these poles point
approximately towards the geographic north and south poles, respectively.
A similar pattern of iron filings is observed around a current

carrying solenoid.



5.2.1 The magnetic field lines

The pattern of iron filings permits us to plot the magnetic field lines*. This
is FIGURE 5.2 The shown both for the bar-magnet and the current-
carrying solenoid in

arrangement of iron

Fig. 5.3. For comparison refer to the Chapter 1, Figure 1.17(d). Electric
field filings surrounding a lines of an electric dipole are also displayed in
Fig. 5.3(c). The magnetic field bar magnet. The lines are a visual and
intuitive realisation of the magnetic field. Their

pattern mimics

properties are:

magnetic field lines.

(i) The magnetic field lines of a magnet (or a solenoid) form continuous
The pattern suggests that the bar magnet closed loops. This is unlike the
electric dipole where these field lines

is a magnetic dipole.

begin from a positive charge and end on the negative charge or escape

to infinity.

(ii) The tangent to the field line at a given point represents the direction of
the net magnetic field B at that point.

FIGURE 5.3 The field lines of (a) a bar magnet, (b) a current-carrying
finite solenoid and (c) electric dipole. At large distances, the field lines are
very similar. The curves labelled i and ii are closed Gaussian surfaces.

* In some textbooks the magnetic field lines are called magnetic lines of
force.



This nomenclature is avoided since it can be confusing. Unlike
electrostatics

the field lines in magnetism do not indicate the direction of the force on a
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(iii) The larger the number of field lines crossing per unit area, the stronger
is the magnitude of the magnetic field B. In Fig. 5.3(a), B is larger around
region ii than in region i .

(iv) The magnetic field lines do not intersect, for if they did, the direction

of the magnetic field would not be unique at the point of intersection.

One can plot the magnetic field lines in a variety of ways. One way is

to place a small magnetic compass needle at various positions and note

its orientation. This gives us an idea of the magnetic field direction at

various points in space.

5.2.2 Bar magnet as an equivalent solenoid

In the previous chapter, we have explained how a current loop acts as a



magnetic dipole (Section 4.10). We mentioned Ampere’s hypothesis that

all magnetic phenomena can be explained in terms of circulating currents.

Recall that the magnetic dipole moment m

associated with a current loop was defined

to be m = NI A where N is the number of

turns in the loop, I the current and A the

area vector (Eq. 4.30).

The resemblance of magnetic field lines

for a bar magnet and a solenoid suggest that

a bar magnet may be thought of as a large

number of circulating currents in analogy

with a solenoid. Cutting a bar magnet in half

is like cutting a solenoid. We get two smaller

solenoids with weaker magnetic properties.

The field lines remain continuous, emerging

from one face of the solenoid and entering

into the other face. One can test this analogy

by moving a small compass needle in the

neighbourhood of a bar magnet and a

current-carrying finite solenoid and noting



that the deflections of the needle are similar

in both cases.

To make this analogy more firm we

calculate the axial field of a finite solenoid

FIGURE 5.4 (a) Calculation of the axial field of a

depicted in Fig. 5.4 (a). We shall demonstrate

finite solenoid in order to demonstrate its similarity

that at large distances this axial field

to that of a bar magnet. (b) A magnetic needle

resembles that of a bar magnet.

in a uniform magnetic field B. The

arrangement may be used to

Let the solenoid of Fig. 5.4(a) consists of

determine either B or the magnetic

n turns per unit length. Let its length be 2 l

moment m of the needle.

and radius a. We can evaluate the axial field

at a point P, at a distance r from the centre O

of the solenoid. To do this, consider a circular element of thickness dx of the
solenoid at a distance x from its centre. It consists of n d x turns. Let I be the



current in the solenoid. In Section 4.6 of the previous chapter we have
calculated the magnetic field on the axis of a circular current loop.

From Eq. (4.13), the magnitude of the field at point P due to the circular
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2

µ n dx I a

0

dB =

3

2

2

2

2[( r − x ) + a ]

The magnitude of the total field is obtained by summing over all the

elements — in other words by integrating from x = – l to x = + l . Thus, 2

µ nIa

l

dx



0

B =

∫

2

2

2 3 / 2

l

− [( r − x ) + a ]

This integration can be done by trigonometric substitutions. This

exercise, however, is not necessary for our purpose. Note that the range

of x is from – l to + l . Consider the far axial field of the solenoid, i.e., r >>
a and r >> l . Then the denominator is approximated by 3

2

2

3

2

[( r − x ) + a ]

≈ r

2 l

µ n I a

and



0

B =

dx

∫

3

2 r

− l

2

µ n I 2 l a

= 0

(5.1)

3

2

r

Note that the magnitude of the magnetic moment of the solenoid is,

m = n (2 l) I (π a 2) — (total number of turns × current × cross-sectional
area). Thus, µ 2 m

0

B =

3

(5.2)



4π r

This is also the far axial magnetic field of a bar magnet which one may

obtain experimentally. Thus, a bar magnet and a solenoid produce similar

magnetic fields. The magnetic moment of a bar magnet is thus equal to

the magnetic moment of an equivalent solenoid that produces the same

magnetic field.

Some textbooks assign a magnetic charge (also called pole strength)

+ q to the north pole and – q to the south pole of a bar magnet of length m

m

2 l , and magnetic moment q (2 l ). The field strength due to q at a distance
m m

r from it is given by µ q /4π r 2. The magnetic field due to the bar magnet 0
m

is then obtained, both for the axial and the equatorial case, in a manner

analogous to that of an electric dipole (Chapter 1). The method is simple

and appealing. However, magnetic monopoles do not exist, and we have
avoided this approach for that reason.

5.2.3 The dipole in a uniform magnetic field

The pattern of iron filings, i.e., the magnetic field lines gives us an

approximate idea of the magnetic field B. We may at times be required to
determine the magnitude of B accurately. This is done by placing a small
compass needle of known magnetic moment m and moment of inertia 1



and allowing it to oscillate in the magnetic field. This arrangement is shown

in Fig. 5.4(b).

The torque on the needle is [see Eq. (4.29)],
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τ = m × B

(5.3)
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In magnitude τ = mB sinθ

Here τ is restoring torque and θ is the angle between m and B.

2

d θ

Therefore, in equilibrium 1

= − mB sinθ

2

dt

Negative sign with mB sinθ implies that restoring torque is in opposition to
deflecting torque. For small values of θ in radians, we approximate sin θ ≈ θ
and get

2

d θ

1



≈ – mB θ

2

dt

2

d θ

mB

or,

= −

θ

2

dt

1

This represents a simple harmonic motion. The square of the angular

frequency is ω2 = mB/ 1 and the time period is,

T =

1

2π

(5.4)

mB

4 2



π

or B =

1

2

(5.5)

m T

An expression for magnetic potential energy can also be obtained on

lines similar to electrostatic potential energy.

The magnetic potential energy U is given by

m

U

= τ(θ) dθ

∫

m

= mB sin θ

∫

= mB

−

cosθ

= −mgB



(5.6)

We have emphasised in Chapter 2 that the zero of potential energy

can be fixed at one’s convenience. Taking the constant of integration to be

zero means fixing the zero of potential energy at θ = 90º, i.e., when the

needle is perpendicular to the field. Equation (5.6) shows that potential

energy is minimum (= – m B) at θ = 0º (most stable position) and maximum
(= + m B) at θ = 180º (most unstable position).

Example 5.1 In Fig. 5.4(b), the magnetic needle has magnetic moment

6.7 × 10–2 Am2 and moment of inertia 1 = 7.5 × 10–6 kg m2. It performs

10 complete oscillations in 6.70 s. What is the magnitude of the

magnetic field?

Solution The time period of oscillation is,

6.70

T =

= 0.67 s

10

From Eq. (5.5)

2

4π

B =

1



2

5.1

mT

2

−6

4 × (3.14) × 7.5 × 10

=

–2

2

XAMPLE

6.7 × 10

× (0.67)
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Example 5.2 A short bar magnet placed with its axis at 30º with an

external field of 800 G experiences a torque of 0.016 Nm. (a) What is

the magnetic moment of the magnet? (b) What is the work done in



moving it from its most stable to most unstable position? (c) The bar

magnet is replaced by a solenoid of cross-sectional area 2 × 10–4 m2

and 1000 turns, but of the same magnetic moment. Determine the

current flowing through the solenoid.

Solution

(a) From Eq. (5.3), τ = m B sin θ, θ = 30º, hence sinθ =1/2.

Thus, 0.016 = m × (800 × 10–4 T) × (1/2)

m = 160 × 2/800 = 0.40 A m2

(b) From Eq. (5.6), the most stable position is θ = 0º and the most

unstable position is θ = 180º. Work done is given by

W = U (θ = 180 )

° − U (θ = 0°)

E

m

m

XAMPLE

= 2 m B = 2 × 0.40 × 800 × 10–4 = 0.064 J

(c) From Eq. (4.30), m = NIA. From part (a), m = 0.40 A m2

s

s



5.2

0.40 = 1000 × I × 2 × 10–4

I = 0.40 × 104/(1000 × 2) = 2A

Example 5.3

(a) What happens if a bar magnet is cut into two pieces: (i) transverse

to its length, (ii) along its length?

(b) A magnetised needle in a uniform magnetic field experiences a

torque but no net force. An iron nail near a bar magnet, however,

experiences a force of attraction in addition to a torque. Why?

(c) Must every magnetic configuration have a north pole and a south

pole? What about the field due to a toroid?

(d) Two identical looking iron bars A and B are given, one of which is

definitely known to be magnetised. (We do not know which one.)

How would one ascertain whether or not both are magnetised? If

only one is magnetised, how does one ascertain which one? [Use

nothing else but the bars A and B.]

Solution

(a) In either case, one gets two magnets, each with a north and south

pole.

(b) No force if the field is uniform. The iron nail experiences a nonuniform
field due to the bar magnet. There is induced magnetic



moment in the nail, therefore, it experiences both force and torque.

The net force is attractive because the induced south pole (say) in

the nail is closer to the north pole of magnet than induced north

pole.

(c) Not necessarily. True only if the source of the field has a net nonzero
magnetic moment. This is not so for a toroid or even for a

straight infinite conductor.

E

(d) Try to bring different ends of the bars closer. A repulsive force in

XAMPLE

some situation establishes that both are magnetised. If it is always

attractive, then one of them is not magnetised. In a bar magnet

the intensity of the magnetic field is the strongest at the two ends

5.3

(poles) and weakest at the central region. This fact may be used to

determine whether A or B is the magnet. In this case, to see which
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one of the two bars is a magnet, pick up one, (say, A) and lower one of

5.3

its ends; first on one of the ends of the other (say, B), and then on the



middle of B. If you notice that in the middle of B, A experiences no

force, then B is magnetised. If you do not notice any change from the

XAMPLE

end to the middle of B, then A is magnetised.

E

5.2.4 The electrostatic analog

Comparison of Eqs. (5.2), (5.3) and (5.6) with the corresponding equations

for electric dipole (Chapter 1), suggests that magnetic field at large

distances due to a bar magnet of magnetic moment m can be obtained

from the equation for electric field due to an electric dipole of dipole
moment p, by making the following replacements: 1

µ0

E → B , p → m ,

→

4 ε

π

4π

0

In particular, we can write down the equatorial field (B ) of a bar magnet E

at a distance r, for r >> l, where l is the size of the magnet: µ m 0

B = −



E

3

(5.7)

4 π r

Likewise, the axial field (B ) of a bar magnet for r >> l is: A

µ 2m

0

B =

A

3

(5.8)

4 π r

Equation (5.8) is just Eq. (5.2) in the vector form. Table 5.1 summarises

the analogy between electric and magnetic dipoles.

TABLE 5.1 THE DIPOLE ANALOGY

Electrostatics

Magnetism

1/ε

µ

0



0

Dipole moment

p

m

Equatorial Field for a short dipole

–p/4πε r 3

– µ m / 4π r 3

0

0

Axial Field for a short dipole

2p/4πε r 3

µ 2m / 4π r 3

0

0

External Field: torque

p × E

m × B

External Field: Energy

–p.E

–m.B



Example 5.4 What is the magnitude of the equatorial and axial fields

due to a bar magnet of length 5.0 cm at a distance of 50 cm from its

midpoint? The magnetic moment of the bar magnet is 0.40 A m2, the

same as in Example 5.2.

Solution From Eq. (5.7)

−

−

5.4

µ m

7

7

10

× 0.4 10 × 0.4

0

B =

=

=

7

−

E



3

=

×

4 π r

(

3.2 10

T

0.5)3

0.125

µ 2 m

XAMPLE

0

From Eq. (5.8), B =

7

−

A

3

= 6.4 ×10 T
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Example 5.5 Figure 5.5 shows a small magnetised needle P placed at

a point O. The arrow shows the direction of its magnetic moment. The

other arrows show different positions (and orientations of the magnetic

moment) of another identical magnetised needle Q.

(a) In which configuration the system is not in equilibrium?

(b) In which configuration is the system in (i) stable, and (ii) unstable

equilibrium?

(c) Which configuration corresponds to the lowest potential energy

among all the configurations shown?

FIGURE 5.5

Solution

Potential energy of the configuration arises due to the potential energy of

one dipole (say, Q) in the magnetic field due to other (P). Use the result

that the field due to P is given by the expression [Eqs. (5.7) and (5.8)]:

µ0

P

= −



m

BP

(on the normal bisector)

3

4π r

µ 2

0

P

=

m

BP

(on the axis)

3

4π r

where m is the magnetic moment of the dipole P.

P

Equilibrium is stable when m is parallel to B , and unstable when it Q

P

is antiparallel to B .

P



For instance for the configuration Q for which Q is along the

3

perpendicular bisector of the dipole P, the magnetic moment of Q is

E

parallel to the magnetic field at the position 3. Hence Q is stable.

3

XAMPLE

Thus,

(a) PQ and PQ

1

2

5.5

(b) (i) PQ , PQ (stable); (ii) PQ , PQ (unstable)

3

6

5

4

(c) PQ6

5.3 MAGNETISM AND GAUSS’S LAW

In Chapter 1, we studied Gauss’s law for electrostatics. In Fig 5.3(c), we



see that for a closed surface represented by i , the number of lines leaving

the surface is equal to the number of lines entering it. This is consistent

with the fact that no net charge is enclosed by the surface. However, in the
same figure, for the closed surface ii , there is a net outward flux, since it
does include a net (positive) charge.
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The situation is radically different for magnetic fields

which are continuous and form closed loops. Examine the

Gaussian surfaces represented by i or ii in Fig 5.3(a) or

Fig. 5.3(b). Both cases visually demonstrate that the

number of magnetic field lines leaving the surface is

balanced by the number of lines entering it. The net

magnetic flux is zero for both the surfaces. This is true

)

for any closed surface.

5581



Karl Friedrich Gauss

(1777 –

(1777 – 1855) He was a

child prodigy and was gifted

in mathematics, physics,

engineering, astronomy

and even land surveying.

The properties of numbers

FIGURE 5.6

fascinated him, and in his

work he anticipated major

Consider a small vector area element ∆S of a closed

mathematical development

surface S as in Fig. 5.6. The magnetic flux through

 

ÄS is

of later times. Along with

defined as ∆φ = B. ∆S, where B is the field at ∆S. We divide Wilhelm
Welser, he built the B

S into many small area elements and calculate the

first electric telegraph in



1833. His mathematical

individual flux through each. Then, the net flux φ is,

B

theory of curved surface

laid the foundation for the

φ =

KARL FRIEDRICH GAUSS

∑ ∆φ = ∑ Bg∆S = 0

B

B

(5.9)

' all '

' all '

later work of Riemann.

where ‘all’ stands for ‘all area elements ∆S′. Compare this

with the Gauss’s law of electrostatics. The flux through a closed surface

in that case is given by

q

∑Eg∆S = ε0

where q is the electric charge enclosed by the surface.



The difference between the Gauss’s law of magnetism and that for

electrostatics is a reflection of the fact that isolated magnetic poles (also

called monopoles) are not known to exist. There are no sources or sinks

of B; the simplest magnetic element is a dipole or a current loop. All

magnetic phenomena can be explained in terms of an arrangement of

dipoles and/or current loops.

Thus, Gauss’s law for magnetism is:

The net magnetic flux through any closed surface is zero.

5.6

Example 5.6 Many of the diagrams given in Fig. 5.7 show magnetic

field lines (thick lines in the figure) wrongly. Point out what is wrong with
them. Some of them may describe electrostatic field lines correctly.

XAMPLE

Point out which ones.
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FIGURE 5.7

Solution

(a) Wrong. Magnetic field lines can never emanate from a point, as



E

shown in figure. Over any closed surface, the net flux of B must

XAMPLE

always be zero, i.e., pictorially as many field lines should seem to

enter the surface as the number of lines leaving it. The field lines

shown, in fact, represent electric field of a long positively charged

5.6

wire. The correct magnetic field lines are circling the straight

conductor, as described in Chapter 4.
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(b) Wrong. Magnetic field lines (like electric field lines) can never cross
each other, because otherwise the direction of field at the point of
intersection is ambiguous. There is further error in the figure.

Magnetostatic field lines can never form closed loops around empty

space. A closed loop of static magnetic field line must enclose a

region across which a current is passing. By contrast, electrostatic

field lines can never form closed loops, neither in empty space,

nor when the loop encloses charges.

(c) Right. Magnetic lines are completely confined within a toroid.

Nothing wrong here in field lines forming closed loops, since each



loop encloses a region across which a current passes. Note, for

clarity of figure, only a few field lines within the toroid have been

shown. Actually, the entire region enclosed by the windings

contains magnetic field.

(d) Wrong. Field lines due to a solenoid at its ends and outside cannot be so
completely straight and confined; such a thing violates Ampere’s law. The
lines should curve out at both ends, and meet

eventually to form closed loops.

(e) Right. These are field lines outside and inside a bar magnet. Note

carefully the direction of field lines inside. Not all field lines emanate

out of a north pole (or converge into a south pole). Around both

the N-pole, and the S-pole, the net flux of the field is zero.

(f ) Wrong. These field lines cannot possibly represent a magnetic field.

Look at the upper region. All the field lines seem to emanate out of

the shaded plate. The net flux through a surface surrounding the

shaded plate is not zero. This is impossible for a magnetic field.

The given field lines, in fact, show the electrostatic field lines

around a positively charged upper plate and a negatively charged

lower plate. The difference between Fig. [5.7(e) and (f )] should be

5.6

carefully grasped.



(g) Wrong. Magnetic field lines between two pole pieces cannot be

precisely straight at the ends. Some fringing of lines is inevitable.

Otherwise, Ampere’s law is violated. This is also true for electric

XAMPLE

E

field lines.

Example 5.7

(a) Magnetic field lines show the direction (at every point) along which

a small magnetised needle aligns (at the point). Do the magnetic

field lines also represent the lines of force on a moving charged

particle at every point?

(b) Magnetic field lines can be entirely confined within the core of a

toroid, but not within a straight solenoid. Why?

(c) If magnetic monopoles existed, how would the Gauss’s law of

magnetism be modified?

(d) Does a bar magnet exert a torque on itself due to its own field?

Does one element of a current-carrying wire exert a force on another

element of the same wire?

(e) Magnetic field arises due to charges in motion. Can a system have

magnetic moments even though its net charge is zero?



5.7

Solution

(a) No. The magnetic force is always normal to B (remember magnetic
XAMPLE

force = qv × B). It is misleading to call magnetic field lines as lines 184

E

of force.

Magnetism and

Matter

(b) If field lines were entirely confined between two ends of a straight

solenoid, the flux through the cross-section at each end would be

nonzero. But the flux of field B through any closed surface must

always be zero. For a toroid, this difficulty is absent because it

has no ‘ends’.

(c) Gauss’s law of magnetism states that the flux of B through any

closed surface is always zero

d

g

= 0

∫ B s

Ñ



.

S

If monopoles existed, the right hand side would be equal to the

monopole (magnetic charge) q enclosed by S. [Analogous to

m

Gauss’s law of electrostatics,

d

g

= µ q

∫ B s

where q is the

0 m

S

m

(monopole) magnetic charge enclosed by S .]

(d) No. There is no force or torque on an element due to the field

produced by that element itself. But there is a force (or torque) on

an element of the same wire. (For the special case of a straight

E

wire, this force is zero.)



XAMPLE

(e) Yes. The average of the charge in the system may be zero. Yet, the

mean of the magnetic moments due to various current loops may

not be zero. We will come across such examples in connection

5.7

with paramagnetic material where atoms have net dipole moment

through their net charge is zero.

5.4 THE EARTH’S MAGNETISM

Earlier we have referred to the magnetic field of the earth. The strength of

the earth’s magnetic field varies from place to place on the earth’s surface;

its value being of the order of 10–5 T.

http://www.ngdc.noaa.gov/seg/geomag/ Geomagnetic field frequently
asked questions o

What causes the earth to have a magnetic field is not clear. Originally

the magnetic field was thought of as arising from a giant bar magnet

placed approximately along the axis of rotation of the earth and deep in

e

the interior. However, this simplistic picture is certainly not correct. The

 

magnetic field is now thought to arise due to electrical currents produced

ld



by convective motion of metallic fluids (consisting mostly of molten

 

iron and nickel) in the outer core of the earth. This is known as the

dynamo effect.

n

The magnetic field lines of the earth resemble that of a (hypothetical)

 

magnetic dipole located at the centre of the earth. The axis of the dipole

does not coincide with the axis of rotation of the earth but is presently

 

titled by approximately 11.3º with respect to the later. In this way of looking
at it, the magnetic poles are located where the magnetic field lines due to
the dipole enter or leave the earth. The location of the north magnetic pole

io

is at a latitude of 79.74º N and a longitude of 71.8º W, a place somewhere

in north Canada. The magnetic south pole is at 79.74º S, 108.22º E in the

Antarctica.

The pole near the geographic north pole of the earth is called the north

185

magnetic pole. Likewise, the pole near the geographic south pole is called

Physics



the south magnetic pole. There is some confusion in the

nomenclature of the poles. If one looks at the magnetic

field lines of the earth (Fig. 5.8), one sees that unlike in the

case of a bar magnet, the field lines go into the earth at the

north magnetic pole ( N ) and come out from the south

m

magnetic pole ( S ). The convention arose because the

m

magnetic north was the direction to which the north

pole of a magnetic needle pointed; the north pole of

a magnet was so named as it was the north seeking

pole. Thus, in reality, the north magnetic pole behaves

FIGURE 5.8 The earth as a giant

like the south pole of a bar magnet inside the earth and

magnetic dipole.

vice versa.

Example 5.8 The earth’s magnetic field at the equator is approximately

0.4 G. Estimate the earth’s dipole moment.

Solution From Eq. (5.7), the equatorial magnetic field is,

µ m



0

B =

E

3

4 π r

We are given that B ~ 0.4 G = 4 × 10–5 T. For r, we take the radius of E

the earth 6.4 × 106 m. Hence,

5.8

5

−

6 3

4 × 10

× (6.4 ×10 )

m =

µ

/4π = 10–7)

/ 4π

=4 × 102 × (6.4 × 106)3 (µ0

0

= 1.05 × 1023 A m2



XAMPLE

E

This is close to the value 8 × 1022 A m2 quoted in geomagnetic texts.

5.4.1 Magnetic declination and dip

Consider a point on the earth’s surface. At such a point, the direction of

the longitude circle determines the geographic north-south direction, the

line of longitude towards the north pole being the direction of

true north. The vertical plane containing the longitude circle

and the axis of rotation of the earth is called the geographic

meridian. In a similar way, one can define magnetic meridian

of a place as the vertical plane which passes through the

imaginary line joining the magnetic north and the south poles.

This plane would intersect the surface of the earth in a

longitude like circle. A magnetic needle, which is free to swing

horizontally, would then lie in the magnetic meridian and the

north pole of the needle would point towards the magnetic

north pole. Since the line joining the magnetic poles is titled

with respect to the geographic axis of the earth, the magnetic

meridian at a point makes angle with the geographic meridian.

This, then, is the angle between the true geographic north and



FIGURE 5.9 A magnetic needle

free to move in horizontal plane,

the north shown by a compass needle. This angle is called the

points toward the magnetic

magnetic declination or simply declination (Fig. 5.9).

north-south

The declination is greater at higher latitudes and smaller

186

direction.

near the equator. The declination in India is small, it being
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0º41′ E at Delhi and 0º58′ W at Mumbai. Thus, at both these places a

magnetic needle shows the true north quite accurately.

There is one more quantity of interest. If a magnetic needle is perfectly

balanced about a horizontal axis so that it can swing in a plane of the

magnetic meridian, the needle would make an angle with the horizontal

(Fig. 5.10). This is known as the angle of dip (also known as inclination).

Thus, dip is the angle that the total magnetic field B of the earth makes E

with the surface of the earth. Figure 5.11 shows the magnetic meridian



plane at a point P on the surface of the earth. The plane is a section through

the earth. The total magnetic field at P

can be resolved into a horizontal

component H and a vertical

E

component Z . The angle that B makes

E

E

with H is the angle of dip, I.

E

FIGURE 5.10 The circle is a

FIGURE 5.11 The earth’s

section through the earth

magnetic field, B , its horizontal

E

containing the magnetic

and vertical components, H and

E

meridian. The angle between B

Z . Also shown are the



E

E

and the horizontal component

declination, D and the

H is the angle of dip.

inclination or angle of dip, I.

E

In most of the northern hemisphere, the north pole of the dip needle

tilts downwards. Likewise in most of the southern hemisphere, the south

pole of the dip needle tilts downwards.

To describe the magnetic field of the earth at a point on its surface, we

need to specify three quantities, viz., the declination D, the angle of dip or
the inclination I and the horizontal component of the earth’s field H . These
E

are known as the element of the earth’s magnetic field.

Representing the verticle component by Z , we have

E

Z = B sin I

[5.10(a)]

E

E



H = B cos I

[5.10(b)]

E

E

which gives,

Z

tan

E

I = H

[5.10(c)]
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WHAT HAPPENS TO MY COMPASS NEEDLES AT THE POLES?

A compass needle consists of a magnetic needle which floats on a pivotal
point. When the compass is held level, it points along the direction of the
horizontal component of the earth’s magnetic field at the location. Thus, the
compass needle would stay along the magnetic meridian of the place. In
some places on the earth there are deposits of magnetic minerals which
cause the compass needle to deviate from the magnetic meridian. Knowing
the magnetic declination at a place allows us to correct the compass to
determine the direction of true north.

So what happens if we take our compass to the magnetic pole? At the poles,
the magnetic field lines are converging or diverging vertically so that the



horizontal component is negligible.

If the needle is only capable of moving in a horizontal plane, it can point
along any direction, rendering it useless as a direction finder. What one
needs in such a case is a dip needle which is a compass pivoted to move in a
vertical plane containing the magnetic field of the earth. The needle of the
compass then shows the angle which the magnetic field makes with the
vertical. At the magnetic poles such a needle will point straight down.

Example 5.9 In the magnetic meridian of a certain place, the

horizontal component of the earth’s magnetic field is 0.26G and the

dip angle is 60º. What is the magnetic field of the earth at this location?

Solution

It is given that H = 0.26 G. From Fig. 5.11, we have

E

H

0

cos 60

E

= BE

5.9

H E

B

=



E

0

cos 60

0.26

XAMPLE

=

= 0.52 G
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EARTH’S MAGNETIC FIELD

It must not be assumed that there is a giant bar magnet deep inside the earth
which is causing the earth’s magnetic field. Although there are large
deposits of iron inside the earth, it is highly unlikely that a large solid block
of iron stretches from the magnetic north pole to the magnetic south pole.
The earth’s core is very hot and molten, and the ions of iron and nickel are
responsible for earth’s magnetism. This hypothesis seems very probable.
Moon, which has no molten core, has no magnetic field, Venus has a slower
rate of rotation, and a weaker magnetic field, while Jupiter, which has the
fastest rotation rate among planets, has a fairly strong magnetic field.
However, the precise mode of these circulating currents and the energy
needed to sustain them are not very well understood. These are several open
questions which form an important area of continuing research.



The variation of the earth’s magnetic field with position is also an
interesting area of study. Charged particles emitted by the sun flow towards
the earth and beyond, in a stream called the solar wind. Their motion is
affected by the earth’s magnetic field, and in turn, they affect the pattern of
the earth’s magnetic field. The pattern of magnetic field near the poles is
quite different from that in other regions of the earth.

The variation of earth’s magnetic field with time is no less fascinating.
There are short term variations taking place over centuries and long term
variations taking place over a period of a million years. In a span of 240
years from 1580 to 1820 AD, over which records are available, the
magnetic declination at London has been found to change by 3.5º,
suggesting that the magnetic poles inside the earth change position with
time. On the scale of a million years, the earth’s magnetic fields has been
found to reverse its direction. Basalt contains iron, and basalt is emitted
during volcanic activity. The little iron magnets inside it align themselves
parallel to the magnetic field at that place as the basalt cools and solidifies.

Geological studies of basalt containing such pieces of magnetised region
have provided evidence for the change of direction of earth’s magnetic
field, several times in the past.

5.5 MAGNETISATION AND MAGNETIC INTENSITY

The earth abounds with a bewildering variety of elements and compounds.

In addition, we have been synthesising new alloys, compounds and even

elements. One would like to classify the magnetic properties of these

substances. In the present section, we define and explain certain terms

which will help us to carry out this exercise.

We have seen that a circulating electron in an atom has a magnetic

moment. In a bulk material, these moments add up vectorially and they

can give a net magnetic moment which is nonzero. We define



magnetisation M of a sample to be equal to its net magnetic moment per
unit volume:

net

= m

M

(5.11)

V

M is a vector with dimensions L–1 A and is measured in a units of A m–1.

Consider a long solenoid of n turns per unit length and carrying a

current I. The magnetic field in the interior of the solenoid was shown to
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B = µ nI

(5.12)

0

0

If the interior of the solenoid is filled with a material with nonzero

magnetisation, the field inside the solenoid will be greater than B . The 0

net B field in the interior of the solenoid may be expressed as

B = B + B



(5.13)

0

m

where B is the field contributed by the material core. It turns out that m

this additional field B is proportional to the magnetisation M of the m

material and is expressed as

B = µ M

(5.14)

m

0

where µ is the same constant (permeability of vacuum) that appears in

0

Biot-Savart’s law.

It is convenient to introduce another vector field H, called the magnetic
intensity, which is defined by = B

H

–

µ

M

(5.15)

0



where H has the same dimensions as M and is measured in units of A m–1.

Thus, the total magnetic field B is written as

B = µ (H + M)

(5.16)

0

We repeat our defining procedure. We have partitioned the contribution

to the total magnetic field inside the sample into two parts: one, due to
external factors such as the current in the solenoid. This is represented by
H. The other is due to the specific nature of the magnetic material, namely
M. The latter quantity can be influenced by external factors. This influence
is mathematically expressed as M = χ H

(5.17)

where χ , a dimensionless quantity, is appropriately called the magnetic

susceptibility. It is a measure of how a magnetic material responds to an
external field. Table 5.2 lists χ for some elements. It is small and positive
for materials, which are called paramagnetic. It is small and negative for
materials, which are termed diamagnetic. In the latter case M and H are
opposite in direction. From Eqs. (5.16) and (5.17) we obtain, B = µ (1 +
χ)H

(5.18)

0

= µ µ H

0 r

= µ H



(5.19)

where µ = 1 + χ, is a dimensionless quantity called the relative magnetic

r

permeability of the substance. It is the analog of the dielectric constant in
electrostatics. The magnetic permeability of the substance is µ and it has the
same dimensions and units as µ ; 0

µ = µ µ = µ (1+χ).

0 r

0

The three quantities χ, µ and µ are interrelated and only one of

r
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them is independent. Given one, the other two may be easily determined.
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TABLE 5.2 MAGNETIC SUSCEPTIBILITY OF SOME ELEMENTS
AT 300 K

Diamagnetic substance

χ

Paramagnetic substance

χ



Bismuth

–1.66 × 10–5

Aluminium

2.3 × 10–5

Copper

–9.8 × 10–6

Calcium

1.9 × 10–5

Diamond

–2.2 × 10–5

Chromium

2.7 × 10–4

Gold

–3.6 × 10–5

Lithium

2.1 × 10–5

Lead

–1.7 × 10–5

Magnesium

1.2 × 10–5



Mercury

–2.9 × 10–5

Niobium

2.6 × 10–5

Nitrogen (STP)

–5.0 × 10–9

Oxygen (STP)

2.1 × 10–6

Silver

–2.6 × 10–5

Platinum

2.9 × 10–4

Silicon

–4.2 × 10–6

Tungsten

6.8 × 10–5

Example 5.10 A solenoid has a core of a material with relative

permeability 400. The windings of the solenoid are insulated from the

core and carry a current of 2A. If the number of turns is 1000 per

metre, calculate (a) H, (b) M, (c) B and (d) the magnetising current I .



m

Solution

(a) The field H is dependent of the material of the core, and is

H = nI = 1000 × 2.0 = 2 ×103 A/m.

(b) The magnetic field B is given by

B = µ µ H

r

0

= 400 × 4π ×10–7 (N/A2) × 2 × 103 (A/m)

= 1.0 T

(c) Magnetisation is given by

M = ( B– µ H )/ µ

0

0

E

= (µ µ H–µ H )/µ = (µ – 1) H = 399 × H

r

0

0

0



r

XAMPLE

≅ 8 × 105 A/m

(d) The magnetising current I is the additional current that needs

M

to be passed through the windings of the solenoid in the absence

5.10

of the core which would give a B value as in the presence of the

core. Thus B = µ n ( I + I ). Using I = 2A, B = 1 T, we get I = 794 A.

r

0

M

M

5.6 MAGNETIC PROPERTIES OF MATERIALS

The discussion in the previous section helps us to classify materials as

diamagnetic, paramagnetic or ferromagnetic. In terms of the susceptibility

χ , a material is diamagnetic if χ is negative, para-if χ is positive and

small, and ferro-if χ is large and positive.

A glance at Table 5.3 gives one a better feeling for these

materials. Here ε is a small positive number introduced to quantify



paramagnetic materials. Next, we describe these materials in some
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TABLE 5.3

Diamagnetic

Paramagnetic

Ferromagnetic

–1 ≤ χ < 0

0 < χ < ε

χ >> 1

0 ≤ µ < 1

1< µ < 1+ ε

µ >> 1

r

r

r

µ < µ

µ > µ

µ >> µ



0

0

0

5.6.1 Diamagnetism

Diamagnetic substances are those which have tendency to move from

stronger to the weaker part of the external magnetic field. In other words,

unlike the way a magnet attracts metals like iron, it would repel a

diamagnetic substance.

Figure 5.12(a) shows a bar of diamagnetic material placed in an external

magnetic field. The field lines are repelled or expelled and the field inside

the material is reduced. In most cases, as is evident from

Table 5.2, this reduction is slight, being one part in 105. When placed in a

nonuniform magnetic field, the bar will tend to move from high to low
field.

The simplest explanation for diamagnetism is as follows. Electrons in

an atom orbiting around nucleus possess orbital angular momentum.

These orbiting electrons are equivalent to current-carrying loop and thus

possess orbital magnetic moment. Diamagnetic substances are the ones

in which resultant magnetic moment in an atom is zero. When magnetic

field is applied, those electrons having orbital magnetic moment in the

same direction slow down and those in the opposite direction speed up.



This happens due to induced current in accordance with Lenz’s law which

you will study in Chapter 6. Thus, the substance develops a net magnetic

moment in direction opposite to that of the applied field and hence

FIGURE 5.12

repulsion.

Behaviour of

Some diamagnetic materials are bismuth, copper, lead, silicon,

magnetic field lines

near a

nitrogen (at STP), water and sodium chloride. Diamagnetism is present

(a) diamagnetic,

in all the substances. However, the effect is so weak in most cases that it

(b) paramagnetic

gets shifted by other effects like paramagnetism, ferromagnetism, etc.

substance.

The most exotic diamagnetic materials are superconductors. These

are metals, cooled to very low temperatures which exhibits both perfect

conductivity and perfect diamagnetism. Here the field lines are completely
expelled! χ = –1 and µ = 0. A superconductor repels a magnet and (by r

Newton’s third law) is repelled by the magnet. The phenomenon of perfect



diamagnetism in superconductors is called the Meissner effect, after the
name of its discoverer. Superconducting magnets can be gainfully exploited
in variety of situations, for example, for running magnetically

levitated superfast trains.

5.6.2 Paramagnetism

Paramagnetic substances are those which get weakly magnetised when

placed in an external magnetic field. They have tendency to move from a

region of weak magnetic field to strong magnetic field, i.e., they get weakly
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The individual atoms (or ions or molecules) of a paramagnetic material

possess a permanent magnetic dipole moment of their own. On account

of the ceaseless random thermal motion of the atoms, no net magnetisation

is seen. In the presence of an external field B , which is strong enough, 0

and at low temperatures, the individual atomic dipole moment can be



made to align and point in the same direction as B . Figure 5.12(b) shows 0

a bar of paramagnetic material placed in an external field. The field lines

http://www.aacg.bham.ac.uk/magnetic_materials/ Magnetic materials,
domain, etc.: gets concentrated inside the material, and the field inside is
enhanced. In most cases, as is evident from Table 5.2, this enhancement is
slight, being

one part in 105. When placed in a nonuniform magnetic field, the bar

will tend to move from weak field to strong.

Some paramagnetic materials are aluminium, sodium, calcium,

oxygen (at STP) and copper chloride. Experimentally, one finds that the

magnetisation of a paramagnetic material is inversely proportional to the

absolute temperature T ,

B 0

M = C

[5.20(a)]

T

or equivalently, using Eqs. (5.12) and (5.17)

µ0

χ = C

[5.20(b)]

T



This is known as Curie’s law, after its discoverer Pieree Curie (1859—

1906). The constant C is called Curie’s constant. Thus, for a paramagnetic
material both χ and µ depend not only on the material, but also r

(in a simple fashion) on the sample temperature. As the field is

increased or the temperature is lowered, the magnetisation increases until

it reaches the saturation value M , at which point all the dipoles are

s

perfectly aligned with the field. Beyond this, Curie’s law [Eq. (5.20)] is no

longer valid.

5.6.3 Ferromagnetism

Ferromagnetic substances are those which gets strongly magnetised when

placed in an external magnetic field. They have strong tendency to move

from a region of weak magnetic field to strong magnetic field, i.e., they get

strongly attracted to a magnet.

The individual atoms (or ions or molecules) in a ferromagnetic material

possess a dipole moment as in a paramagnetic material. However, they

interact with one another in such a way that they spontaneously align

themselves in a common direction over a macroscopic volume called

domain. The explanation of this cooperative effect requires quantum

mechanics and is beyond the scope of this textbook. Each domain has a

net magnetisation. Typical domain size is 1mm and the domain contains



about 1011 atoms. In the first instant, the magnetisation varies randomly

from domain to domain and there is no bulk magnetisation. This is shown

FIGURE 5.13

in Fig. 5.13(a). When we apply an external magnetic field B , the domains 0

(a) Randomly

orient themselves in the direction of B and simultaneously the domain

oriented domains,

0

oriented in the direction of B grow in size. This existence of domains and
(b) Aligned domains.

0

their motion in B are not speculations. One may observe this under a

0
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microscope after sprinkling a liquid suspension of powdered
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ferromagnetic substance of samples. This motion of suspension can be

observed. Figure 5.12(b) shows the situation when the domains have

aligned and amalgamated to form a single ‘giant’ domain.

Thus, in a ferromagnetic material the field lines are highly

concentrated. In nonuniform magnetic field, the sample tends to move



towards the region of high field. We may wonder as to what happens

when the external field is removed. In some ferromagnetic materials the

magnetisation persists. Such materials are called hard magnetic materials or
hard ferromagnets. Alnico, an alloy of iron, aluminium, nickel, cobalt and
copper, is one such material. The naturally occurring lodestone is another.
Such materials form permanent magnets to be used among other

things as a compass needle. On the other hand, there is a class of

ferromagnetic materials in which the magnetisation disappears on removal

of the external field. Soft iron is one such material. Appropriately enough,

such materials are called soft ferromagnetic materials. There are a number
of elements, which are ferromagnetic: iron, cobalt, nickel, gadolinium, etc.
The relative magnetic permeability is >1000!

The ferromagnetic property depends on temperature. At high enough

temperature, a ferromagnet becomes a paramagnet. The domain structure

disintegrates with temperature. This disappearance of magnetisation with

temperature is gradual. It is a phase transition reminding us of the melting

of a solid crystal. The temperature of transition from ferromagnetic to

paramagnetism is called the Curie temperature T . Table 5.4 lists

c

the Curie temperature of certain ferromagnets. The susceptibility

above the Curie temperature, i.e., in the paramagnetic phase is

described by,



C

χ =

( T > T )

c

T − T

(5.21)

c

TABLE 5.4 CURIE TEMPERATURE T OF SOME

C

Hysterisis in magnetic materials:

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/hyst.html

FERROMAGNETIC MATERIALS

Material

T (K)

c

Cobalt

1394

Iron

1043

Fe O



893

2

3

Nickel

631

Gadolinium

317

Example 5.11 A domain in ferromagnetic iron is in the form of a cube

of side length 1µm. Estimate the number of iron atoms in the domain

5.11

and the maximum possible dipole moment and magnetisation of the

domain. The molecular mass of iron is 55 g/mole and its density

is 7.9 g/cm3. Assume that each iron atom has a dipole moment

XAMPLE

of 9.27×10–24 A m2.
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Solution The volume of the cubic domain is



V = (10–6 m)3 = 10–18 m3 = 10–12 cm3

Its mass is volume × density = 7.9 g cm–3 × 10–12 cm3= 7.9 × 10–12 g

It is given that Avagadro number (6.023 × 1023) of iron atoms have a

mass of 55 g. Hence, the number of atoms in the domain is

12

−

23

7.9 × 10

× 6.023 ×10

N =

55

= 8.65 × 1010 atoms

The maximum possible dipole moment m

is achieved for the

max

(unrealistic) case when all the atomic moments are perfectly aligned.

Thus,

m

= (8.65 × 1010) × (9.27 × 10–24)

max



E

= 8.0 × 10–13 A m2

XAMPLE

The consequent magnetisation is

M

= m

/ Domain volume

max

max

5.11

= 8.0 × 10–13 Am2/10–18 m3

= 8.0 × 105 Am–1

The relation between B and H in ferromagnetic materials is complex.

It is often not linear and it depends on the magnetic history of the sample.

Figure 5.14 depicts the behaviour of the material as we take it through

one cycle of magnetisation. Let the material be unmagnetised initially. We

place it in a solenoid and increase the current through the

solenoid. The magnetic field B in the material rises and

saturates as depicted in the curve Oa. This behaviour

represents the alignment and merger of domains until no



further enhancement is possible. It is pointless to increase

the current (and hence the magnetic intensity H ) beyond

this. Next, we decrease H and reduce it to zero. At H = 0, B

≠ 0. This is represented by the curve ab. The value of B at

H = 0 is called retentivity or remanence. In Fig. 5.14, B ~

R

1.2 T, where the subscript R denotes retentivity. The

domains are not completely randomised even though the

external driving field has been removed. Next, the current

in the solenoid is reversed and slowly increased. Certain

domains are flipped until the net field inside stands

nullified. This is represented by the curve bc. The value of

H at c is called coercivity. In Fig. 5.14 H ~ –90 A m–1. As

FIGURE 5.14 The magnetic

c

the reversed current is increased in magnitude, we once

hysteresis loop is the B-H curve for

again obtain saturation. The curve cd depicts this. The

ferromagnetic materials.

saturated magnetic field B ~ 1.5 T. Next, the current is



s

reduced (curve de) and reversed (curve ea). The cycle repeats

itself. Note that the curve Oa does not retrace itself as H is reduced. For a
given value of H, B is not unique but depends on previous history of the
sample. This phenomenon is called hysterisis. The word hysterisis means
lagging behind (and not ‘history’).

5.7 PERMANENT MAGNETS AND ELECTROMAGNETS

Substances which at room temperature retain their ferromagnetic property
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for a long period of time are called permanent magnets. Permanent
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magnets can be made in a variety of ways. One can hold an

iron rod in the north-south direction and hammer it repeatedly.

The method is illustrated in Fig. 5.15. The illustration is from

a 400 year old book to emphasise that the making of

permanent magnets is an old art. One can also hold a steel

rod and stroke it with one end of a bar magnet a large number

of times, always in the same sense to make a permanent

magnet.

An efficient way to make a permanent magnet is to place a

ferromagnetic rod in a solenoid and pass a current. The

magnetic field of the solenoid magnetises the rod.

FIGURE 5.15 A blacksmith

The hysteresis curve (Fig. 5.14) allows us to select suitable

forging a permanent magnet by

materials for permanent magnets. The material should have

striking a red-hot rod of iron

high retentivity so that the magnet is strong and high coercivity

kept in the north-south

direction with a hammer. The



so that the magnetisation is not erased by stray magnetic fields,

sketch is recreated from an

temperature fluctuations or minor mechanical damage.

illustration in De Magnete, a

Further, the material should have a high permeability. Steel is

work published in 1600 and

one-favoured choice. It has a slightly smaller retentivity than

authored by William Gilbert,

soft iron but this is outweighed by the much smaller coercivity

the court physician to Queen

of soft iron. Other suitable materials for permanent magnets

Elizabeth of England.

are alnico, cobalt steel and ticonal.

Core of electromagnets are made of ferromagnetic materials

which have high permeability and low retentivity. Soft iron is a suitable

material for electromagnets. On placing a soft iron rod in a solenoid and

passing a current, we increase the magnetism of the solenoid by a

thousand fold. When we switch off the solenoid current, the magnetism is

effectively switched off since the soft iron core has a low retentivity. The

arrangement is shown in Fig. 5.16.



Indiaís Magnetic Field:

http://iigs.iigm.res.in

FIGURE 5.16 A soft iron core in solenoid acts as an electromagnet.

In certain applications, the material goes through an ac cycle of

magnetisation for a long period. This is the case in transformer cores and

telephone diaphragms. The hysteresis curve of such materials must be

narrow. The energy dissipated and the heating will consequently be small.

The material must have a high resistivity to lower eddy current losses.

You will study about eddy currents in Chapter 6.

Electromagnets are used in electric bells, loudspeakers and telephone

diaphragms. Giant electromagnets are used in cranes to lift machinery,
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MAPPING INDIA’S MAGNETIC FIELD

Because of its practical application in prospecting, communication, and
navigation, the magnetic field of the earth is mapped by most nations with
an accuracy comparable to geographical mapping. In India over a dozen
observatories exist, extending from Trivandrum (now
Thrivuvananthapuram) in the south to Gulmarg in the north. These
observatories work under the aegis of the Indian Institute of Geomagnetism
(IIG), in Colaba, Mumbai. The IIG grew out of the Colaba and Alibag



observatories and was formally established in 1971. The IIG monitors (via
its nation-wide observatories), the geomagnetic fields and fluctuations on
land, and under the ocean and in space. Its services are used by the Oil and
Natural Gas Corporation Ltd. (ONGC), the National Institute of
Oceanography (NIO) and the Indian Space Research Organisation (ISRO).
It is a part of the world-wide network which ceaselessly updates the
geomagnetic data. Now India has a permanent station called Gangotri.

SUMMARY

1.

The science of magnetism is old. It has been known since ancient times

that magnetic materials tend to point in the north-south direction; like

magnetic poles repel and unlike ones attract; and cutting a bar magnet

in two leads to two smaller magnets. Magnetic poles cannot be isolated.

2.

When a bar magnet of dipole moment m is placed in a uniform magnetic

field B,

(a)

the force on it is zero,

(b)

the torque on it is m × B,

(c)

its potential energy is –m.B, where we choose the zero of energy at

the orientation when m is perpendicular to B.



3.

Consider a bar magnet of size l and magnetic moment m, at a distance r
from its midpoint, where r >> l, the magnetic field B due to this bar is, µ m

0

B =

3 (along axis)

2 π r

µ m

=

0

–

(along equator)

3

4 π r

4.

Gauss’s law for magnetism states that the net magnetic flux through

any closed surface is zero

φ =

∑ Bg∆S = 0

B

all area



elements ∆S

5.

The earth’s magnetic field resembles that of a (hypothetical) magnetic

dipole located at the centre of the earth. The pole near the geographic

north pole of the earth is called the north magnetic pole. Similarly, the

pole near the geographic south pole is called the south magnetic pole.

This dipole is aligned making a small angle with the rotation axis of

the earth. The magnitude of the field on the earth’s surface ≈ 4 × 10–5 T.
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6.

Three quantities are needed to specify the magnetic field of the earth

on its surface – the horizontal component, the magnetic declination,

and the magnetic dip. These are known as the elements of the earth’s

magnetic field.

7.

Consider a material placed in an external magnetic field B . The

0

magnetic intensity is defined as,

0



= B

H

µ0

The magnetisation M of the material is its dipole moment per unit volume.

The magnetic field B in the material is,

B = µ (H + M)

0

8.

For a linear material M = χ H. So that B = µ H and χ is called the magnetic
susceptibility of the material. The three quantities, χ, the relative magnetic
permeability µ , and the magnetic permeability µ are

r

related as follows:

µ = µ µ

0

r

µ = 1+ χ

r

9.

Magnetic materials are broadly classified as: diamagnetic, paramagnetic,

and ferromagnetic. For diamagnetic materials χ is negative and small



and for paramagnetic materials it is positive and small. Ferromagnetic

materials have large χ and are characterised by non-linear relation

between B and H. They show the property of hysteresis.

10. Substances, which at room temperature, retain their ferromagnetic

property for a long period of time are called permanent magnets.

Physical quantity

Symbol

Nature

Dimensions

Units

Remarks

Permeability of

µ

Scalar

[MLT–2 A–2]

 

T m A–1

µ /4π = 10–7

0

0



free space

Magnetic field,

B

Vector

[MT–2 A–1]

T (tesla)

104 G (gauss) = 1 T

Magnetic induction,

Magnetic flux density

Magnetic moment

m

Vector

[L–2 A]

A m2

Magnetic flux

φ

Scalar

[ML2T–2 A–1]

W (weber)

W = T m2



B

Magnetic moment

Magnetisation

M

Vector

[L–1 A]

A m–1



Volume

Magnetic intensity

H

Vector

[L–1 A]

A m–1

B = µ (H + M)

0

Magnetic field

strength

Magnetic

χ

Scalar

-

-

M = χ H

susceptibility

Relative magnetic

µ



Scalar

-

-

B = µ µ H

r

0

r

permeability

Magnetic permeability

µ

Scalar

[MLT–2 A–2]

 

T m A–1

µ = µ µ

0 r

N A–2

B = µ H
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POINTS TO PONDER

1.

A satisfactory understanding of magnetic phenomenon in terms of moving

charges/currents was arrived at after 1800 AD. But technological

exploitation of the directional properties of magnets predates this scientific

understanding by two thousand years. Thus, scientific understanding is

not a necessary condition for engineering applications. Ideally, science

and engineering go hand-in-hand, one leading and assisting the other in

tandem.

2.

Magnetic monopoles do not exist. If you slice a magnet in half, you get

two smaller magnets. On the other hand, isolated positive and negative

charges exist. There exists a smallest unit of charge, for example, the

electronic charge with value | e| = 1.6 ×10–19 C. All other charges are

integral multiples of this smallest unit charge. In other words, charge is

quantised. We do not know why magnetic monopoles do not exist or why

electric charge is quantised.

3.

A consequence of the fact that magnetic monopoles do not exist is that



the magnetic field lines are continuous and form closed loops. In contrast,

the electrostatic lines of force begin on a positive charge and terminate

on the negative charge (or fade out at infinity).

4.

The earth’s magnetic field is not due to a huge bar magnet inside it. The

earth’s core is hot and molten. Perhaps convective currents in this core

are responsible for the earth’s magnetic field. As to what ‘dynamo’ effect

sustains this current, and why the earth’s field reverses polarity every

million years or so, we do not know.

5.

A miniscule difference in the value of χ, the magnetic susceptibility, yields

radically different behaviour: diamagnetic versus paramagnetic. For

diamagnetic materials χ = –10–5 whereas χ = +10–5 for paramagnetic

materials.

6.

There exists a perfect diamagnet, namely, a superconductor. This is a

metal at very low temperatures. In this case χ = –1, µ = 0, µ = 0. The

r

external magnetic field is totally expelled. Interestingly, this material is

also a perfect conductor. However, there exists no classical theory which



ties these two properties together. A quantum-mechanical theory by

Bardeen, Cooper, and Schrieffer (BCS theory) explains these effects. The

BCS theory was proposed in1957 and was eventually recognised by a
Nobel

Prize in physics in 1970.

7.

The phenomenon of magnetic hysteresis is reminiscent of similar

behaviour concerning the elastic properties of materials. Strain

may not be proportional to stress; here H and B (or M) are not linearly
related. The stress-strain curve exhibits hysteresis and area enclosed by it
represents the energy dissipated per unit volume.

A similar interpretation can be given to the B- H magnetic hysteresis curve.

8.

Diamagnetism is universal. It is present in all materials. But it

is weak and hard to detect if the substance is para-or ferromagnetic.

9.

We have classified materials as diamagnetic, paramagnetic, and

ferromagnetic. However, there exist additional types of magnetic material

such as ferrimagnetic, anti-ferromagnetic, spin glass, etc. with properties

which are exotic and mysterious.
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EXERCISES

5.1

Answer the following questions regarding earth’s magnetism:

(a) A vector needs three quantities for its specification. Name the

three independent quantities conventionally used to specify the

earth’s magnetic field.

(b) The angle of dip at a location in southern India is about 18º.

Would you expect a greater or smaller dip angle in Britain?

(c) If you made a map of magnetic field lines at Melbourne in

Australia, would the lines seem to go into the ground or come out

of the ground?

(d) In which direction would a compass free to move in the vertical

plane point to, if located right on the geomagnetic north or south

pole?

(e) The earth’s field, it is claimed, roughly approximates the field

due to a dipole of magnetic moment 8 × 1022 J T–1 located at its

centre. Check the order of magnitude of this number in some

way.

(f ) Geologists claim that besides the main magnetic N-S poles, there



are several local poles on the earth’s surface oriented in different

directions. How is such a thing possible at all?

5.2

Answer the following questions:

(a) The earth’s magnetic field varies from point to point in space.

Does it also change with time? If so, on what time scale does it

change appreciably?

(b) The earth’s core is known to contain iron. Yet geologists do not

regard this as a source of the earth’s magnetism. Why?

(c) The charged currents in the outer conducting regions of the

earth’s core are thought to be responsible for earth’s magnetism.

What might be the ‘battery’ (i.e., the source of energy) to sustain

these currents?

(d) The earth may have even reversed the direction of its field several

times during its history of 4 to 5 billion years. How can geologists

know about the earth’s field in such distant past?

(e) The earth’s field departs from its dipole shape substantially at

large distances (greater than about 30,000 km). What agencies

may be responsible for this distortion?

(f ) Interstellar space has an extremely weak magnetic field of the



order of 10–12 T. Can such a weak field be of any significant

consequence? Explain.

[Note: Exercise 5.2 is meant mainly to arouse your curiosity. Answers

to some questions above are tentative or unknown. Brief answers

wherever possible are given at the end. For details, you should consult

a good text on geomagnetism.]

5.3

A short bar magnet placed with its axis at 30º with a uniform external

magnetic field of 0.25 T experiences a torque of magnitude equal to

4.5 × 10–2 J. What is the magnitude of magnetic moment of the magnet?

5.4

A short bar magnet of magnetic moment m = 0.32 JT –1 is placed in a

uniform magnetic field of 0.15 T. If the bar is free to rotate in the

plane of the field, which orientation would correspond to its (a) stable,

and (b) unstable equilibrium? What is the potential energy of the
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5.5



A closely wound solenoid of 800 turns and area of cross section

2.5 × 10–4 m2 carries a current of 3.0 A. Explain the sense in which

the solenoid acts like a bar magnet. What is its associated magnetic

moment?

5.6

If the solenoid in Exercise 5.5 is free to turn about the vertical

direction and a uniform horizontal magnetic field of 0.25 T is applied,

what is the magnitude of torque on the solenoid when its axis makes

an angle of 30° with the direction of applied field?

5.7

A bar magnet of magnetic moment 1.5 J T –1 lies aligned with the

direction of a uniform magnetic field of 0.22 T.

(a) What is the amount of work required by an external torque to

turn the magnet so as to align its magnetic moment: (i) normal

to the field direction, (ii) opposite to the field direction?

(b) What is the torque on the magnet in cases (i) and (ii)?

5.8

A closely wound solenoid of 2000 turns and area of cross-section

1.6 × 10–4 m2, carrying a current of 4.0 A, is suspended through its

centre allowing it to turn in a horizontal plane.



(a) What is the magnetic moment associated with the solenoid?

(b) What is the force and torque on the solenoid if a uniform

horizontal magnetic field of 7.5 × 10–2 T is set up at an angle of

30º with the axis of the solenoid?

5.9

A circular coil of 16 turns and radius 10 cm carrying a current of

0.75 A rests with its plane normal to an external field of magnitude

5.0 × 10–2 T. The coil is free to turn about an axis in its plane

perpendicular to the field direction. When the coil is turned slightly

and released, it oscillates about its stable equilibrium with a

frequency of 2.0 s–1. What is the moment of inertia of the coil about

its axis of rotation?

5.10

A magnetic needle free to rotate in a vertical plane parallel to the

magnetic meridian has its north tip pointing down at 22º with the

horizontal. The horizontal component of the earth’s magnetic field

at the place is known to be 0.35 G. Determine the magnitude of the

earth’s magnetic field at the place.

5.11

At a certain location in Africa, a compass points 12º west of the



geographic north. The north tip of the magnetic needle of a dip circle

placed in the plane of magnetic meridian points 60º above the

horizontal. The horizontal component of the earth’s field is measured

to be 0.16 G. Specify the direction and magnitude of the earth’s field

at the location.

5.12

A short bar magnet has a magnetic moment of 0.48 J T –1. Give the

direction and magnitude of the magnetic field produced by the magnet

at a distance of 10 cm from the centre of the magnet on (a) the axis,

(b) the equatorial lines (normal bisector) of the magnet.

5.13

A short bar magnet placed in a horizontal plane has its axis aligned

along the magnetic north-south direction. Null points are found on

the axis of the magnet at 14 cm from the centre of the magnet. The

earth’s magnetic field at the place is 0.36 G and the angle of dip is

zero. What is the total magnetic field on the normal bisector of the

magnet at the same distance as the null–point (i.e., 14 cm) from the

centre of the magnet? (At null points, field due to a magnet is equal

and opposite to the horizontal component of earth’s magnetic field.)

5.14



If the bar magnet in exercise 5.13 is turned around by 180º, where
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5.15

A short bar magnet of magnetic moment 5.25 × 10–2 J T –1 is placed

with its axis perpendicular to the earth’s field direction. At what

distance from the centre of the magnet, the resultant field is inclined

at 45º with earth’s field on (a) its normal bisector and (b) its axis.

Magnitude of the earth’s field at the place is given to be 0.42 G.

Ignore the length of the magnet in comparison to the distances

involved.

ADDITIONAL EXERCISES

5.16

Answer the following questions:

(a) Why does a paramagnetic sample display greater magnetisation

(for the same magnetising field) when cooled?

(b) Why is diamagnetism, in contrast, almost independent of

temperature?

(c) If a toroid uses bismuth for its core, will the field in the core be



(slightly) greater or (slightly) less than when the core is empty?

(d) Is the permeability of a ferromagnetic material independent of

the magnetic field? If not, is it more for lower or higher fields?

(e) Magnetic field lines are always nearly normal to the surface of a

ferromagnet at every point. (This fact is analogous to the static

electric field lines being normal to the surface of a conductor at

every point.) Why?

(f ) Would the maximum possible magnetisation of a paramagnetic

sample be of the same order of magnitude as the magnetisation

of a ferromagnet?

5.17

Answer the following questions:

(a) Explain qualitatively on the basis of domain picture the

irreversibility in the magnetisation curve of a ferromagnet.

(b) The hysteresis loop of a soft iron piece has a much smaller area

than that of a carbon steel piece. If the material is to go through

repeated cycles of magnetisation, which piece will dissipate greater

heat energy?

(c) ‘A system displaying a hysteresis loop such as a ferromagnet, is

a device for storing memory?’ Explain the meaning of this



statement.

(d) What kind of ferromagnetic material is used for coating magnetic

tapes in a cassette player, or for building ‘memory stores’ in a

modern computer?

(e) A certain region of space is to be shielded from magnetic fields.

Suggest a method.

5.18

A long straight horizontal cable carries a current of 2.5 A in the

direction 10º south of west to 10º north of east. The magnetic meridian

of the place happens to be 10º west of the geographic meridian. The

earth’s magnetic field at the location is 0.33 G, and the angle of dip

is zero. Locate the line of neutral points (ignore the thickness of the

cable). (At neutral points, magnetic field due to a current-carrying

cable is equal and opposite to the horizontal component of earth’s

magnetic field.)

5.19

A telephone cable at a place has four long straight horizontal wires
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earth’s magnetic field at the place is 0.39 G, and the angle of dip is

35º. The magnetic declination is nearly zero. What are the resultant

magnetic fields at points 4.0 cm below the cable?

5.20

A compass needle free to turn in a horizontal plane is placed at the

centre of circular coil of 30 turns and radius 12 cm. The coil is in a

vertical plane making an angle of 45º with the magnetic meridian.

When the current in the coil is 0.35 A, the needle points west to

east.

(a) Determine the horizontal component of the earth’s magnetic field

at the location.

(b) The current in the coil is reversed, and the coil is rotated about

its vertical axis by an angle of 90º in the anticlockwise sense

looking from above. Predict the direction of the needle. Take the

magnetic declination at the places to be zero.

5.21

A magnetic dipole is under the influence of two magnetic fields. The

angle between the field directions is 60º, and one of the fields has a

magnitude of 1.2 × 10–2 T. If the dipole comes to stable equilibrium at



an angle of 15º with this field, what is the magnitude of the other

field?

5.22

A monoenergetic (18 keV) electron beam initially in the horizontal

direction is subjected to a horizontal magnetic field of 0.04 G normal

to the initial direction. Estimate the up or down deflection of the

beam over a distance of 30 cm ( m = 9.11 × 10–19 C). [Note: Data in e

this exercise are so chosen that the answer will give you an idea of

the effect of earth’s magnetic field on the motion of the electron beam

from the electron gun to the screen in a TV set.]

5.23

A sample of paramagnetic salt contains 2.0 × 1024 atomic dipoles

each of dipole moment 1.5 × 10–23 J T–1. The sample is placed under

a homogeneous magnetic field of 0.64 T, and cooled to a temperature

of 4.2 K. The degree of magnetic saturation achieved is equal to 15%.

What is the total dipole moment of the sample for a magnetic field of

0.98 T and a temperature of 2.8 K? (Assume Curie’s law)

5.24

A Rowland ring of mean radius 15 cm has 3500 turns of wire wound

on a ferromagnetic core of relative permeability 800. What is the



magnetic field B in the core for a magnetising current of 1.2 A?

5.25

The magnetic moment vectors µ and µ associated with the intrinsic

s

l

spin angular momentum S and orbital angular momentum l,

respectively, of an electron are predicted by quantum theory (and

verified experimentally to a high accuracy) to be given by:

µ = –( e/ m) S,

s

µ = –( e/2 m)l

l

Which of these relations is in accordance with the result expected

classically ? Outline the derivation of the classical result.
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Chapter Six

ELECTROMAGNETIC

INDUCTION

6.1 INTRODUCTION

Electricity and magnetism were considered separate and unrelated



phenomena for a long time. In the early decades of the nineteenth century,

experiments on electric current by Oersted, Ampere and a few others

established the fact that electricity and magnetism are interrelated. They

found that moving electric charges produce magnetic fields. For example,

an electric current deflects a magnetic compass needle placed in its vicinity.

This naturally raises the questions like: Is the converse effect possible?

Can moving magnets produce electric currents? Does the nature permit

such a relation between electricity and magnetism? The answer is

resounding yes! The experiments of Michael Faraday in England and

Joseph Henry in USA, conducted around 1830, demonstrated

conclusively that electric currents were induced in closed coils when

subjected to changing magnetic fields. In this chapter, we will study the

phenomena associated with changing magnetic fields and understand

the underlying principles. The phenomenon in which electric current is

generated by varying magnetic fields is appropriately called

electromagnetic induction.

When Faraday first made public his discovery that relative motion

between a bar magnet and a wire loop produced a small current in the

latter, he was asked, “What is the use of it?” His reply was: “What is the

use of a new born baby?” The phenomenon of electromagnetic induction



Electromagnetic

Induction

is not merely of theoretical or academic interest but also

of practical utility. Imagine a world where there is no

electricity – no electric lights, no trains, no telephones and

no personal computers. The pioneering experiments of

Faraday and Henry have led directly to the development

of modern day generators and transformers. Today’s

civilisation owes its progress to a great extent to the

discovery of electromagnetic induction.

6.2 THE EXPERIMENTS OF FARADAY AND

H

JOSEPH HENRY (1797 – 1878)

ENRY

The discovery and understanding of electromagnetic

induction are based on a long series of experiments carried



Josheph Henry [1797 –

out by Faraday and Henry. We shall now describe some

1878] American experimental

of these experiments.

physicist professor at

Princeton University and first

Experiment 6.1

director of the Smithsonian

Institution. He made important

Figure 6.1 shows a coil C * connected to a galvanometer

improvements in electro—

1

G. When the North-pole of a bar magnet is pushed

magnets by winding coils of

towards the coil, the pointer in the galvanometer deflects,

insulated wire around iron

pole pieces and invented an

indicating the presence of electric current in the coil. The

electromagnetic motor and a

deflection lasts as long as the bar magnet is in motion.



new, efficient telegraph. He

The galvanometer does not show any deflection when the

discoverd self-induction and

magnet is held stationary. When the magnet is pulled

investigated how currents in

away from the coil, the galvanometer shows deflection in

one circuit induce currents in

the opposite direction, which indicates reversal of the

another.

current’s direction. Moreover, when the South-pole of

the bar magnet is moved towards or away from the

coil, the deflections in the galvanometer are opposite

to that observed with the North-pole for similar

movements. Further, the deflection (and hence current)

is found to be larger when the magnet is pushed

towards or pulled away from the coil faster. Instead,

when the bar magnet is held fixed and the coil C is

1

moved towards or away from the magnet, the same

effects are observed. It shows that it is the relative



motion between the magnet and the coil that is

responsible for generation (induction) of electric

current in the coil.

Experiment 6.2

FIGURE 6.1 When the bar magnet is

In Fig. 6.2 the bar magnet is replaced by a second coil

pushed towards the coil, the pointer in

C connected to a battery. The steady current in the

the galvanometer G deflects.

2

coil C produces a steady magnetic field. As coil C is

2

2

* Wherever the term ‘coil or ‘loop’ is used, it is assumed that they are made
up of conducting material and are prepared using wires which are coated
with insulating 205

material.
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moved towards the coil C , the galvanometer shows a

1

deflection. This indicates that electric current is induced in



coil C . When C is moved away, the galvanometer shows a

1

2

deflection again, but this time in the opposite direction. The

deflection lasts as long as coil C is in motion. When the coil

2

C is held fixed and C is moved, the same effects are observed.

2

1

Again, it is the relative motion between the coils that induces

the electric current.

Experiment 6.3

The above two experiments involved relative motion between

a magnet and a coil and between two coils, respectively.

Through another experiment, Faraday showed that this

relative motion is not an absolute requirement. Figure 6.3

FIGURE 6.2 Current is

shows two coils C and C held stationary. Coil C is connected

induced in coil C due to motion

1



2

1

1

to galvanometer G while the second coil C is connected to a

of the current carrying coil C .

2

2

battery through a tapping key K.

enz’s law:

’s experiments and L

araday

FIGURE 6.3 Experimental set-up for Experiment 6.3.

It is observed that the galvanometer shows a momentary deflection

when the tapping key K is pressed. The pointer in the galvanometer returns

to zero immediately. If the key is held pressed continuously, there is no

deflection in the galvanometer. When the key is released, a momentory

deflection is observed again, but in the opposite direction. It is also
observed that the deflection increases dramatically when an iron rod is
inserted Interactive animation on F

http://micro.magnet.fsu.edu/electromagnet/java/faraday/index.html

into the coils along their axis.



6.3 MAGNETIC FLUX

Faraday’s great insight lay in discovering a simple mathematical relation

to explain the series of experiments he carried out on electromagnetic

induction. However, before we state and appreciate his laws, we must get

familiar with the notion of magnetic flux, Φ . Magnetic flux is defined in
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the same way as electric flux is defined in Chapter 1. Magnetic flux through
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a plane of area A placed in a uniform magnetic field B (Fig. 6.4) can be
written as

Φ = B . A = BA cos θ

(6.1)

B

where θ is angle between B and A. The notion of the area as a vector has
been discussed earlier in Chapter 1. Equation (6.1) can be extended to
curved surfaces and nonuniform fields.

If the magnetic field has different magnitudes and directions at

various parts of a surface as shown in Fig. 6.5, then the magnetic

flux through the surface is given by



Φ = B i dA + B i dA + ... = ∑ B i dA

(6.2)

B

1

1

2

2

i

i

all

FIGURE 6.4 A plane of

where ‘all’ stands for summation over all the area elements dA i surface
area A placed in a comprising the surface and B is the magnetic field at the
area element i

uniform magnetic field B.

dA . The SI unit of magnetic flux is weber (Wb) or tesla meter

i

squared (T m2). Magnetic flux is a scalar quantity.

6.4 FARADAY’S LAW OF INDUCTION

From the experimental observations, Faraday arrived at a

conclusion that an emf is induced in a coil when magnetic flux



through the coil changes with time. Experimental observations

discussed in Section 6.2 can be explained using this concept.

The motion of a magnet towards or away from coil C in

1

Experiment 6.1 and moving a current-carrying coil C towards

2

or away from coil C in Experiment 6.2, change the magnetic

1

flux associated with coil C . The change in magnetic flux induces

1

emf in coil C . It was this induced emf which caused electric

1

current to flow in coil C and through the galvanometer. A

FIGURE 6.5 Magnetic field B

1

i

plausible explanation for the observations of Experiment 6.3 is

at the i th area element. dA i

as follows: When the tapping key K is pressed, the current in

represents area vector of the



i th area element.

coil C (and the resulting magnetic field) rises from zero to a

2

maximum value in a short time. Consequently, the magnetic

flux through the neighbouring coil C also increases. It is the change in

1

magnetic flux through coil C that produces an induced emf in coil C .

1

1

When the key is held pressed, current in coil C is constant. Therefore,

2

there is no change in the magnetic flux through coil C and the current in

1

coil C drops to zero. When the key is released, the current in C and the

1

2

resulting magnetic field decreases from the maximum value to zero in a

short time. This results in a decrease in magnetic flux through coil C1

and hence again induces an electric current in coil C *. The common

1



point in all these observations is that the time rate of change of magnetic

flux through a circuit induces emf in it. Faraday stated experimental

observations in the form of a law called Faraday’s law of electromagnetic

induction. The law is stated below.

* Note that sensitive electrical instruments in the vicinity of an
electromagnet can be damaged due to the induced emfs (and the resulting
currents) when the electromagnet is turned on or off.
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The magnitude of the induced emf in a circuit is equal

to the time rate of change of magnetic flux through the

circuit.

Mathematically, the induced emf is given by

dΦ

ε = –

B

(6.3)



d t

The negative sign indicates the direction of ε and hence

the direction of current in a closed loop. This will be

discussed in detail in the next section.

In the case of a closely wound coil of N turns, change

of flux associated with each turn, is the same. Therefore,

Michael Faraday [1791–

the expression for the total induced emf is given by

1867]

Faraday made

numerous contributions to

dΦ

science, viz., the discovery

ε = –

B

N

(6.4)

d t

of electromagnetic

Y (1791–1867)



induction, the laws of

The induced emf can be increased by increasing the

electrolysis, benzene, and

number of turns N of a closed coil.

the fact that the plane of

From Eqs. (6.1) and (6.2), we see that the flux can be

polarisation is rotated in an

varied by changing any one or more of the terms B, A and

electric field. He is also

credited with the invention

θ. In Experiments 6.1 and 6.2 in Section 6.2, the flux is

of the electric motor, the

changed by varying B. The flux can also be altered by

electric generator and the

changing the shape of a coil (that is, by shrinking it or

transformer. He is widely

stretching it) in a magnetic field, or rotating a coil in a

regarded as the greatest

magnetic field such that the angle θ between B and A

MICHAEL FARADA



experimental scientist of

changes. In these cases too, an emf is induced in the

the nineteenth century.

respective coils.

Example 6.1 Consider Experiment 6.2. (a) What would you do to obtain

a large deflection of the galvanometer? (b) How would you demonstrate

the presence of an induced current in the absence of a galvanometer?

Solution

(a) To obtain a large deflection, one or more of the following steps can

be taken: (i) Use a rod made of soft iron inside the coil C , (ii) Connect 2

the coil to a powerful battery, and (iii) Move the arrangement rapidly

towards the test coil C .

1

(b) Replace the galvanometer by a small bulb, the kind one finds in a

small torch light. The relative motion between the two coils will cause

6.1

the bulb to glow and thus demonstrate the presence of an induced

current.

In experimental physics one must learn to innovate. Michael Faraday

XAMPLE



who is ranked as one of the best experimentalists ever, was legendary

E

for his innovative skills.

Example 6.2 A square loop of side 10 cm and resistance 0.5 Ω is

6.2

placed vertically in the east-west plane. A uniform magnetic field of

0.10 T is set up across the plane in the northeast direction. The

magnetic field is decreased to zero in 0.70 s at a steady rate. Determine

XAMPLE
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the magnitudes of induced emf and current during this time-interval.
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Solution The angle θ made by the area vector of the coil with the

magnetic field is 45°. From Eq. (6.1), the initial magnetic flux is

Φ = BA cos θ

 

–2



0.1 × 10

=

Wb

2

Final flux, Φ

= 0

min

The change in flux is brought about in 0.70 s. From Eq. (6.3), the

magnitude of the induced emf is given by

ΔΦ

(Φ – 0

–3

B

)

ε =

=

10

=

Δ

=



1.0 mV

t

Δ

 

t

2 × 0.7

And the magnitude of the current is

E

–3

ε

XAMPLE

10 V

I =

=

= 2 mA

R

0.5Ω

Note that the earth’s magnetic field also produces a flux through the

6.2

loop. But it is a steady field (which does not change within the time



span of the experiment) and hence does not induce any emf.

Example 6.3

A circular coil of radius 10 cm, 500 turns and resistance 2 Ω is placed

with its plane perpendicular to the horizontal component of the earth’s

magnetic field. It is rotated about its vertical diameter through 180°

in 0.25 s. Estimate the magnitudes of the emf and current induced in

the coil. Horizontal component of the earth’s magnetic field at the

place is 3.0 × 10–5 T.

Solution

Initial flux through the coil,

Φ

= BA cos θ

B (initial)

= 3.0 × 10–5 × (π ×10–2) × cos 0º

= 3π × 10–7 Wb

Final flux after the rotation,

Φ

= 3.0 × 10–5 × (π ×10–2) × cos 180°

B (final)

= –3π × 10–7 Wb



Therefore, estimated value of the induced emf is,

Φ

ε

Δ

= N tΔ

= 500 × (6π × 10–7)/0.25

= 3.8 × 10–3 V

E

XAMPLE

I = ε/ R = 1.9 × 10–3 A

Note that the magnitudes of ε and I are the estimated values. Their

instantaneous values are different and depend upon the speed of

6.3

rotation at the particular instant.
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6.5 LENZ’S LAW AND CONSERVATION OF ENERGY

In 1834, German physicist Heinrich Friedrich Lenz (1804-1865) deduced

a rule, known as Lenz’s law which gives the polarity of the induced emf in a
clear and concise fashion. The statement of the law is: The polarity of
induced emf is such that it tends to produce a current



which opposes the change in magnetic flux that produced it.

The negative sign shown in Eq. (6.3) represents this effect. We can

understand Lenz’s law by examining Experiment 6.1 in Section 6.2.1. In

Fig. 6.1, we see that the North-pole of a bar magnet is being pushed

towards the closed coil. As the North-pole of the bar magnet moves towards

the coil, the magnetic flux through the coil increases. Hence current is

induced in the coil in such a direction that it opposes the increase in flux.

This is possible only if the current in the coil is in a counterclockwise

direction with respect to an observer situated on the side of the magnet.

Note that magnetic moment associated with this current has North polarity

towards the North-pole of the approaching magnet. Similarly, if the North-
pole of the magnet is being withdrawn from the coil, the magnetic flux

through the coil will decrease. To counter this decrease in magnetic flux,

the induced current in the coil flows in clockwise direction and its South-
pole faces the receding North-pole of the bar magnet. This would result in

an attractive force which opposes the motion of the magnet and the

corresponding decrease in flux.

What will happen if an open circuit is used in place of the closed loop

in the above example? In this case too, an emf is induced across the open

ends of the circuit. The direction of the induced emf can be found

using Lenz’s law. Consider Figs. 6.6 (a) and (b). They provide an easier



way to understand the direction of induced currents. Note that the

direction shown by

and

indicate the directions of the induced

currents.

A little reflection on this matter should convince us on the

correctness of Lenz’s law. Suppose that the induced current was in

the direction opposite to the one depicted in Fig. 6.6(a). In that case,

the South-pole due to the induced current will face the approaching

North-pole of the magnet. The bar magnet will then be attracted

towards the coil at an ever increasing acceleration. A gentle push on

the magnet will initiate the process and its velocity and kinetic energy

will continuously increase without expending any energy. If this can

happen, one could construct a perpetual-motion machine by a

suitable arrangement. This violates the law of conservation of energy

and hence can not happen.

FIGURE 6.6

Now consider the correct case shown in Fig. 6.6(a). In this situation,

Illustration of

the bar magnet experiences a repulsive force due to the induced



Lenz’s law.

current. Therefore, a person has to do work in moving the magnet.

Where does the energy spent by the person go? This energy is
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dissipated by Joule heating produced by the induced current.
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Example 6.4

Figure 6.7 shows planar loops of different shapes moving out of or

into a region of a magnetic field which is directed normal to the plane

of the loop away from the reader. Determine the direction of induced

current in each loop using Lenz’s law.

FIGURE 6.7

Solution

(i) The magnetic flux through the rectangular loop abcd increases,

due to the motion of the loop into the region of magnetic field, The

induced current must flow along the path bcdab so that it opposes

the increasing flux.

(ii) Due to the outward motion, magnetic flux through the triangular

loop abc decreases due to which the induced current flows along



E

bacb, so as to oppose the change in flux.

XAMPLE

(iii) As the magnetic flux decreases due to motion of the irregular

shaped loop abcd out of the region of magnetic field, the induced

current flows along cdabc, so as to oppose change in flux.

6.4

Note that there are no induced current as long as the loops are

completely inside or outside the region of the magnetic field.

Example 6.5

(a) A closed loop is held stationary in the magnetic field between the

north and south poles of two permanent magnets held fixed. Can

we hope to generate current in the loop by using very strong

magnets?

(b) A closed loop moves normal to the constant electric field between

the plates of a large capacitor. Is a current induced in the loop

(i) when it is wholly inside the region between the capacitor plates

(ii) when it is partially outside the plates of the capacitor? The

E

electric field is normal to the plane of the loop.



XAMPLE

(c) A rectangular loop and a circular loop are moving out of a uniform

magnetic field region (Fig. 6.8) to a field-free region with a constant

velocity v. In which loop do you expect the induced emf to be

6.5

constant during the passage out of the field region? The field is

normal to the loops.
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FIGURE 6.8

(d) Predict the polarity of the capacitor in the situation described by

Fig. 6.9.

FIGURE 6.9

Solution

(a) No. However strong the magnet may be, current can be induced

only by changing the magnetic flux through the loop.

(b) No current is induced in either case. Current can not be induced

by changing the electric flux.

(c) The induced emf is expected to be constant only in the case of the

6.5



rectangular loop. In the case of circular loop, the rate of change of

area of the loop during its passage out of the field region is not

constant, hence induced emf will vary accordingly.

XAMPLE

(d) The polarity of plate ‘A’ will be positive with respect to plate ‘B’ in

E

the capacitor.

6.6 MOTIONAL ELECTROMOTIVE FORCE

Let us consider a straight conductor moving in a uniform and time-
independent magnetic field. Figure 6.10 shows a rectangular conductor

PQRS in which the conductor PQ is free to move. The rod PQ is moved

towards the left with a constant velocity v as

shown in the figure. Assume that there is no

loss of energy due to friction. PQRS forms a

closed circuit enclosing an area that changes

as PQ moves. It is placed in a uniform magnetic

field B which is perpendicular to the plane of

this system. If the length RQ = x and RS = l, the

magnetic flux Φ enclosed by the loop PQRS

B

will be



Φ = Blx

B

Since x is changing with time, the rate of change

FIGURE 6.10

of flux

The arm PQ is moved to the left

Φ will induce an emf given by:

B

side, thus decreasing the area of the

– dΦ

d

B

rectangular loop. This movement

ε =

= –

( Blx )

d t

d t

induces a current I as shown.

d x
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= – Bl

= Blv

(6.5)

d t
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where we have used d x/d t = – v which is the speed of the conductor PQ.

The induced emf Blv is called motional emf. Thus, we are able to produce
induced emf by moving a conductor instead of varying the magnetic field,
that is, by changing the magnetic flux enclosed by the circuit.

It is also possible to explain the motional emf expression in Eq. (6.5)

by invoking the Lorentz force acting on the free charge carriers of
conductor

PQ. Consider any arbitrary charge q in the conductor PQ. When the rod

moves with speed v, the charge will also be moving with speed v in the
magnetic field B. The Lorentz force on this charge is qvB in magnitude, and
its direction is towards Q. All charges experience the same force, in
magnitude and direction, irrespective of their position in the rod PQ.

http://www.ngsir,netfirms.com/englishhtm/Induction.htm

Interactive animation on motional emf:

The work done in moving the charge from P to Q is,

W = qv B l



Since emf is the work done per unit charge,

W

ε = q

= Blv

This equation gives emf induced across the rod PQ and is identical

to Eq. (6.5). We stress that our presentation is not wholly rigorous. But

it does help us to understand the basis of Faraday’s law when

the conductor is moving in a uniform and time-independent

magnetic field.

On the other hand, it is not obvious how an emf is induced when a

conductor is stationary and the magnetic field is changing – a fact which

Faraday verified by numerous experiments. In the case of a stationary

conductor, the force on its charges is given by

F = q (E + v × B) = qE

(6.6)

since v = 0. Thus, any force on the charge must arise from the electric

field term E alone. Therefore, to explain the existence of induced emf or
induced current, we must assume that a time-varying magnetic field
generates an electric field. However, we hasten to add that electric fields

produced by static electric charges have properties different from those

produced by time-varying magnetic fields. In Chapter 4, we learnt that



charges in motion (current) can exert force/torque on a stationary magnet.

Conversely, a bar magnet in motion (or more generally, a changing

magnetic field) can exert a force on the stationary charge. This is the

fundamental significance of the Faraday’s discovery. Electricity and

magnetism are related.

Example 6.6 A metallic rod of 1 m length is rotated with a frequency

E

of 50 rev/s, with one end hinged at the centre and the other end at the

XAMPLE

circumference of a circular metallic ring of radius 1 m, about an axis

passing through the centre and perpendicular to the plane of the ring

(Fig. 6.11). A constant and uniform magnetic field of 1 T parallel to the

6.6

axis is present everywhere. What is the emf between the centre and

the metallic ring?

213

Physics

FIGURE 6.11

Solution

Method I



As the rod is rotated, free electrons in the rod move towards the outer

end due to Lorentz force and get distributed over the ring. Thus, the

resulting separation of charges produces an emf across the ends of

the rod. At a certain value of emf, there is no more flow of electrons

and a steady state is reached. Using Eq. (6.5), the magnitude of the

emf generated across a length d r of the rod as it moves at right angles to
the magnetic field is given by dε = Bv d r . Hence,

R

R

2

ω

ε =

B R

dε =

Bv d r

∫

∫

=

B ω r d r =

∫

2



0

0

Note that we have used v = ω r. This gives

1

ε

2

=

×1.0 × 2π × 50 × (1 )

2

= 157 V

Method II

To calculate the emf, we can imagine a closed loop OPQ in which

point O and P are connected with a resistor R and OQ is the rotating

rod. The potential difference across the resistor is then equal to the

induced emf and equals B × (rate of change of area of loop). If θ is the
angle between the rod and the radius of the circle at P at time t, the area of
the sector OPQ is given by

θ

1

2

2



π R ×

=

R θ

2π

2

where R is the radius of the circle. Hence, the induced emf is

d ⎡1

⎤

2

1

dθ

Bω R

ε

2

= B ×

R θ

⎢

⎥

2



BR

=

d t ⎣2

⎦ = 2

d t

2

6.6

dθ

[Note:

= ω = 2 π ν ]

d t

This expression is identical to the expression obtained by Method I

XAMPLE

and we get the same value of ε.
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Example 6.7

A wheel with 10 metallic spokes each 0.5 m long is rotated with a



speed of 120 rev/min in a plane normal to the horizontal component

of earth’s magnetic field H at a place. If H = 0.4 G at the place, what E

E

is the induced emf between the axle and the rim of the wheel? Note

that 1 G = 10–4 T.

Solution

Induced emf = (1/2) ω B R 2

E

XAMPLE

= (1/2) × 4π × 0.4 × 10–4 × (0.5)2

= 6.28 × 10–5 V

6.7

The number of spokes is immaterial because the emf’s across the

spokes are in parallel.

6.7 ENERGY CONSIDERATION: A QUANTITATIVE STUDY

In Section 6.5, we discussed qualitatively that Lenz’s law is consistent with

the law of conservation of energy. Now we shall explore this aspect further

with a concrete example.

Let r be the resistance of movable arm PQ of the rectangular conductor

shown in Fig. 6.10. We assume that the remaining arms QR, RS and SP



have negligible resistances compared to r. Thus, the overall resistance of
the rectangular loop is r and this does not change as PQ is moved. The
current I in the loop is,

ε

I = r

B l v

=

(6.7)

r

On account of the presence of the magnetic field, there will be a force

on the arm PQ. This force I (l × B), is directed outwards in the direction
opposite to the velocity of the rod. The magnitude of this force is, 2 2

B l v

F = I l B =

r

where we have used Eq. (6.7). Note that this force arises due to drift
velocity of charges (responsible for current) along the rod and the
consequent Lorentz force acting on them.

Alternatively, the arm PQ is being pushed with a constant speed v,

the power required to do this is,

P = F v

2 2



2

B l v

=

(6.8)

r

The agent that does this work is mechanical. Where does this

mechanical energy go? The answer is: it is dissipated as Joule heat, and

is given by

2

⎛ Blv ⎞

2 2

2

B l v

2

P = I r = ⎜

⎟ r =

J

 

⎝ r ⎠

r
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which is identical to Eq. (6.8).

Physics

Thus, mechanical energy which was needed to move the arm PQ is

converted into electrical energy (the induced emf) and then to thermal
energy.

There is an interesting relationship between the charge flow through

the circuit and the change in the magnetic flux. From Faraday’s law, we

have learnt that the magnitude of the induced emf is,

ΦB

ε

Δ

= Δ t

However,

Q

ε

Δ

= Ir =

r

t

Δ



Thus,

ΔΦB

Δ Q = r

Example 6.8 Refer to Fig. 6.12(a). The arm PQ of the rectangular

conductor is moved from x = 0, outwards. The uniform magnetic field is

perpendicular to the plane and extends from x = 0 to x = b and is zero for x
> b. Only the arm PQ possesses substantial resistance r. Consider the
situation when the arm PQ is pulled outwards from x = 0 to x = 2 b, and is
then moved back to x = 0 with constant speed v. Obtain expressions for the
flux, the induced emf, the force necessary to pull the arm and the power
dissipated as Joule heat. Sketch the variation of these quantities

with distance.

(a)

FIGURE 6.12

Solution Let us first consider the forward motion from x = 0 to x = 2 b The
flux Φ linked with the circuit SPQR is B

Φ = B l x

0 ≤ x < b

B

= B l b

b ≤ x < 2 b

The induced emf is,

6.8



dΦB

ε = − d t

= −

≤

<

XAMPLE

 

Blv

0

x

b
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E

= 0

b ≤ x < 2 b
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When the induced emf is nonzero, the current I is (in magnitude)

Bl v

I =



r

(b)

FIGURE 6.12

The force required to keep the arm PQ in constant motion is I l B. Its

direction is to the left. In magnitude

2 2

B l v

F =

0 ≤ x < b

r

= 0

b ≤ x < 2 b

The Joule heating loss is

2

P = I r

J

2 2

2

B l v



E

=

0 ≤ x < b

XAMPLE

 

r

= 0

b ≤ x < 2 b

One obtains similar expressions for the inward motion from x = 2 b to 6.8

x = 0. One can appreciate the whole process by examining the sketch

of various quantities displayed in Fig. 6.12(b).
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6.8 EDDY CURRENTS

So far we have studied the electric currents induced in well defined paths

in conductors like circular loops. Even when bulk pieces of conductors

are subjected to changing magnetic flux, induced currents

are produced in them. However, their flow patterns resemble

swirling eddies in water. This effect was discovered by physicist

Foucault (1819-1868) and these currents are called eddy



currents.

Consider the apparatus shown in Fig. 6.13. A copper plate

is allowed to swing like a simple pendulum between the pole

pieces of a strong magnet. It is found that the motion is damped

and in a little while the plate comes to a halt in the magnetic

field. We can explain this phenomenon on the basis of

electromagnetic induction. Magnetic flux associated with the

plate keeps on changing as the plate moves in and out of the

region between magnetic poles. The flux change induces eddy

currents in the plate. Directions of eddy currents are opposite

when the plate swings into the region between the poles and

when it swings out of the region.

If rectangular slots are made in the copper plate as shown

FIGURE 6.13 Eddy currents are

in Fig. 6.14, area available to the flow of eddy currents is less.

generated in the copper plate,

Thus, the pendulum plate with holes or slots reduces

while entering

electromagnetic damping and the plate swings more freely.

and leaving the region of



Note that magnetic moments of the induced currents (which

magnetic field.

oppose the motion) depend upon the area enclosed by the

currents (recall equation m = I A in Chapter 4).

This fact is helpful in reducing eddy currents in the metallic

cores of transformers, electric motors and other such devices in

which a coil is to be wound over metallic core. Eddy currents are

undesirable since they heat up the core and dissipate electrical

energy in the form of heat. Eddy currents are minimised by using

laminations of metal to make a metal core. The laminations are

separated by an insulating material like lacquer. The plane of the

laminations must be arranged parallel to the magnetic field, so

that they cut across the eddy current paths. This arrangement

reduces the strength of the eddy currents. Since the dissipation

of electrical energy into heat depends on the square of the strength

of electric current, heat loss is substantially reduced.

Eddy currents are used to advantage in certain applications like:

(i) Magnetic braking in trains: Strong electromagnets are situated

above the rails in some electrically powered trains. When the

electromagnets are activated, the eddy currents induced in the



FIGURE 6.14 Cutting slots

rails oppose the motion of the train. As there are no mechanical

in the copper plate reduces

linkages, the braking effect is smooth.

the effect of eddy currents.

(ii) Electromagnetic damping: Certain galvanometers have a fixed

core made of nonmagnetic metallic material. When the coil

oscillates, the eddy currents generated in the core oppose the
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motion and bring the coil to rest quickly.
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(iii) Induction furnace: Induction furnace can be used to produce high

temperatures and can be utilised to prepare alloys, by melting the

constituent metals. A high frequency alternating current is passed

through a coil which surrounds the metals to be melted. The eddy

currents generated in the metals produce high temperatures sufficient

to melt it.

(iv) Electric power meters: The shiny metal disc in the electric power meter
(analogue type) rotates due to the eddy currents. Electric currents are
induced in the disc by magnetic fields produced by sinusoidally



varying currents in a coil.

You can observe the rotating shiny disc in the power meter of your

house.

ELECTROMAGNETIC DAMPING

Take two hollow thin cylindrical pipes of equal internal diameters made of
aluminium and PVC, respectively. Fix them vertically with clamps on retort
stands. Take a small cylinderical magnet having diameter slightly smaller
than the inner diameter of the pipes and drop it through each pipe in such a
way that the magnet does not touch the sides of the pipes during its fall. You
will observe that the magnet dropped through the PVC pipe takes the same
time to come out of the pipe as it would take when dropped through the
same height without the pipe. Note the time it takes to come out of the pipe
in each case. You will see that the magnet takes much longer time in the
case of aluminium pipe. Why is it so? It is due to the eddy currents that are
generated in the aluminium pipe which oppose the change in magnetic flux,
i.e., the motion of the magnet. The retarding force due to the eddy currents
inhibits the motion of the magnet. Such phenomena are referred to as
electromagnetic damping.

Note that eddy currents are not generated in PVC pipe as its material is an
insulator whereas aluminium is a conductor.

6.9 INDUCTANCE

An electric current can be induced in a coil by flux change produced by

another coil in its vicinity or flux change produced by the same coil. These

two situations are described separately in the next two sub-sections.

However, in both the cases, the flux through a coil is proportional to the

current. That is, Φ α I.

B



Further, if the geometry of the coil does not vary with time then,

dΦ

d I

B

∝

d t

d t

For a closely wound coil of N turns, the same magnetic flux is linked

with all the turns. When the flux Φ through the coil changes, each turn

B

contributes to the induced emf. Therefore, a term called flux linkage is used
which is equal to NΦ for a closely wound coil and in such a case B

NΦ ∝ I

B

The constant of proportionality, in this relation, is called inductance.
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We shall see that inductance depends only on the geometry of the coil
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and intrinsic material properties. This aspect is akin to capacitance which

for a parallel plate capacitor depends on the plate area and plate separation



(geometry) and the dielectric constant K of the intervening medium

(intrinsic material property).

Inductance is a scalar quantity. It has the dimensions of [M L2 T –2 A–2]

given by the dimensions of flux divided by the dimensions of current. The

SI unit of inductance is henry and is denoted by H. It is named in honour of
Joseph Henry who discovered electromagnetic induction in USA,
independently of Faraday in England.

6.9.1 Mutual inductance

Consider Fig. 6.15 which shows two long co-axial solenoids each of length

l. We denote the radius of the inner solenoid S by r and the number of 1

1

turns per unit length by n . The corresponding quantities for the outer 1

solenoid S are r and n , respectively. Let N and N be the total number 2

2

2

1

2

of turns of coils S and S , respectively.

1

2

When a current I is set up through S , it in turn sets up a magnetic 2



2

flux through S . Let us denote it by Φ . The corresponding flux linkage 1

1

with solenoid S is

1

N Φ = M I

(6.9)

1

1

12 2

M is called the mutual inductance of solenoid S with respect to 12

1

solenoid S . It is also referred to as the coefficient of mutual induction.

2

For these simple co-axial solenoids it is possible to calculate M . The 12

magnetic field due to the current I in S is μ n I . The resulting flux linkage 2

2

0 2 2

with coil S is,

1



N Φ = ( n l ) ( 2

r

π

μ n I

1 1

1

1 ) ( 0 2 2 )

 

2

= μ n n r

π l I

(6.10)

0

1

2

1

2

where n l is the total number of turns in solenoid S . Thus, from Eq. (6.9) 1

1

and Eq. (6.10),



M = μ n n π r 2 l

(6.11)

12

0 1 2

1

Note that we neglected the edge effects and considered

the magnetic field μ n I to be uniform throughout the

0

2 2

length and width of the solenoid S . This is a good

2

approximation keeping in mind that the solenoid is long,

implying l >> r .

2

We now consider the reverse case. A current I is

1

passed through the solenoid S and the flux linkage with

1

coil S is,

2



N Φ = M I

(6.12)

2

2

21

1

M is called the mutual inductance of solenoid S with

21

2

respect to solenoid S .

1

The flux due to the current I in S can be assumed to

1

1

be confined solely inside S since the solenoids are very

1

FIGURE 6.15 Two long co-axial

long. Thus, flux linkage with solenoid S is

solenoids of same

2
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length l.

N Φ = ( n l ) ( 2

r

π

μ n I

2

2

2

1 ) ( 0 1 1 )
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where n l is the total number of turns of S . From Eq. (6.12),

2

2

M = μ n n π r 2 l

(6.13)

21

0 1 2

1



Using Eq. (6.11) and Eq. (6.12), we get

M

= M = M (say)

(6.14)

12

21

We have demonstrated this equality for long co-axial solenoids.

However, the relation is far more general. Note that if the inner solenoid

was much shorter than (and placed well inside) the outer solenoid, then

we could still have calculated the flux linkage N Φ because the inner

1

1

solenoid is effectively immersed in a uniform magnetic field due to the

outer solenoid. In this case, the calculation of M would be easy. However,
12

it would be extremely difficult to calculate the flux linkage with the outer

solenoid as the magnetic field due to the inner solenoid would vary across

the length as well as cross section of the outer solenoid. Therefore, the

calculation of M would also be extremely difficult in this case. The

21

equality M = M is very useful in such situations.



12

21

We explained the above example with air as the medium within the

solenoids. Instead, if a medium of relative permeability μ had been present,

r

the mutual inductance would be

M =μ μ n n π r 2 l

r 0

1 2

1

It is also important to know that the mutual inductance of a pair of

coils, solenoids, etc., depends on their separation as well as their relative

orientation.

Example 6.9 Two concentric circular coils, one of small radius r and 1

the other of large radius r , such that r << r , are placed co-axially 2

1

2

with centres coinciding. Obtain the mutual inductance of the

arrangement.

Solution Let a current I flow through the outer circular coil. The 2



field at the centre of the coil is B = μ I / 2 r . Since the other 2

0 2

2

co-axially placed coil has a very small radius, B may be considered

2

constant over its cross-sectional area. Hence,

Φ = π r 2 B

1

1

2

2

μ r

π

0

1

=

I 2

2 r 2

= M

I



12 2

Thus,

2

μ r

π

0

1

M

=

12

2 r 2

From Eq. (6.14)

2

E

μ π r

0

1

M

= M =

XAMPLE



12

21

2 r 2

Note that we calculated M from an approximate value of Φ , assuming

12

1

the magnetic field B to be uniform over the area π r 2. However, we 6.9

2

1

can accept this value because r << r .

1

2
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Now, let us recollect Experiment 6.3 in Section 6.2. In that experiment,

emf is induced in coil C wherever there was any change in current through
1

coil C . Let Φ be the flux through coil C (say of N turns) when current in 2

1

1

1



coil C is I .

2

2

Then, from Eq. (6.9), we have

N Φ = MI

1

1

2

For currents varrying with time,

d ( N Φ

d MI

1 1 )

( 2)

=

d t

d t

Since induced emf in coil C is given by

1

d ( N Φ

1 1 )



ε = –

1

d t

We get,

d I 2

ε = – M

1

d t

It shows that varying current in a coil can induce emf in a neighbouring

coil. The magnitude of the induced emf depends upon the rate of change

of current and mutual inductance of the two coils.

6.9.2 Self-inductance

In the previous sub-section, we considered the flux in one solenoid due

to the current in the other. It is also possible that emf is induced in a

single isolated coil due to change of flux through the coil by means of

varying the current through the same coil. This phenomenon is called

self-induction. In this case, flux linkage through a coil of N turns is
proportional to the current through the coil and is expressed as NΦ ∝ I

B

NΦ = L I

(6.15)



B

where constant of proportionality L is called self-inductance of the coil. It is
also called the coefficient of self-induction of the coil. When the current is
varied, the flux linked with the coil also changes and an emf is induced in
the coil. Using Eq. (6.15), the induced emf is given by

d ( NΦB )

ε = –

d t

d I

ε = – L

(6.16)

d t

Thus, the self-induced emf always opposes any change (increase or

decrease) of current in the coil.

It is possible to calculate the self-inductance for circuits with simple
geometries. Let us calculate the self-inductance of a long solenoid of cross-
sectional area A and length l, having n turns per unit length. The magnetic
field due to a current I flowing in the solenoid is B = μ n I (neglecting edge
0

effects, as before). The total flux linked with the solenoid is
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NΦ = nl μ n I

A



B

( )( 0 )( )
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= μ n 2 Al I

0

where nl is the total number of turns. Thus, the self-inductance is,

ΝΦ

L

Β

= I

 

2

= μ n Al

(6.17)

0

If we fill the inside of the solenoid with a material of relative permeability

μ (for example soft iron, which has a high value of relative permiability),

r

then,



2

L = μ μ n Al

(6.18)

r

0

The self-inductance of the coil depends on its geometry and on the

permeability of the medium.

The self-induced emf is also called the back emf as it opposes any

change in the current in a circuit. Physically, the self-inductance plays

the role of inertia. It is the electromagnetic analogue of mass in mechanics.

So, work needs to be done against the back emf (ε ) in establishing the

current. This work done is stored as magnetic potential energy. For the

current I at an instant in a circuit, the rate of work done is

d W = ε I

d t

If we ignore the resistive losses and consider only inductive effect,

then using Eq. (6.16),

d W

d I

= L I



d t

d t

Total amount of work done in establishing the current I is

I

W = d W =

L I d I

∫

∫0

Thus, the energy required to build up the current I is,

1

2

W =

LI

(6.19)

2

This expression reminds us of mv 2/2 for the (mechanical) kinetic energy of
a particle of mass m, and shows that L is analogus to m (i.e., L is electrical
inertia and opposes growth and decay of current in the circuit).

Consider the general case of currents flowing simultaneously in two

nearby coils. The flux linked with one coil will be the sum of two fluxes

which exist independently. Equation (6.9) would be modified into



N Φ = M

I + M

I

1

1

11 1

12

2

where M represents inductance due to the same coil.

11

Therefore, using Faraday’s law,

d I

d I

1

2

ε = − M

− M

1

11

12
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M

is the self-inductance and is written as L . Therefore,

11

1

d I

d I

1

2

ε = − L

− M

1

1

12

d t

d t

Example 6.10 (a) Obtain the expression for the magnetic energy stored



in a solenoid in terms of magnetic field B, area A and length l of the
solenoid. (b) How does this magnetic energy compare with the electrostatic
energy stored in a capacitor?

Solution

(a) From Eq. (6.19), the magnetic energy is

1

2

U

=

LI

B

2

2

1

⎛ B ⎞

=

L ⎜

⎟

(since B = ,

μ nI for a solenoid)

2



0

⎝ μ n ⎠

0

2

1

⎛ B ⎞

2

= (μ n Al )

[from Eq. (6.17)]

0

⎜

⎟

2

⎝ μ n ⎠

0

1

2

=

B Al

2μ0



(b) The magnetic energy per unit volume is,

U B

u

=

B

(where V is volume that contains flux)

V

U

 

B

= Al

2

B

=

(6.20)

2μ0

We have already obtained the relation for the electrostatic energy

stored per unit volume in a parallel plate capacitor (refer to Chapter 2,

Eq. 2.77),

Interactive animation on ac generator:



http://micro.magnet.fsu.edu/electromagnet~java/generator/ac.html

1

2

u =

ε E

Ε

0

(2.77)

2

6.10

In both the cases energy is proportional to the square of the field

strength. Equations (6.20) and (2.77) have been derived for special

cases: a solenoid and a parallel plate capacitor, respectively. But they

XAMPLE

are general and valid for any region of space in which a magnetic field

E

or/and an electric field exist.

6.10 AC GENERATOR

The phenomenon of electromagnetic induction has been technologically

exploited in many ways. An exceptionally important application is the



generation of alternating currents (ac). The modern ac generator with a

typical output capacity of 100 MW is a highly evolved machine. In this

section, we shall describe the basic principles behind this machine. The

Yugoslav inventor Nicola Tesla is credited with the development of the
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or current in a loop is through a change in the

loop’s orientation or a change in its effective area.

As the coil rotates in a magnetic field B, the

effective area of the loop (the face perpendicular

to the field) is A cos θ, where θ is the angle

between A and B. This method of producing a

flux change is the principle of operation of a

simple ac generator. An ac generator converts

mechanical energy into electrical energy.

The basic elements of an ac generator are

shown in Fig. 6.16. It consists of a coil mounted

on a rotor shaft. The axis of rotation of the coil



is perpendicular to the direction of the magnetic

field. The coil (called armature) is mechanically

rotated in the uniform magnetic field by some

external means. The rotation of the coil causes

the magnetic flux through it to change, so an

emf is induced in the coil. The ends of the coil

are connected to an external circuit by means

FIGURE 6.16 AC Generator

of slip rings and brushes.

When the coil is rotated with a constant

angular speed ω, the angle θ between the magnetic field vector B and the
area vector A of the coil at any instant t is θ = ω t (assuming θ = 0º at t = 0).

As a result, the effective area of the coil exposed to the magnetic field lines
changes with time, and from Eq. (6.1), the flux at any time t is Φ = BA cos θ
= BA cos ω t

B

From Faraday’s law, the induced emf for the rotating coil of N turns is then,

dΦ

d

ε = –

B



N

= – NBA

(cos ω t )

dt

d t

Thus, the instantaneous value of the emf is

ε = NBA ω sin ω t

(6.21)

where NBAω is the maximum value of the emf, which occurs when

sin ω t = ±1. If we denote NBAω as ε , then

0

ε = ε sin ω t

(6.22)

0

Since the value of the sine fuction varies between +1 and –1, the sign, or

polarity of the emf changes with time. Note from Fig. 6.17 that the emf

has its extremum value when θ = 90º or θ = 270º, as the change of flux is

greatest at these points.

The direction of the current changes periodically and therefore the current

is called alternating current (ac). Since ω = 2πν, Eq (6.22) can be written as
ε = ε sin 2π ν t (6.23)



0

where ν is the frequency of revolution of the generator’s coil.

Note that Eq. (6.22) and (6.23) give the instantaneous value of the emf

and ε varies between +ε and –ε periodically. We shall learn how to

0

0

determine the time-averaged value for the alternating voltage and current
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in the next chapter.
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FIGURE 6.17 An alternating emf is generated by a loop of wire rotating in
a magnetic field.

In commercial generators, the mechanical energy required for rotation

of the armature is provided by water falling from a height, for example,

from dams. These are called hydroelectric generators. Alternatively, water
is heated to produce steam using coal or other sources. The steam at high
pressure produces the rotation of the armature. These are called

thermal generators. Instead of coal, if a nuclear fuel is used, we get nuclear
power generators. Modern day generators produce electric power as high as
500 MW, i.e., one can light up 5 million 100 W bulbs! In most

generators, the coils are held stationary and it is the electromagnets which

are rotated. The frequency of rotation is 50 Hz in India. In certain countries



such as USA, it is 60 Hz.

Example 6.11 Kamla peddles a stationary bicycle the pedals of the

bicycle are attached to a 100 turn coil of area 0.10 m2. The coil rotates

at half a revolution per second and it is placed in a uniform magnetic

field of 0.01 T perpendicular to the axis of rotation of the coil. What is

the maximum voltage generated in the coil?

Solution Here f = 0.5 Hz; N =100, A = 0.1 m2 and B = 0.01 T. Employing
Eq. (6.21) ε0 = NBA ( 2 π ν )

= 100 × 0.01 × 0.1 × 2 × 3.14 × 0.5

= 0.314 V

6.11

The maximum voltage is 0.314 V.

We urge you to explore such alternative possibilities for power

XAMPLE

generation.
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MIGRATION OF BIRDS



The migratory pattern of birds is one of the mysteries in the field of biology,
and indeed all of science. For example, every winter birds from Siberia fly
unerringly to water spots in the Indian subcontinent. There has been a
suggestion that electromagnetic induction may provide a clue to these
migratory patterns. The earth’s magnetic field has existed throughout
evolutionary history. It would be of great benefit to migratory birds to use
this field to determine the direction. As far as we know birds contain no
ferromagnetic material. So electromagnetic induction seems to be the only
reasonable mechanism to determine direction. Consider the optimal case
where the magnetic field B, the velocity of the bird v, and two relevant
points of its anatomy separated by a distance l, all three are mutually
perpendicular. From the formula for motional emf, Eq. (6.5), ε = Blv

Taking B = 4 × 10–5 T, l = 2 cm wide, and v = 10 m/s, we obtain ε = 4 ×
10–5 × 2 × 10–2 × 10 V = 8 × 10–6 V

= 8 μV

This extremely small potential difference suggests that our hypothesis is of
doubtful validity. Certain kinds of fish are able to detect small potential
differences. However, in these fish, special cells have been identified which
detect small voltage differences. In birds no such cells have been identified.
Thus, the migration patterns of birds continues to remain a mystery.

SUMMARY

1.

The magnetic flux through a surface of area A placed in a uniform magnetic
field B is defined as, Φ = BiA = BA cos θ

B

where θ is the angle between B and A.

2.

Faraday’s laws of induction imply that the emf induced in a coil of N



turns is directly related to the rate of change of flux through it,

dΦB

ε = − N d t

Here Φ

Β is the flux linked with one turn of the coil. If the circuit is

closed, a current I = ε/ R is set up in it, where R is the resistance of the
circuit.

3.

Lenz’s law states that the polarity of the induced emf is such that it

tends to produce a current which opposes the change in magnetic flux

that produces it. The negative sign in the expression for Faraday’s law

indicates this fact.

4.

When a metal rod of length l is placed normal to a uniform magnetic

field B and moved with a velocity v perpendicular to the field, the induced
emf (called motional emf ) across its ends is ε = Bl v

5.

Changing magnetic fields can set up current loops in nearby metal

(any conductor) bodies. They dissipate electrical energy as heat. Such

currents are called eddy currents.

6.



Inductance is the ratio of the flux-linkage to current. It is equal to NΦ/ I.
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7.

A changing current in a coil (coil 2) can induce an emf in a nearby coil

(coil 1). This relation is given by,

d I 2

ε = − M

1

12 d t

The quantity M

is called mutual inductance of coil 1 with respect to

12

coil 2. One can similarly define M . There exists a general equality,

21

M = M

12

21

8.

When a current in a coil changes, it induces a back emf in the same



coil. The self-induced emf is given by,

d I

ε = − L d t

L is the self-inductance of the coil. It is a measure of the inertia of the coil
against the change of current through it.

9.

The self-inductance of a long solenoid, the core of which consists of a

magnetic material of permeability μ , is given by

r

L = μ μ n2 A l

r 0

where A is the area of cross-section of the solenoid, l its length and n the
number of turns per unit length.

10. In an ac generator, mechanical energy is converted to electrical energy

by virtue of electromagnetic induction. If coil of N turn and area A is rotated
at ν revolutions per second in a uniform magnetic field B, then the motional
emf produced is ε = NBA (2πν) sin (2πν t)

where we have assumed that at time t = 0 s, the coil is perpendicular to the
field.

Quantity

Symbol

Units



Dimensions

Equations

Magnetic Flux

Φ

Wb (weber)

[M L2 T –2 A–1]

Φ = B i A

B

B

EMF

ε

V (volt)

[M L2 T –3 A–1]

ε = −d( NΦ )/d t

B

Mutual Inductance

M

H (henry)

[M L2 T –2 A–2]

ε = − M d I /d t



12 (

2

)

1

Self Inductance

L

H (henry)

[M L2 T –2 A–2]

ε = − L (d I /d t )

POINTS TO PONDER

1.

Electricity and magnetism are intimately related. In the early part of the

nineteenth century, the experiments of Oersted, Ampere and others

established that moving charges (currents) produce a magnetic field.

Somewhat later, around 1830, the experiments of Faraday and Henry

demonstrated that a moving magnet can induce electric current.

2.

In a closed circuit, electric currents are induced so as to oppose the

changing magnetic flux. It is as per the law of conservation of energy.

However, in case of an open circuit, an emf is induced across its ends.



How is it related to the flux change?

3.

The motional emf discussed in Section 6.5 can be argued independently
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even if the charges are stationary [and the q (v × B) term of the Lorentz
force is not operative], an emf is nevertheless induced in the presence of a
time-varying magnetic field. Thus, moving charges in static field and static

charges in a time-varying field seem to be symmetric situation for

Faraday’s law. This gives a tantalising hint on the relevance of the principle

of relativity for Faraday’s law.

4.

The motion of a copper plate is damped when it is allowed to oscillate

between the magnetic pole-pieces. How is the damping force, produced by

the eddy currents?

EXERCISES

6.1

Predict the direction of induced current in the situations described

by the following Figs. 6.18(a) to (f ).

FIGURE 6.18
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6.2

Use Lenz’s law to determine the direction of induced current in the

situations described by Fig. 6.19:



(a) A wire of irregular shape turning into a circular shape;

(b) A circular loop being deformed into a narrow straight wire.

FIGURE 6.19

6.3

A long solenoid with 15 turns per cm has a small loop of area 2.0 cm2

placed inside the solenoid normal to its axis. If the current carried

by the solenoid changes steadily from 2.0 A to 4.0 A in 0.1 s, what is

the induced emf in the loop while the current is changing?

6.4

A rectangular wire loop of sides 8 cm and 2 cm with a small cut is

moving out of a region of uniform magnetic field of magnitude 0.3 T

directed normal to the loop. What is the emf developed across the

cut if the velocity of the loop is 1 cm s–1 in a direction normal to the

(a) longer side, (b) shorter side of the loop? For how long does the

induced voltage last in each case?

6.5

A 1.0 m long metallic rod is rotated with an angular frequency of

400 rad s–1 about an axis normal to the rod passing through its one

 

end. The other end of the rod is in contact with a circular metallic



ring. A constant and uniform magnetic field of 0.5 T parallel to the

axis exists everywhere. Calculate the emf developed between the

centre and the ring.

6.6

A circular coil of radius 8.0 cm and 20 turns is rotated about its

vertical diameter with an angular speed of 50 rad s–1 in a uniform

horizontal magnetic field of magnitude 3.0 × 10–2 T. Obtain the

maximum and average emf induced in the coil. If the coil forms a

closed loop of resistance 10 Ω, calculate the maximum value of current

in the coil. Calculate the average power loss due to Joule heating.

Where does this power come from?

6.7

A horizontal straight wire 10 m long extending from east to west is

falling with a speed of 5.0 m s–1, at right angles to the horizontal

component of the earth’s magnetic field, 0.30 × 10–4 Wb m–2.

(a) What is the instantaneous value of the emf induced in the wire?

(b) What is the direction of the emf?

(c) Which end of the wire is at the higher electrical potential?

6.8

Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf



of 200 V induced, give an estimate of the self-inductance of the circuit.

6.9

A pair of adjacent coils has a mutual inductance of 1.5 H. If the

current in one coil changes from 0 to 20 A in 0.5 s, what is the

change of flux linkage with the other coil?

6.10

A jet plane is travelling towards west at a speed of 1800 km/h. What
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having a span of 25 m, if the Earth’s magnetic field at the location

has a magnitude of 5 × 10–4 T and the dip angle is 30°.

ADDITIONAL EXERCISES

6.11

Suppose the loop in Exercise 6.4 is stationary but the current

feeding the electromagnet that produces the magnetic field is

gradually reduced so that the field decreases from its initial value

of 0.3 T at the rate of 0.02 T s–1. If the cut is joined and the loop

has a resistance of 1.6 Ω, how much power is dissipated by the



loop as heat? What is the source of this power?

6.12

A square loop of side 12 cm with its sides parallel to X and Y axes is

moved with a velocity of 8 cm s–1 in the positive x- direction in an

 

environment containing a magnetic field in the positive z-direction.

The field is neither uniform in space nor constant in time. It has a

gradient of 10 – 3 T cm–1 along the negative x- direction (that is it
increases by 10 – 3 T cm –1 as one moves in the negative x-direction), and
it is decreasing in time at the rate of 10 –3 T s–1. Determine the direction
and magnitude of the induced current in the loop if its resistance is 4.50
mΩ.

6.13

It is desired to measure the magnitude of field between the poles of a

powerful loud speaker magnet. A small flat search coil of area 2 cm2

with 25 closely wound turns, is positioned normal to the field

direction, and then quickly snatched out of the field region.

Equivalently, one can give it a quick 90° turn to bring its plane

parallel to the field direction). The total charge flown in the coil

(measured by a ballistic galvanometer connected to coil) is

7.5 mC. The combined resistance of the coil and the galvanometer is

0.50 Ω. Estimate the field strength of magnet.



6.14

Figure 6.20 shows a metal rod PQ resting on the smooth rails AB

and positioned between the poles of a permanent magnet. The rails,

the rod, and the magnetic field are in three mutual perpendicular

directions. A galvanometer G connects the rails through a switch K.

Length of the rod = 15 cm, B = 0.50 T, resistance of the closed loop

containing the rod = 9.0 mΩ. Assume the field to be uniform.

(a) Suppose K is open and the rod is moved with a speed of 12 cm s–1

in the direction shown. Give the polarity and magnitude of the

induced emf.

FIGURE 6.20

(b) Is there an excess charge built up at the ends of the rods when

K is open? What if K is closed?

(c) With K open and the rod moving uniformly, there is no net

force on the electrons in the rod PQ even though they do
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experience magnetic force due to the motion of the rod. Explain.

(d) What is the retarding force on the rod when K is closed?

(e) How much power is required (by an external agent) to keep



the rod moving at the same speed (=12 cm s–1) when K is closed?

How much power is required when K is open?

(f ) How much power is dissipated as heat in the closed circuit?

What is the source of this power?

(g) What is the induced emf in the moving rod if the magnetic field

is parallel to the rails instead of being perpendicular?

6.15

An air-cored solenoid with length 30 cm, area of cross-section 25 cm2

and number of turns 500, carries a current of 2.5 A. The current is

suddenly switched off in a brief time of 10–3 s. How much is the average

back emf induced across the ends of the open switch in the circuit?

Ignore the variation in magnetic field near the ends of the solenoid.

6.16

(a) Obtain an expression for the mutual inductance between a long

straight wire and a square loop of side a as shown in Fig. 6.21.

(b) Now assume that the straight wire carries a current of 50 A and

the loop is moved to the right with a constant velocity, v = 10 m/s.

Calculate the induced emf in the loop at the instant when x = 0.2 m.

Take a = 0.1 m and assume that the loop has a large resistance.

FIGURE 6.21



6.17

A line charge λ per unit length is lodged uniformly onto the rim of a

wheel of mass M and radius R. The wheel has light non-conducting spokes
and is free to rotate without friction about its axis (Fig. 6.22).

A uniform magnetic field extends over a circular region within the

rim. It is given by,

B = – B k

( r ≤ a; a < R)

0

= 0

(otherwise)

What is the angular velocity of the wheel after the field is suddenly

switched off ?
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FIGURE 6.22

Chapter Seven

ALTERNATING

CURRENT

7.1 INTRODUCTION

We have so far considered direct current (dc) sources and circuits with dc

sources. These currents do not change direction with time. But voltages



and currents that vary with time are very common. The electric mains

supply in our homes and offices is a voltage that varies like a sine function

with time. Such a voltage is called alternating voltage (ac voltage) and the
current driven by it in a circuit is called the alternating current (ac
current)*. Today, most of the electrical devices we use require ac voltage.

This is mainly because most of the electrical energy sold by power

companies is transmitted and distributed as alternating current. The main

reason for preferring use of ac voltage over dc voltage is that ac voltages

can be easily and efficiently converted from one voltage to the other by

means of transformers. Further, electrical energy can also be transmitted

economically over long distances. AC circuits exhibit characteristics which

are exploited in many devices of daily use. For example, whenever we

tune our radio to a favourite station, we are taking advantage of a special

property of ac circuits – one of many that you will study in this chapter.

* The phrases ac voltage and ac current are contradictory and redundant,
respectively, since they mean, literally, alternating current voltage and
alternating current current. Still, the abbreviation ac to designate an
electrical quantity displaying simple harmonic time dependance has become
so universally accepted that we follow others in its use. Further, voltage –
another phrase commonly used means potential difference between two
points.
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7.2 AC VOLTAGE APPLIED TO A RESISTOR

Figure 7.1 shows a resistor connected to a source ε of

ac voltage. The symbol for an ac source in a circuit

diagram is ~ . We consider a source which produces

sinusoidally varying potential difference across its

terminals. Let this potential difference, also called ac

voltage, be given by

v = v sin ω t

(7.1)

m

where v is the amplitude of the oscillating potential

m

difference and ω is its angular frequency.

Nicola Tesla (1836 –



1943) Yugoslov scientist,

inventor and genius. He

conceived the idea of the

rotating magnetic field,

1943)

which is the basis of

–

practically all alternating

current machinery, and

which helped usher in the

age of electric power. He

FIGURE 7.1 AC voltage applied to a resistor.

also invented among other

things the induction motor,

To find the value of current through the resistor, we

the polyphase system of ac

∑ ε t =

power, and the high

apply Kirchhoff’s loop rule

( )



0 , to the circuit

frequency induction coil

shown in Fig. 7.1 to get

(the Tesla coil) used in radio

v sin ω t = i R

and television sets and

m

other electronic equipment.

vm

=

ω

NICOLA TESLA (1836

The SI unit of magnetic field

or i

sin

t

R

is named in his honour.

Since R is a constant, we can write this equation as

i = i sin ω t



(7.2)

m

where the current amplitude i is given by

m

vm

i =

m

(7.3)

R

Equation (7.3) is just Ohm’s law which for resistors works

equally well for both ac and dc voltages. The voltage across a

pure resistor and the current through it, given by Eqs. (7.1) and

(7.2) are plotted as a function of time in Fig. 7.2. Note, in

particular that both v and i reach zero, minimum and maximum

values at the same time. Clearly, the voltage and current are in

FIGURE 7.2 In a pure

resistor, the voltage and

phase with each other.

current are in phase. The

We see that, like the applied voltage, the current varies



minima, zero and maxima

sinusoidally and has corresponding positive and negative values

occur at the same

during each cycle. Thus, the sum of the instantaneous current

respective times.

values over one complete cycle is zero, and the average current
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is zero. The fact that the average current is zero, however, does
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not mean that the average power consumed is zero and

that there is no dissipation of electrical energy. As you

know, Joule heating is given by i 2 R and depends on i 2

(which is always positive whether i is positive or negative)

and not on i. Thus, there is Joule heating and

dissipation of electrical energy when an

ac current passes through a resistor.



The instantaneous power dissipated in the resistor is

2

2

2

p = i R = i R sin ω t

(7.4)

m

The average value of p over a cycle is*

2

2

2

p = < i R > = < i R sin ω t >

[7.5(a)]

m

where the bar over a letter(here, p) denotes its average

GEORGE WESTINGHOUSE (1846 – 1914)

George Westinghouse

value and <......> denotes taking average of the quantity

(1846 – 1914) A leading

inside the bracket. Since, i 2 and R are constants,



m

proponent of the use of

2

2

p = i R <

t

ω >

[7.5(b)]

alternating current over

sin

m

direct current. Thus,

Using the trigonometric identity, sin2 ω t =

he came into conflict

1/2 (1– cos 2ω t ), we have < sin2 ω t > = (1/2) (1– < cos 2ω t > ) with
Thomas Alva Edison, and since < cos2ω t > = 0**, we have,

an advocate of direct

curr ent. Westinghouse

1

2

< sin ω t > =



was convinced that the

2

technology of alternating

Thus,

current was the key to

the electrical future.

1 2

p =

i R

[7.5(c)]

He founded the famous

2 m

Company named after him

To express ac power in the same form as dc power

and enlisted the services

( P = I 2 R), a special value of current is defined and used.

of Nicola Tesla and

It is called, root mean square (rms) or effective current

other inventors in the

(Fig. 7.3) and is denoted by I



or I.

development of alternating

rms

current motors and

apparatus for the

transmission of high

tension current, pioneering

in large scale lighting.

FIGURE 7.3 The rms current I is related to the

peak current i by I = i / 2 = 0.707 i .

m

m

m

1 T

* The average value of a function F ( t ) over a period T is given by F ( t ) =

F ( t ) d t

∫

T 0

1

1 ⎡ sin 2



T

T

ω t ⎤

1

** < cos 2ω t > =

∫ cos 2ω t dt =

=

⎢

⎥

[sin 2ω T − 0] = 0

T

T ⎣

2ω

⎦

2ω T

0
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It is defined by



i

2

1 2

m

I = i

=

i

=

2 m

2

= 0.707 i

(7.6)

m

In terms of I, the average power, denoted by P is

1 2

2

P = p =

i R = I R

(7.7)

2 m



Similarly, we define the rms voltage or effective voltage by

vm

V =

= 0.707 v

(7.8)

2

m

From Eq. (7.3), we have

v = i R

m

m

v

i

m

m

or,

=

R

2

2



or, V = IR

(7.9)

Equation (7.9) gives the relation between ac current and ac voltage

and is similar to that in the dc case. This shows the advantage of

introducing the concept of rms values. In terms of rms values, the equation

for power [Eq. (7.7)] and relation between current and voltage in ac circuits

are essentially the same as those for the dc case.

It is customary to measure and specify rms values for ac quantities. For

example, the household line voltage of 220 V is an rms value with a peak

voltage of

v =

m

2 V = (1.414)(220 V) = 311 V

In fact, the I or rms current is the equivalent dc current that would

produce the same average power loss as the alternating current. Equation

(7.7) can also be written as

P = V 2 / R = I V (since V = I R ) Example 7.1 A light bulb is rated at 100W
for a 220 V supply. Find (a) the resistance of the bulb; (b) the peak voltage
of the source; and

(c) the rms current through the bulb.

Solution



(a) We are given P = 100 W and V = 220 V. The resistance of the bulb is

V

(

)2

2

220 V

R =

=

= 484Ω

P

100 W

(b) The peak voltage of the source is

v =

2 V = 311V

m

7.1

(c) Since, P = I V

P

100 W

XAMPLE



I =

=

= 0.450A

V

220 V
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7.3 REPRESENTATION OF AC CURRENT AND VOLTAGE

BY ROTATING VECTORS — PHASORS

In the previous section, we learnt that the current through a resistor is

in phase with the ac voltage. But this is not so in the case of an inductor,

a capacitor or a combination of these circuit elements. In order to show

phase relationship between voltage and current

in an ac circuit, we use the notion of phasors.

The analysis of an ac circuit is facilitated by the

use of a phasor diagram. A phasor* is a vector

which rotates about the origin with angular

speed ω, as shown in Fig. 7.4. The vertical

components of phasors V and I represent the



sinusoidally varying quantities v and i. The

magnitudes of phasors V and I represent the

amplitudes or the peak values v and i of these

m

m

oscillating quantities. Figure 7.4(a) shows the

FIGURE 7.4 (a) A phasor diagram for the

voltage and current phasors and their

circuit in Fig 7.1. (b) Graph of v and

relationship at time t for the case of an ac source

i versus ω t.

1

connected to a resistor i.e., corresponding to the

circuit shown in Fig. 7.1. The projection of

voltage and current phasors on vertical axis, i.e., v sinω t and i sinω t, m m

respectively represent the value of voltage and current at that instant. As

they rotate with frequency ω, curves in Fig. 7.4(b) are generated.

From Fig. 7.4(a) we see that phasors V and I for the case of a resistor are in
the same direction. This is so for all times. This means that the phase angle
between the voltage and the current is zero.

7.4 AC VOLTAGE APPLIED TO AN INDUCTOR



Figure 7.5 shows an ac source connected to an inductor. Usually,

inductors have appreciable resistance in their windings, but we shall

assume that this inductor has negligible resistance.

Thus, the circuit is a purely inductive ac circuit. Let

the voltage across the source be v = v sinω t. Using

m

the Kirchhoff’s loop rule, ∑ ε ( t ) = 0 , and since there

is no resistor in the circuit,

d i

v − L

= 0

(7.10)

d t

where the second term is the self-induced Faraday

FIGURE 7.5 An ac source

emf in the inductor; and L is the self-inductance of

connected to an inductor.

* Though voltage and current in ac circuit are represented by phasors –
rotating vectors, they are not vectors themselves. They are scalar quantities.
It so happens that the amplitudes and phases of harmonically varying
scalars combine mathematically in the same way as do the projections of
rotating vectors of



corresponding magnitudes and directions. The rotating vectors that
represent harmonically varying scalar quantities are introduced only to
provide us with a simple way of adding these quantities using a rule that we
already know.
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the inductor. The negative sign follows from Lenz’s law (Chapter 6).

Combining Eqs. (7.1) and (7.10), we have

d i

v

vm

=

=

sin ω t

(7.11)

d t

L

L

Equation (7.11) implies that the equation for i( t), the current as a function
of time, must be such that its slope d i/d t is a sinusoidally varying quantity,
with the same phase as the source voltage and an amplitude given by v /L.
To obtain the current, we integrate d i/d t with respect to m

time:



d i

v

d

m

t =

sin( t

ω )d t

∫

∫

d t

L

and get,

vm

i = −

cos(ω t ) + constant

ω L

The integration constant has the dimension of current and is time-
independent. Since the source has an emf which oscillates symmetrically

about zero, the current it sustains also oscillates symmetrically about

zero, so that no constant or time-independent component of the current

exists. Therefore, the integration constant is zero.



Using

⎛

⎞

− cos(ω t ) = sin ⎜ω

π

t −

⎟

⎝

2⎠ , we have

⎛

⎞

i = i sin ⎜ t

ω

π

−

m

⎟

⎝

2⎠

(7.12)



v

where

m

i

=

m

ω is the amplitude of the current. The quantity ω L is

L

analogous to the resistance and is called inductive reactance, denoted

by X :

L

X = ω L

(7.13)

L

The amplitude of the current is, then

vm

i

=

m

X



(7.14)

L

The dimension of inductive reactance is the same as that of resistance

and its SI unit is ohm (Ω). The inductive reactance limits the current in a

Interactive animation on Phasor diagrams of ac circuits containing, R, L, C
and RLC series circuits: http://www.phys.unsw.edu.au/~jw/AC.html purely
inductive circuit in the same way as the resistance limits the

current in a purely resistive circuit. The inductive reactance is directly

proportional to the inductance and to the frequency of the current.

A comparison of Eqs. (7.1) and (7.12) for the source voltage and the

current in an inductor shows that the current lags the voltage by π/2 or

one-quarter (1/4) cycle. Figure 7.6 (a) shows the voltage and the current

phasors in the present case at instant t . The current phasor I is π/2

1

behind the voltage phasor V. When rotated with frequency ω
counterclockwise, they generate the voltage and current given by Eqs. (7.1)
and

238

(7.12), respectively and as shown in Fig. 7.6(b).
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FIGURE 7.6 (a) A Phasor diagram for the circuit in Fig. 7.5.

(b) Graph of v and i versus ω t.



We see that the current reaches its maximum value later than the

⎡ T

π/2⎤

voltage by one-fourth of a period

=

⎢

⎥

⎣ 4

ω ⎦ . You have seen that an

inductor has reactance that limits current similar to resistance in a

dc circuit. Does it also consume power like a resistance? Let us try to

find out.

The instantaneous power supplied to the inductor is

⎛

π⎞

p = i v = i sin ⎜ω t − ⎟ × v sin t ω

L

m

m



( )

⎝

2⎠

= i

− v cos( t

ω ) sin t

ω

m

m

( )

i v

m

m

= −

sin (2 t

ω )

2

So, the average power over a complete cycle is

i v

m



m

P = −

sin 2ω t

L

(

)

2

i v

m

m

= −

sin (2ω t ) = 0,

2

since the average of sin (2ω t) over a complete cycle is zero.

Thus, the average power supplied to an inductor over one complete

cycle is zero.

Figure 7.7 explains it in detail.

Example 7.2 A pure inductor of 25.0 mH is connected to a source of

220 V. Find the inductive reactance and rms current in the circuit if

the frequency of the source is 50 Hz.



Solution The inductive reactance,

E

–

X

=

πν L = × .

3

2

2

3 14 × 50 × 25 × 10

W

L

XAMPLE

= 7.85Ω

The rms current in the circuit is

7.2

V

220 V

I =

=



= 28A

X

7.85 Ω

L
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0-1 Current i through the coil entering at A

1-2 Current in the coil is still positive but is

increase from zero to a maximum value. Flux

decreasing. The core gets demagnetised and

lines are set up i.e., the core gets magnetised.

the net flux becomes zero at the end of a half

With the polarity shown voltage and current

cycle. The voltage v is negative (since d i/d t is

are both positive. So their product p is positive.

negative). The product of voltage and current

ENERGY IS ABSORBED FROM THE

is negative, and ENERGY IS BEING

SOURCE.

RETURNED TO SOURCE.



One complete cycle of voltage/current. Note that the current lags the
voltage.

2-3 Current i becomes negative i.e., it enters

3-4 Current i decreases and reaches its zero

at B and comes out of A. Since the direction

value at 4 when core is demagnetised and flux

of current has changed, the polarity of the

is zero. The voltage is positive but the current

magnet changes. The current and voltage are

is negative. The power is, therefore, negative.

both negative. So their product p is positive.

ENERGY ABSORBED DURING THE 1/4

ENERGY IS ABSORBED.

CYCLE 2-3 IS RETURNED TO THE SOURCE.

240

FIGURE 7.7 Magnetisation and demagnetisation of an inductor.
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7.5 AC VOLTAGE APPLIED TO A CAPACITOR

Figure 7.8 shows an ac source ε generating ac voltage v = v sin ωt m

connected to a capacitor only, a purely capacitive ac circuit.

When a capacitor is connected to a voltage source



in a dc circuit, current will flow for the short time

required to charge the capacitor. As charge

accumulates on the capacitor plates, the voltage

across them increases, opposing the current. That is,

a capacitor in a dc circuit will limit or oppose the

current as it charges. When the capacitor is fully

charged, the current in the circuit falls to zero.

When the capacitor is connected to an ac source,

as in Fig. 7.8, it limits or regulates the current, but

does not completely prevent the flow of charge. The

FIGURE 7.8 An ac source

capacitor is alternately charged and discharged as

connected to a capacitor.

the current reverses each half cycle. Let q be the

charge on the capacitor at any time t. The instantaneous voltage v across the
capacitor is

q

v =

(7.15)

C

From the Kirchhoff’s loop rule, the voltage across the source and the



capacitor are equal,

q

v sin ω t =

m

C

d q

To find the current, we use the relation i = d t

d

i =

( v C sinω t = ω Cv

ω t

m

)

cos(

)

d

m

t

⎛

⎞



Using the relation, cos(ω t ) = sin ⎜ω

π

t +

⎟

⎝

2⎠ , we have

⎛

⎞

i = i sin ⎜ω

π

t +

m

⎟

⎝

2⎠

(7.16)

where the amplitude of the oscillating current is i = ω Cv . We can rewrite m

m

it as

vm



i

=

m

(1/ω C)

Comparing it to i = v / R for a purely resistive circuit, we find that m

m

(1/ω C) plays the role of resistance. It is called capacitive reactance and is
denoted by X , c

X = 1/ω C

(7.17)

c

so that the amplitude of the current is

vm

i

=

m

(7.18)
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The dimension of capacitive reactance is the



same as that of resistance and its SI unit is

ohm (Ω). The capacitive reactance limits the

amplitude of the current in a purely capacitive

circuit in the same way as the resistance limits

the current in a purely resistive circuit. But it

is inversely proportional to the frequency and

the capacitance.

A comparison of Eq. (7.16) with the

FIGURE 7.9 (a) A Phasor diagram for the circuit

in Fig. 7.8. (b) Graph of v and i versus ω t.

equation of source voltage, Eq. (7.1) shows that

the current is π/2 ahead of voltage.

Figure 7.9(a) shows the phasor diagram at an instant t . Here the current 1

phasor I is π/2 ahead of the voltage phasor V as they rotate

counterclockwise. Figure 7.9(b) shows the variation of voltage and current

with time. We see that the current reaches its maximum value earlier than

the voltage by one-fourth of a period.

The instantaneous power supplied to the capacitor is

p = i v = i cos(ω t) v sin(ω t) c

m



m

= i v cos(ω t) sin(ω t)

m m

i v

 

m

m

=

sin(2 t

ω )

(7.19)

2

So, as in the case of an inductor, the average power

i v

i v

m

m

P =

sin(2 t

ω )



m

m

=

sin(2 t

ω ) = 0

C

2

2

since <sin (2ω t)> = 0 over a complete cycle. Figure 7.10 explains it in
detail.

Thus, we see that in the case of an inductor, the current lags the voltage

by π/2 and in the case of a capacitor, the current leads the voltage by π/2.

Example 7.3 A lamp is connected in series with a capacitor. Predict

your observations for dc and ac connections. What happens in each

case if the capacitance of the capacitor is reduced?

Solution When a dc source is connected to a capacitor, the capacitor

gets charged and after charging no current flows in the circuit and

the lamp will not glow. There will be no change even if C is reduced.

7.3

With ac source, the capacitor offers capacitative reactance (1/ω C )

and the current flows in the circuit. Consequently, the lamp will shine.



Reducing C will increase reactance and the lamp will shine less brightly
XAMPLE

than before.

E

Example 7.4 A 15.0 μF capacitor is connected to a 220 V, 50 Hz source.

Find the capacitive reactance and the current (rms and peak) in the

circuit. If the frequency is doubled, what happens to the capacitive

reactance and the current?

Solution The capacitive reactance is

7.4

1

1

X

=

=

= 212 Ω

C

−6

2 π ν C

2π (50Hz)(15.0 × 10 F)

XAMPLE
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The rms current is

E
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0-1 The current i flows as shown and from the

1-2 The current i reverses its direction. The

maximum at 0, reaches a zero value at 1. The plate

accumulated charge is depleted i.e., the capacitor is

A is charged to positive polarity while negative charge

discharged during this quarter cycle.The voltage gets

q builds up in B reaching a maximum at 1 until the

reduced but is still positive. The current is negative.

current becomes zero. The voltage v = q/C is in phase

Their product, the power is negative.

c

with q and reaches maximum value at 1. Current

THE ENERGY ABSORBED DURING THE 1/4

and voltage are both positive. So p = v i is positive.

CYCLE 0-1 IS RETURNED DURING THIS QUARTER.

c



ENERGY IS ABSORBED FROM THE SOURCE

DURING THIS QUAR TER CYCLE AS THE

CAPACITOR IS CHARGED.

One complete cycle of voltage/current. Note that the current leads the
voltage.

2-3 As i continues to flow from A to B, the capacitor

3-4 The current i reverses its direction at 3 and flows

is charged to reversed polarity i.e., the plate B

from B to A. The accumulated charge is depleted

acquires positive and A acquires negative charge.

and the magnitude of the voltage v is reduced. v

c

c

Both the current and the voltage are negative. Their

becomes zero at 4 when the capacitor is fully

product p is positive. The capacitor ABSORBS

discharged. The power is negative.ENERGY

ENERGY during this 1/4 cycle.

ABSORBED DURING 2-3 IS RETURNED TO THE

SOURCE. NET ENERGY ABSORBED IS ZERO.
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FIGURE 7.10 Charging and discharging of a capacitor.

Physics

V

220 V

I =

=

= 1.04 A

X

212 Ω

C

The peak current is

i

= 2 I = (1.41)(1.04 A) = 1.47 A

m

7.4

This current oscillates between +1.47A and –1.47 A, and is ahead of

the voltage by π/2.

If the frequency is doubled, the capacitive reactance is halved and

XAMPLE

E



consequently, the current is doubled.

Example 7.5 A light bulb and an open coil inductor are connected to

an ac source through a key as shown in Fig. 7.11.

FIGURE 7.11

The switch is closed and after sometime, an iron rod is inserted into

the interior of the inductor. The glow of the light bulb (a) increases; (b)

decreases; (c) is unchanged, as the iron rod is inserted. Give your

answer with reasons.

Solution As the iron rod is inserted, the magnetic field inside the coil 7.5

magnetizes the iron increasing the magnetic field inside it. Hence,

the inductance of the coil increases. Consequently, the inductive

reactance of the coil increases. As a result, a larger fraction of the

XAMPLE

applied ac voltage appears across the inductor, leaving less voltage

E

across the bulb. Therefore, the glow of the light bulb decreases.

7.6 AC VOLTAGE APPLIED TO A SERIES LCR CIRCUIT

Figure 7.12 shows a series LCR circuit connected to an ac source ε. As

usual, we take the voltage of the source to be v = v sin ω t.

m



If q is the charge on the capacitor and i the

current, at time t, we have, from Kirchhoff’s loop

rule:

d i

q

L

+ i R +

= v

(7.20)

d t

C

We want to determine the instantaneous

current i and its phase relationship to the applied

alternating voltage v. We shall solve this problem

by two methods. First, we use the technique of

FIGURE 7.12 A series LCR circuit

phasors and in the second method, we solve

connected to an ac source.

Eq. (7.20) analytically to obtain the time–

244



dependence of i .
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7.6.1 Phasor-diagram solution

From the circuit shown in Fig. 7.12, we see that the resistor, inductor

and capacitor are in series. Therefore, the ac current in each element is

the same at any time, having the same amplitude and phase. Let it be

i = i sin(ω t+φ )

(7.21)

m

where φ is the phase difference between the voltage across the source and

the current in the circuit. On the basis of what we have learnt in the
previous sections, we shall construct a phasor diagram for the present case.

Let I be the phasor representing the current in the circuit as given by

Eq. (7.21). Further, let V , V , V , and V represent the voltage across the L

R

C

inductor, resistor, capacitor and the source, respectively. From previous

section, we know that V is parallel to I, V is π/2

R

C

behind I and V is π/2 ahead of I. V , V , V and I L



L

R

C

are shown in Fig. 7.13(a) with apppropriate phase—

relations.

The length of these phasors or the amplitude

of V , V and V are:

R

C

L

v

= i R, v

= i X , v

= i X

(7.22)

Rm

m

Cm

m

C Lm m



L

The voltage Equation (7.20) for the circuit can

be written as

v + v + v = v

(7.23)

L

R

C

The phasor relation whose vertical component

gives the above equation is

FIGURE 7.13 (a) Relation between the

phasors V , V , V , and I, (b) Relation

V + V + V = V

(7.24)

L

R

C

L

R

C



between the phasors V , V , and (V + V )

L

R

L

C

This relation is represented in Fig. 7.13(b). Since

for the circuit in Fig. 7.11.

V and V are always along the same line and in

C

L

opposite directions, they can be combined into a single phasor (V + V ) C

L

which has a magnitude ⏐ v – v ⏐. Since V is represented as the Cm

Lm

hypotenuse of a right-traingle whose sides are V and (V + V ), the R

C

L

pythagorean theorem gives:

v

= v



+ ( v

− v )2

2

2

m

Rm

Cm

Lm

Substituting the values of v

, v

, and v from Eq. (7.22) into the above

Rm

Cm

Lm

equation, we have

2

2

2

v

= ( i R) + ( i X − i X )



m

m

m

C

m

L

 

2

2

2

= i ⎡ R + ( X − X ) ⎤

m ⎣

C

L

⎦

vm

or, i

=

m

2



2

R + ( X −

[7.25(a)]

X )

C

L

By analogy to the resistance in a circuit, we introduce the impedance Z

in an ac circuit:

vm

i

=

m

[7.25(b)]

Z

where

2

2

=

+

−



(7.26)
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R

( X

X )

C

L
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Since phasor I is always parallel to phasor V , the phase angle φ

R

is the angle between V and V and can be determined from

R

Fig. 7.14:

v

− v

tan

Cm

Lm

φ =



vRm

Using Eq. (7.22), we have

X

X

tan

C

L

φ

−

=

(7.27)

R

Equations (7.26) and (7.27) are graphically shown in Fig. (7.14).

FIGURE 7.14 Impedance

This is called Impedance diagram which is a right-triangle with

diagram.

Z as its hypotenuse.

Equation 7.25(a) gives the amplitude of the current and Eq. (7.27)

gives the phase angle. With these, Eq. (7.21) is completely specified.

If X > X , φ is positive and the circuit is predominantly capacitive.



C

L

Consequently, the current in the circuit leads the source voltage. If

X < X , φ is negative and the circuit is predominantly inductive.

C

L

Consequently, the current in the circuit lags the source voltage.

Figure 7.15 shows the phasor diagram and variation of v and i with ω t for
the case X > X .

C

L

Thus, we have obtained the amplitude

and phase of current for an LCR series circuit

using the technique of phasors. But this

method of analysing ac circuits suffers from

certain disadvantages. First, the phasor

diagram say nothing about the initial

condition. One can take any arbitrary value

of t (say, t , as done throughout this chapter)

1

and draw different phasors which show the



relative angle between different phasors.

The solution so obtained is called the

steady-state solution. This is not a general

FIGURE 7.15 (a) Phasor diagram of V and I.

solution. Additionally, we do have a

(b) Graphs of v and i versus ω t for a series LCR

transient solution which exists even for

circuit where X > X .

C

L

v = 0. The general solution is the sum of the



transient solution and the steady-state

solution. After a sufficiently long time, the effects of the transient solution
die out and the behaviour of the circuit is described by the steady-state
solution.

7.6.2 Analytical solution

The voltage equation for the circuit is

d i

q

L

+ R i +

= v

d t

C

= v sin ω t

m

We know that i = d q/d t. Therefore, d i/d t = d2 q/d t 2. Thus, in terms of q,
246

the voltage equation becomes
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2

d q



d q

q

L

+ R

+

= v sin ω t

(7.28)

2

d t

d

m

t

C

This is like the equation for a forced, damped oscillator, [see Eq. {14.37(b)}

in Class XI Physics Textbook]. Let us assume a solution

q = q sin (ω t + θ )

[7.29(a)]

m

d q

so that



= q ω cos(ω t + θ)

[7.29(b)]

d

m

t

2

d q

and

2

= − q ω sin(ω t + θ)

[7.29(c)]

2

d

m

t

Substituting these values in Eq. (7.28), we get

q ω [ R cos(ω t + θ) + ( X − X )sin(ω t + θ ]) = v sin t ω

(7.30)

m

C



L

m

where we have used the relation X = 1/ω C, X = ω L. Multiplying and c

L

dividing Eq. (7.30) by Z = R + ( X − X )2

2

, we have

c

L

⎡ R

( X − X )

⎤

q ω Z

cos(ω t + θ)

C

L

+

sin(ω t + θ)



m

⎢

⎥ =

ω

⎣

v

t

(7.31)

Z

Z

⎦

sin

m

R

Now, let

= cosφ

Z

( X − X )

and

C



L

= sin φ

Z

− X

− X

1

so that φ = tan

C

L

(7.32)

R

Substituting this in Eq. (7.31) and simplifying, we get:

q ω Z cos(ω t + θ − φ) = v sin ω t

(7.33)

m

m

Comparing the two sides of this equation, we see that

v

= q ω Z = i Z

m



m

m

where

i

= q ω

m

m

[7.33(a)]

π

and θ

φ

π

− = − or θ = − + φ

[7.33(b)]

2

2

Therefore, the current in the circuit is

d q

i =

= q ω cos(ω t + θ)



d

m

t

= i cos(ω t + θ )

m

or i = i sin(ω t + φ )

(7.34)

m

v

v

where

m

m

i

=

=

m

[7.34(a)]

2

2



Z

R + ( X − X )

C

L

− X

− X

1

and φ = tan

C

L
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Thus, the analytical solution for the amplitude and phase of the current

in the circuit agrees with that obtained by the technique of phasors.

7.6.3 Resonance

An interesting characteristic of the series RLC circuit is the phenomenon of
resonance. The phenomenon of resonance is common among systems that
have a tendency to oscillate at a particular frequency. This frequency

is called the system’s natural frequency. If such a system is driven by an
energy source at a frequency that is near the natural frequency, the
amplitude of oscillation is found to be large. A familiar example of this



phenomenon is a child on a swing. The the swing has a natural frequency

for swinging back and forth like a pendulum. If the child pulls on the

rope at regular intervals and the frequency of the pulls is almost the

same as the frequency of swinging, the amplitude of the swinging will be

large (Chapter 14, Class XI).

For an RLC circuit driven with voltage of amplitude v and frequency m

ω, we found that the current amplitude is given by

v

v

m

m

i

=

=

m

2

2

Z

R + ( X − X )

C



L

with X = 1/ω C and X = ω L. So if ω is varied, then at a particular frequency
c L

ω

(

2

2

Z =

R + 0 = R )

, X = X , and the impedance is minimum

. This

0

c

L

frequency is called the resonant frequency:

1

X = X or

= ω L

c

L

0



ω C

0

1

or ω =

0

(7.35)

LC

At resonant frequency, the current amplitude is maximum; i = v /R.

m

m

Figure 7.16 shows the variation of i with ω in

m

a RLC series circuit with L = 1.00 mH, C =

1.00 nF for two values of R: (i) R = 100 Ω

and (ii) R = 200 Ω. For the source applied v =

m

⎛ 1 ⎞

100 V. ω for this case is ⎜

⎟

0



⎝ LC ⎠ = 1.00×106

rad/s.

We see that the current amplitude is maximum

at the resonant frequency. Since i = v / R at

m

m

resonance, the current amplitude for case (i) is

twice to that for case (ii).

Resonant circuits have a variety of

FIGURE 7.16 Variation of i with ω for two

m

applications, for example, in the tuning

cases: (i) R = 100 Ω , (ii) R = 200 Ω ,

L = 1.00 mH.

mechanism of a radio or a TV set. The antenna of

a radio accepts signals from many broadcasting

stations. The signals picked up in the antenna acts as a source in the
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But to hear one particular radio station, we tune the radio. In tuning, we

vary the capacitance of a capacitor in the tuning circuit such that the

resonant frequency of the circuit becomes nearly equal to the frequency

of the radio signal received. When this happens, the amplitude of the

current with the frequency of the signal of the particular radio station in

the circuit is maximum.

It is important to note that resonance phenomenon is exhibited by a

circuit only if both L and C are present in the circuit. Only then do the

voltages across L and C cancel each other (both being out of phase)

and the current amplitude is v /R, the total source voltage appearing

m

across R. This means that we cannot have resonance in a RL or RC

circuit.

Sharpness of resonance

The amplitude of the current in the series LCR circuit is given by

vm

i

=

m



2

⎛

⎞

2

1

R + ω L −

⎜

ω ⎟

⎝

C ⎠

and is maximum when ω = ω = 1/ L C. The maximum value is

0

max

i

= v / R .

m

m

For values of ω other than ω , the amplitude of the current is less

0

than the maximum value. Suppose we choose a value of ω for which the



current amplitude is 1/ 2 times its maximum value. At this value, the

power dissipated by the circuit becomes half. From the curve in

Fig. (7.16), we see that there are two such values of ω, say, ω and ω , one

1

2

greater and the other smaller than ω and symmetrical about ω . We may

0

0

write

ω = ω + Δω

1

0

ω = ω – Δω

2

0

The difference ω – ω = 2Δω is often called the bandwidth of the circuit.

1

2

The quantity (ω / 2Δω) is regarded as a measure of the sharpness of

0



resonance. The smaller the Δω, the sharper or narrower is the resonance.

To get an expression for Δω, we note that the current amplitude i is

m

(

) max

1/ 2 i

for ω = ω + Δω. Therefore,

m

1

0

v

at ω ,

m

i

=

1

m

2

⎛

⎞



2

1

R + ω L −

⎜ 1

ω

⎟

⎝

C ⎠

1

max

i

v

 

m

m

=

=
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2

⎛

1 ⎞

2

or

R + ω L −

= R 2

⎜ 1

ω

⎟

⎝

C ⎠

1

2

⎛

⎞

2

1

2



or

R + ω L −

= 2 R

⎜ 1

ω

⎟

⎝

C ⎠

1

1

ω L −

= R

1

ω C

1

which may be written as,

1

(ω + ω

Δ ) L −

= R



0

(ω + ω

Δ ) C

0

⎛

Δω ⎞

1

ω L 1 +

−

= R

0

⎜⎝

ω ⎟⎠

⎛

ω

Δ ⎞

0

ω C 1 +

0

⎜



ω ⎟

⎝

⎠

0

1

Using 2

ω =

in the second term on the left hand side, we get

0

L C

⎛

ω

Δ ⎞

ω L

0

ω L 1 +

−

= R

0

⎜⎝



ω ⎟⎠ ⎛

Δω ⎞

0

1 +

⎜

ω ⎟

⎝

⎠

0

1

ω −

⎛

Δ ⎞

⎛

ω

Δ ⎞

Δω

We can approximate 1 +

⎜

1 −



ω ⎟

⎝

⎠ as ⎜

ω ⎟

⎝

⎠ since ω <<1. Therefore,

0

0

0

⎛

ω

Δ ⎞

⎛

Δω ⎞

ω L 1 +

− ω L 1 −

= R

0

⎜

⎟



0

ω

⎜

ω ⎟

⎝

⎠

⎝

⎠

0

0

2 ω

Δ

or

ω L

= R

0

ω0

R

ω

Δ =



[7.36(a)]

2 L

The sharpness of resonance is given by,

ω

ω L

0

0

=

[7.36(b)]

2Δω

R

ω L

The ratio 0

is also called the quality factor, Q of the circuit.

R

ω L

0

Q =

[7.36(c)]

R



ω
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From Eqs. [7.36 (b)] and [7.36 (c)], we see that

0

2 ω

Δ =

. So, larger the

Q

Alternating Current

value of Q, the smaller is the value of 2Δω or the bandwidth and sharper is
the resonance. Using 2

ω = 1/ L C , Eq. [7.36(c)] can be equivalently

0

expressed as Q = 1/ω CR.

0

We see from Fig. 7.15, that if the resonance is less sharp, not only is

the maximum current less, the circuit is close to resonance for a larger

range Δω of frequencies and the tuning of the circuit will not be good. So,

less sharp the resonance, less is the selectivity of the circuit or vice versa.

From Eq. (7.36), we see that if quality factor is large, i.e., R is low or L is
large, the circuit is more selective.



Example 7.6 A resistor of 200 Ω and a capacitor of 15.0 μF are

connected in series to a 220 V, 50 Hz ac source. (a) Calculate the

current in the circuit; (b) Calculate the voltage (rms) across the

resistor and the capacitor. Is the algebraic sum of these voltages

more than the source voltage? If yes, resolve the paradox.

Solution

Given

R

C

−

=

Ω

=

F

6

200 ,

15.0 μ = 15.0 × 10 F

V = 220 V, ν = 50 Hz

(a)

In order to calculate the current, we need the impedance of the



circuit. It is

2

2

2

2

Z

R

X

R

(2π ν C)−

=

+

=

+

C

 

2

6

− F 2

(200 )



(2

3.14

50 10

)−

=

Ω +

×

×

×

2

2

= (200 Ω) + (212 Ω)

= 291.5 Ω

Therefore, the current in the circuit is

V

220 V

I =

=

= 0.755 A

Z



291.5 Ω

(b)

Since the current is the same throughout the circuit, we have

V = I R = (0.755 A)(200 Ω) = 151 V

R

V = I X

= (0.755 A)(212.3 Ω) = 160.3 V

C

C

The algebraic sum of the two voltages, V and V is 311.3 V which is R

C

more than the source voltage of 220 V. How to resolve this paradox?

As you have learnt in the text, the two voltages are not in the same

phase. Therefore, they cannot be added like ordinary numbers. The two
voltages are out of phase by ninety degrees. Therefore, the total of these
voltages must be obtained using the Pythagorean theorem:

E

2

2

XAMPLE

V



= V + V

R + C

R

C

= 220 V

Thus, if the phase difference between two voltages is properly taken

7.6

into account, the total voltage across the resistor and the capacitor is

equal to the voltage of the source.
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7.7 POWER IN AC CIRCUIT: THE POWER FACTOR

We have seen that a voltage v = v sinω t applied to a series RLC circuit m

drives a current in the circuit given by i = i sin(ω t + φ) where m

v

− ⎛ X

− X ⎞

m

i

=



and

1

φ = tan

C

L

m

⎜

⎟

Z

⎝

R

⎠

Therefore, the instantaneous power p supplied by the source is

p = v i = ( v sin ω t ) × [ i sin(ω t + φ ]) m

m

v i

m m

=

[cosφ − cos(2ω t + φ ])

(7.37)



2

The average power over a cycle is given by the average of the two terms in

R.H.S. of Eq. (7.37). It is only the second term which is time-dependent.

Its average is zero (the positive half of the cosine cancels the negative

half). Therefore,

v i

v

i

m m

P =

cos φ

m

m

=

cos φ

2

2

2

= V I cosφ

[7.38(a)]



This can also be written as,

2

P = I Z cos φ

[7.38(b)]

So, the average power dissipated depends not only on the voltage and

current but also on the cosine of the phase angle φ between them. The

quantity cosφ is called the power factor. Let us discuss the following

cases:

Case (i) Resistive circuit: If the circuit contains only pure R, it is called
resistive. In that case φ = 0, cos φ = 1. There is maximum power
dissipation.

Case (ii) Purely inductive or capacitive circuit: If the circuit contains only
an inductor or capacitor, we know that the phase difference between voltage
and current is π/2. Therefore, cos φ = 0, and no power is dissipated

even though a current is flowing in the circuit. This current is sometimes

referred to as wattless current.

Case (iii) LCR series circuit: In an LCR series circuit, power dissipated is
given by Eq. (7.38) where φ = tan–1 ( X – X )/ R. So, φ may be nonzero in c
L

a RL or RC or RCL circuit. Even in such cases, power is dissipated only in
the resistor.

Case (iv) Power dissipated at resonance in LCR circuit: At resonance X – X
= 0, and φ = 0. Therefore, cosφ = 1 and P = I 2Z = I 2 R. That is, c L

maximum power is dissipated in a circuit (through R) at resonance.



7.7

Example7.7 (a) For circuits used for transporting electric power, a

low power factor implies large power loss in transmission. Explain.

(b) Power factor can often be improved by the use of a capacitor of

XAMPLE

appropriate capacitance in the circuit. Explain.
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Solution (a) We know that P = I V cosφ where cosφ is the power factor.

To supply a given power at a given voltage, if cosφ is small, we have to

increase current accordingly. But this will lead to large power loss

( I 2 R) in transmission.

(b)Suppose in a circuit, current I lags the voltage by an angle φ. Then power
factor cosφ = R/Z.

We can improve the power factor (tending to 1) by making Z tend to R.

Let us understand, with the help of a phasor diagram (Fig. 7.17) how

this can be achieved. Let us resolve I into two components. I along p

FIGURE 7.17

the applied voltage V and I perpendicular to the applied voltage. I q

q



as you have learnt in Section 7.7, is called the wattless component

since corresponding to this component of current, there is no power

loss. I is known as the power component because it is in phase with

P

the voltage and corresponds to power loss in the circuit.

E

It’s clear from this analysis that if we want to improve power factor,

XAMPLE

we must completely neutralize the lagging wattless current I by an

q

equal leading wattless current I′ . This can be done by connecting a

q

7.7

capacitor of appropriate value in parallel so that I and I′ cancel q

q

each other and P is effectively I V.

p

Example 7.8 A sinusoidal voltage of peak value 283 V and frequency

50 Hz is applied to a series LCR circuit in which

R = 3 Ω, L = 25.48 mH, and C = 796 μF. Find (a) the impedance of the



circuit; (b) the phase difference between the voltage across the source

and the current; (c) the power dissipated in the circuit; and (d) the

power factor.

Solution

E

(a) To find the impedance of the circuit, we first calculate X and X .

XAMPLE

L

C

X = 2 πν L

L

= 2 × 3.14 × 50 × 25.48 × 10–3 Ω = 8 Ω

7.8

1

X

=

C

2 π ν C
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1

=

= 4Ω

6

2 × 3.14 × 50 × 796 × 10−

Therefore,

2

2

2

2

Z =

R + ( X − X ) =

3 + (8 − 4)

L

C

= 5 Ω

X

− X

(b) Phase difference, φ = tan–1 C

L



R

− ⎛ 4 − 8⎞

1

= tan ⎜

⎟ = 5

− 3.1°

⎝ 3 ⎠

Since φ is negative, the current in the circuit lags the voltage

across the source.

(c) The power dissipated in the circuit is

2

P = I R

i

1 ⎛ 283⎞

m

7.8

Now, I =

=

⎜

⎟ = 40A



2

2 ⎝ 5 ⎠

Therefore, P =

A 2

(40 ) × 3 Ω = 4800 W

XAMPLE

(d) Power factor = cos φ = cos 53.1° = 0.6

E

Example 7.9 Suppose the frequency of the source in the previous

example can be varied. (a) What is the frequency of the source at

which resonance occurs? (b) Calculate the impedance, the current,

and the power dissipated at the resonant condition.

Solution

(a) The frequency at which the resonance occurs is

1

1

ω =

=

0

−3



6

LC

25.48 × 10

× 796 ×10−

= 222.1rad/s

ω

221.1

0

ν =

=

Hz = 35.4Hz

r

2π

2 × 3.14

(b) The impedance Z at resonant condition is equal to the resistance:

Z = R = 3 Ω

The rms current at resonance is

V

V



⎛ 283⎞ 1

=

=

=

= 66.7A

⎜

⎟

Z

R

⎝ 2 ⎠ 3

The power dissipated at resonance is

7.9

2

2

P = I × R = (66.7) × 3 = 13.35 kW

You can see that in the present case, power dissipated

XAMPLE

at resonance is more than the power dissipated in Example 7.8.
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Example 7.10 At an airport, a person is made to walk through the

doorway of a metal detector, for security reasons. If she/he is carrying

anything made of metal, the metal detector emits a sound. On what

principle does this detector work?

Solution The metal detector works on the principle of resonance in

ac circuits. When you walk through a metal detector, you are,

E

in fact, walking through a coil of many turns. The coil is connected to

XAMPLE

a capacitor tuned so that the circuit is in resonance. When

you walk through with metal in your pocket, the impedance of the

7.10

circuit changes – resulting in significant change in current in the

circuit. This change in current is detected and the electronic circuitry

causes a sound to be emitted as an alarm.

7.8 LC OSCILLATIONS

We know that a capacitor and an inductor can store electrical and

magnetic energy, respectively. When a capacitor (initially charged) is

connected to an inductor, the charge on the capacitor and



the current in the circuit exhibit the phenomenon of

electrical oscillations similar to oscillations in mechanical

systems (Chapter 14, Class XI).

Let a capacitor be charged q (at t = 0) and connected

m

to an inductor as shown in Fig. 7.18.

The moment the circuit is completed, the charge on

the capacitor starts decreasing, giving rise to current in

the circuit. Let q and i be the charge and current in the

circuit at time t. Since d i/d t is positive, the induced emf in L will have
polarity as shown, i.e., v < v . According to b a

Kirchhoff’s loop rule,

q

d i

−

FIGURE 7.18 At the

L

= 0

(7.39)

C

d t



instant shown, the current

is increasing so the

i = – (d q/d t ) in the present case (as q decreases, i increases).

polarity of induced emf in

Therefore, Eq. (7.39) becomes:

the inductor is as shown.

2

d q

1

+

q = 0

(7.40)

2

d t

LC

2

d x

This equation has the form

2

+ ω x = 0 for a simple harmonic



2

0

d t

oscillator. The charge, therefore, oscillates with a natural frequency

1

ω =

0

(7.41)

LC

and varies sinusoidally with time as

q = q cos ω t + φ

(7.42)

m

( 0

)

where q is the maximum value of q and φ is a phase constant. Since m

q = q at t = 0, we have cos φ =1 or φ = 0. Therefore, in the present case, 255

m

Physics

q = q cos(ω t )



(7.43)

m

0

⎛

d q ⎞

The current i ⎜ = −

⎟

⎝

d t ⎠ is given by

i = i sin(ω t )

(7.44)

m

0

where i

= ω q

m

0 m

Let us now try to visualise how this oscillation takes place in the

circuit.

Figure 7.19(a) shows a capacitor with initial charge q connected to



m

an ideal inductor. The electrical energy stored in the charged capacitor is

2

1 qm

U

=

E

. Since, there is no current in the circuit, energy in the inductor

2 C

is zero. Thus, the total energy of LC circuit is,

2

1 qm

U = U

=

E

2 C

FIGURE 7.19 The oscillations in an LC circuit are analogous to the
oscillation of a block at the end of a spring. The figure depicts one-half of a
cycle.

At t = 0, the switch is closed and the capacitor starts to discharge

[Fig. 7.19(b)]. As the current increases, it sets up a magnetic field in the



inductor and thereby, some energy gets stored in the inductor in the

form of magnetic energy: U = (1/2) Li 2. As the current reaches its B

maximum value i , (at t = T/4) as in Fig. 7.19(c), all the energy is stored m

in the magnetic field: U = (1/2) Li 2 . You can easily check that the B

m

maximum electrical energy equals the maximum magnetic energy. The

capacitor now has no charge and hence no energy. The current now

starts charging the capacitor, as in Fig. 7.19(d). This process continues

till the capacitor is fully charged (at t = T/2) [Fig. 7.19(e)]. But it is charged
with a polarity opposite to its initial state in Fig. 7.19(a). The whole process
just described will now repeat itself till the system reverts to its original
state. Thus, the energy in the system oscillates between the capacitor
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and the inductor.
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The LC oscillation is similar to the mechanical oscillation of a block
attached to a spring. The lower part of each figure in Fig. 7.19 depicts the
corresponding stage of a mechanical system (a block attached to a

spring). As noted earlier, for a block of a mass m oscillating with frequency
ω , the equation is

0

2

d x



2

+ ω x = 0

2

0

d t

Here, ω = k / m , and k is the spring constant. So, x corresponds to q.

0

In case of a mechanical system F = ma = m (d v/d t) = m (d2 x/d t 2). For an
electrical system, ε = – L (d i/d t ) = –L (d2 q/d t 2). Comparing these two
equations, we see that L is analogous to mass m: L is a measure of
resistance to change in current. In case of LC circuit, ω = 1/ LC

0

and

for mass on a spring, ω = k / m . So, 1/ C is analogous to k. The constant 0

k (= F/x) tells us the (external) force required to produce a unit
displacement whereas 1/ C (= V/q ) tells us the potential difference required
to store a unit charge. Table 7.1 gives the analogy between mechanical and
electrical quantities.

TABLE 7.1 ANALOGIES BETWEEN MECHANICAL AND

ELECTRICAL QUANTITIES

Mechanical system

Slectrical system

Mass m



Inductance L

Force constant k

Reciprocal capacitance

1/ C

Displacement x

Charge q

Velocity v = d x/d t

Current i = d q/d t

Mechanical energy

Electromagnetic energy

1

2

2

1

2

1 q

1

E =

k x +

m v



2

U =

+ L i

2

2

2 C

2

Note that the above discussion of LC oscillations is not realistic for two

reasons:

(i) Every inductor has some resistance. The effect of this resistance is to

introduce a damping effect on the charge and current in the circuit

and the oscillations finally die away.

(ii) Even if the resistance were zero, the total energy of the system would

not remain constant. It is radiated away from the system in the form

of electromagnetic waves (discussed in the next chapter). In fact, radio
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and TV transmitters depend on this radiation.

Physics

TWO DIFFERENT PHENOMENA, SAME MATHEMATICAL
TREATMENT



You may like to compare the treatment of a forced damped oscillator
discussed in Section 14.10 of Class XI physics textbook, with that of an
LCR circuit when an ac voltage is applied in it. We have already remarked
that Eq. [14.37(b)] of Class XI Textbook is exactly similar to Eq. (7.28)
here, although they use different symbols and parameters. Let us therefore
list the equivalence between different quantities in the two situations:
Forced oscillations Driven LCR circuit

2

2

d x

dx

d q

d q

q

m

+ b

+

kx = F cos ω t

+

+

=

ω

d



L

R

v sin

t

2

dt

2

m

dt

d t

d t

C

Displacement, x

Charge on capacitor, q

Time, t

Time, t

Mass, m

Self inductance, L

Damping constant, b

Resistance, R



Spring constant, k

Inverse capacitance, 1/ C

Driving frequency, ω

Driving frequency, ω

d

Natural frequency of oscillations, ω

Natural frequency of LCR circuit, ω0

Amplitude of forced oscillations, A

Maximum charge stored, qm

Amplitude of driving force, F

Amplitude of applied voltage, v

0

m

You must note that since x corresponds to q, the amplitude A (maximum
displacement) will correspond to the maximum charge stored, q . Equation
[14.39 (a)] of Class XI gives m the amplitude of oscillations in terms of
other parameters, which we reproduce here for convenience:

F 0

A = { m ω −ω +ω b }1/2

2

2



2 2

2

2

(

)

d

d

Replace each parameter in the above equation by the corresponding
electrical

quantity, and see what happens. Eliminate L, C, ω , and ω , using X = ω L, X
= 1/ω C, and 0

L

C

ω2 = 1/ LC. When you use Eqs. (7.33) and (7.34), you will see that there is
a 0

perfect match.

You will come across numerous such situations in physics where diverse
physical phenomena are represented by the same mathematical equation. If
you have dealt with one of them, and you come across another situation,
you may simply replace the corresponding quantities and interpret the result
in the new context. We suggest that you may try to find more such parallel
situations from different areas of physics. One must, of course, be aware of
the differences too.
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Example 7.11 Show that in the free oscillations of an LC circuit, the sum of
energies stored in the capacitor and the inductor is constant in time.

Solution Let q be the initial charge on a capacitor. Let the charged 0

capacitor be connected to an inductor of inductance L. As you have

studied in Section 7.8, this LC circuit will sustain an oscillation with

frquency

⎛

⎞

ω

1

= 2π ν =

⎜

⎟

⎝

LC ⎠

At an instant t, charge q on the capacitor and the current i are given by:

q ( t) = q cos ω t

0

i ( t) = – q ω sin ω t



0

Energy stored in the capacitor at time t is

2

2

1

1 q

q

2

0

2

U

=

C V

=

=

cos ( t

ω )

E

2

2 C



2 C

Energy stored in the inductor at time t is

1

2

U

=

L i

M

2

1

2

2

2

=

L q ω sin ( t

ω )

0

2

2

q 0



2

=

sin (ω t)

( 2

ω

∵

=1/ LC )

2 C

Sum of energies

2

q 0

2

2

U + U

=

⎡cos ω t + sin

t

ω ⎤

E



M

⎣

⎦

2 C

E

XAMPLE

2

q 0

= 2 C

7.11

This sum is constant in time as q and C, both are time-independent.

o

Note that it is equal to the initial energy of the capacitor. Why it is

so? Think!

7.9 TRANSFORMERS

For many purposes, it is necessary to change (or transform) an alternating

voltage from one to another of greater or smaller value. This is done with

a device called transformer using the principle of mutual induction.

A transformer consists of two sets of coils, insulated from each other.

They are wound on a soft-iron core, either one on top of the other as in



Fig. 7.20(a) or on separate limbs of the core as in Fig. 7.20(b). One of the

coils called the primary coil has N turns. The other coil is called the p

secondary coil; it has N turns. Often the primary coil is the input coil s

and the secondary coil is the output coil of the transformer.
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FIGURE 7.20 Two arrangements for winding of primary and secondary
coil in a transformer: (a) two coils on top of each other, (b) two coils on
separate limbs of the core.

When an alternating voltage is applied to the primary, the resulting

current produces an alternating magnetic flux which links the secondary

and induces an emf in it. The value of this emf depends on the number of

turns in the secondary. We consider an ideal transformer in which the

primary has negligible resistance and all the flux in the core links both

primary and secondary windings. Let φ be the flux in each turn in the

core at time t due to current in the primary when a voltage v is applied p

to it.

Then the induced emf or voltage ε , in the secondary with N turns is

s

s

dφ



ε = − N

s

s

(7.45)

d t

The alternating flux φ also induces an emf, called back emf in the

primary. This is

dφ

ε = − N

p

p

(7.46)

d t

But ε = v . If this were not so, the primary current would be infinite p

p

since the primary has zero resistance(as assumed). If the secondary is

an open circuit or the current taken from it is small, then to a good

approximation

ε = v

s



s

where v is the voltage across the secondary. Therefore, Eqs. (7.45) and s

(7.46) can be written as

dφ

v = − N

s

s

d t

[7.45(a)]

dφ

v = − N

p

p

[7.46(a)]

d t

From Eqs. [7.45 (a)] and [7.45 (a)], we have

v

N

s



s

=
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v

N

(7.47)

p

p
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Note that the above relation has been obtained using three

assumptions: (i) the primary resistance and current are small; (ii) the

same flux links both the primary and the secondary as very little flux

escapes from the core, and (iii) the secondary current is small.

If the transformer is assumed to be 100% efficient (no energy losses),

the power input is equal to the power output, and since p = i v, i v = i v

(7.48)

p p

s s

Although some energy is always lost, this is a good approximation,

since a well designed transformer may have an efficiency of more than



95%. Combining Eqs. (7.47) and (7.48), we have

i p

v

N

s

s

=

=

i

v

N

(7.49)

s

p

p

Since i and v both oscillate with the same frequency as the ac source, Eq.
(7.49) also gives the ratio of the amplitudes or rms values of corresponding
quantities.

Now, we can see how a transformer affects the voltage and current.

We have:

⎛ N ⎞



⎛ N ⎞

s

V =

V

p

I =

I

s

⎜

⎟ p

⎝

⎜

⎟

N ⎠

and s

p

⎝ N ⎠

(7.50)

p

s



That is, if the secondary coil has a greater number of turns than the

primary ( N > N ), the voltage is stepped up( V > V ). This type of s p

s

p

arrangement is called a step-up transformer. However, in this arrangement,
there is less current in the secondary than in the primary ( N / N < 1 and I p
s

s

< I ). For example, if the primary coil of a transformer has 100 turns and p

the secondary has 200 turns, N / N = 2 and N / N =1/2. Thus, a 220V

s

p

p

s

input at 10A will step-up to 440 V output at 5.0 A.

If the secondary coil has less turns than the primary( N < N ), we have s

p

a step-down transformer. In this case, V < V and I > I . That is, the s p

s

p

voltage is stepped down, or reduced, and the current is increased.



The equations obtained above apply to ideal transformers (without

any energy losses). But in actual transformers, small energy losses do

occur due to the following reasons:

(i) Flux Leakage: There is always some flux leakage; that is, not all of the
flux due to primary passes through the secondary due to poor design of the
core or the air gaps in the core. It can be reduced by

winding the primary and secondary coils one over the other.

(ii) Resistance of the windings: The wire used for the windings has some
resistance and so, energy is lost due to heat produced in the wire ( I 2 R). In
high current, low voltage windings, these are minimised by using thick
wire.

(iii) Eddy currents: The alternating magnetic flux induces eddy currents in
the iron core and causes heating. The effect is reduced by having a
laminated core.

(iv) Hysteresis: The magnetisation of the core is repeatedly reversed by the
alternating magnetic field. The resulting expenditure of energy in the core
appears as heat and is kept to a minimum by using a magnetic
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The large scale transmission and distribution of electrical energy over

long distances is done with the use of transformers. The voltage output

of the generator is stepped-up (so that current is reduced and

consequently, the I 2 R loss is cut down). It is then transmitted over long
distances to an area substation near the consumers. There the voltage is



stepped down. It is further stepped down at distributing substations

and utility poles before a power supply of 240 V reaches our homes.

SUMMARY

1.

An alternating voltage v = v sin ω t applied to a resistor R drives a m vm

current i = i sinω t in the resistor, i

=

. The current is in phase with

m

m

R

the applied voltage.

2.

For an alternating current i = i sinω t passing through a resistor R, the m
average power loss P (averaged over a cycle) due to joule heating is

( 1/2 ) i 2 R. To express it in the same form as the dc power ( P = I 2 R), a m
special value of current is used. It is called root mean square (rms)

current and is donoted by I:

im

I =

= 0.707 im



2

Similarly, the rms voltage is defined by

vm

V =

= 0.707 vm

2

We have P = IV = I 2 R

3.

An ac voltage v = v sinω t applied to a pure inductor L, drives a current m in
the inductor i = i sin (ω t – π/2), where i = v / X . X = ω L is called m m

m

L

L

inductive reactance. The current in the inductor lags the voltage by

π/2. The average power supplied to an inductor over one complete cycle

is zero.

4.

An ac voltage v = v sinω t applied to a capacitor drives a current in the m

capacitor: i = i sin (ω t + π/2). Here,

m

v



1

m

i

=

, X

=

m

C

X

C

ω is called capacitive reactance.

C

The current through the capacitor is π/2 ahead of the applied voltage.

As in the case of inductor, the average power supplied to a capacitor

over one complete cycle is zero.

5.

For a series RLC circuit driven by voltage v = v sinω t, the current is m

given by i = i sin (ω t + φ)

m

v



where

m

i

=

m

R + ( X − X

C

L )2

2

− X

− X

and

1

φ = tan

C

L

R

Z =

R + ( X − X )2

2



is called the impedance of the circuit.

C

L
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The average power loss over a complete cycle is given by

P = V I cosφ

The term cosφ is called the power factor.

6.

In a purely inductive or capacitive circuit, cosφ = 0 and no power is

dissipated even though a current is flowing in the circuit. In such cases,

current is referred to as a wattless current.

7.

The phase relationship between current and voltage in an ac circuit

can be shown conveniently by representing voltage and current by

rotating vectors called phasors. A phasor is a vector which rotates

about the origin with angular speed ω. The magnitude of a phasor

represents the amplitude or peak value of the quantity (voltage or

current) represented by the phasor.

The analysis of an ac circuit is facilitated by the use of a phasor



diagram.

8.

An interesting characteristic of a series RLC circuit is the

phenomenon of resonance. The circuit exhibits resonance, i.e.,

the amplitude of the current is maximum at the resonant

1

frequency, ω =

. The quality factor Q defined by

0

LC

ω L

1

0

Q =

=

is an indicator of the sharpness of the resonance,

R

ω CR

0

the higher value of Q indicating sharper peak in the current.



9.

A circuit containing an inductor L and a capacitor C (initially charged) with
no ac source and no resistors exhibits free oscillations. The charge q of the
capacitor satisfies the equation of simple harmonic motion: 2

d q

1

+

q = 0

2

dt

LC

1

and therefore, the frequency ω of free oscillation is ω =

0

. The

LC

energy in the system oscillates between the capacitor and the

inductor but their sum or the total energy is constant in time.

10. A transformer consists of an iron core on which are bound a

primary coil of N turns and a secondary coil of N turns. If the p

s



primary coil is connected to an ac source, the primary and

secondary voltages are related by

⎛ N ⎞

s

V =

V

s

⎜

⎟ p

⎝ N ⎠

p

and the currents are related by

⎛ N ⎞

p

I =

I

s

p

⎜

⎟



⎝ N ⎠

s

If the secondary coil has a greater number of turns than the primary, the

voltage is stepped-up ( V > V ). This type of arrangement is called a steps

p

up transformer. If the secondary coil has turns less than the primary, we
have a step-down transformer.
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Physical quantity

Symbol

Dimensions

Unit

Remarks

v

rms voltage

V

[M L2 T–3 A–1]

V

V =

m



,

v is the

2

m

amplitude of the ac voltage.

i

rms current

I

[ A]

A

I = m , i is the amplitude of

2

m

the ac current.

Reactance:

Inductive

X

[M L2 T –3 A–2]

Ω

X = ω L



L

L

Capacitive

X

[M L2 T –3 A–2]

Ω

X = 1/ ω C

C

C

Impedance

Z

[M L2 T –3 A–2]

Ω

Depends on elements

present in the circuit.

1

Resonant

ω or ω

[T –1]

Hz



ω =

for a

r

0

0

LC

frequency

series RLC circuit

ω L

1

Quality factor

Q

Dimensionless

0

Q =

=

for a series

R

ω C R

0



RLC circuit.

Power factor

Dimensionless

= cosφ, φ is the phase

difference between voltage

applied and current in

the circuit.

POINTS TO PONDER

1.

When a value is given for ac voltage or current, it is ordinarily the rms

value. The voltage across the terminals of an outlet in your room is

normally 240 V. This refers to the rms value of the voltage. The amplitude
of this voltage is

v

= 2 V = 2(240) = 340 V

m

2.

The power rating of an element used in ac circuits refers to its average

power rating.

3.

The power consumed in an circuit is never negative.



4.

Both alternating current and direct current are measured in amperes.

But how is the ampere defined for an alternating current? It cannot be

derived from the mutual attraction of two parallel wires carrying ac
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currents, as the dc ampere is derived. An ac current changes direction

Alternating Current

with the source frequency and the attractive force would average to

zero. Thus, the ac ampere must be defined in terms of some property

that is independent of the direction of the current. Joule heating

is such a property, and there is one ampere of rms value of

alternating current in a circuit if the current produces the same

average heating effect as one ampere of dc current would produce

under the same conditions.

5.

In an ac circuit, while adding voltages across different elements, one

should take care of their phases properly. For example, if V and V

R

C

are voltages across R and C, respectively in an RC circuit, then the total
voltage across RC combination is 2



2

V

= V + V and not

RC

R

C

V + V since V is π/2 out of phase of V .

R

C

C

R

6.

Though in a phasor diagram, voltage and current are represented by

vectors, these quantities are not really vectors themselves. They are

scalar quantities. It so happens that the amplitudes and phases of

harmonically varying scalars combine mathematically in the same

way as do the projections of rotating vectors of corresponding

magnitudes and directions. The ‘rotating vectors’ that represent

harmonically varying scalar quantities are introduced only to provide

us with a simple way of adding these quantities using a rule that



we already know as the law of vector addition.

7.

There are no power losses associated with pure capacitances and pure

inductances in an ac circuit. The only element that dissipates energy

in an ac circuit is the resistive element.

8.

In a RLC circuit, resonance phenomenon occur when X = X or

L

C

1

ω =

. For resonance to occur, the presence of both L and C

0

LC

elements in the circuit is a must. With only one of these ( L or C ) elements,
there is no possibility of voltage cancellation and hence, no resonance is
possible.

9.

The power factor in a RLC circuit is a measure of how close the

circuit is to expending the maximum power.

10. In generators and motors, the roles of input and output are



reversed. In a motor, electric energy is the input and mechanical

energy is the output. In a generator, mechanical energy is the

input and electric energy is the output. Both devices simply

transform energy from one form to another.

11. A transformer (step-up) changes a low-voltage into a high-voltage.

This does not violate the law of conservation of energy. The

current is reduced by the same proportion.

12. The choice of whether the description of an oscillatory motion is

by means of sines or cosines or by their linear combinations is

unimportant, since changing the zero-time position transforms

the one to the other.
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EXERCISES

7.1

A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.

(a) What is the rms value of current in the circuit?

(b) What is the net power consumed over a full cycle?

7.2

(a) The peak voltage of an ac supply is 300 V. What is the rms voltage?



(b) The rms value of current in an ac circuit is 10 A. What is the

peak current?

7.3

A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine

the rms value of the current in the circuit.

7.4

A 60 μF capacitor is connected to a 110 V, 60 Hz ac supply. Determine

the rms value of the current in the circuit.

7.5

In Exercises 7.3 and 7.4, what is the net power absorbed by each

circuit over a complete cycle. Explain your answer.

7.6

Obtain the resonant frequency ω of a series LCR circuit with r

L = 2.0H, C = 32 μF and R = 10 Ω. What is the Q-value of this circuit?

7.7

A charged 30 μF capacitor is connected to a 27 mH inductor. What is

the angular frequency of free oscillations of the circuit?

7.8

Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC.

What is the total energy stored in the circuit initially ? What is the



total energy at later time?

7.9

A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 μF is connected
to a variable-frequency 200 V ac supply. When the frequency of the supply
equals the natural frequency of the circuit, what is the average

power transferred to the circuit in one complete cycle?

7.10

A radio can tune over the frequency range of a portion of MW

broadcast band: (800 kHz to 1200 kHz). If its LC circuit has an effective
inductance of 200 μH, what must be the range of its variable capacitor ?

[ Hint: For tuning, the natural frequency i.e., the frequency of free

oscillations of the LC circuit should be equal to the frequency of the
radiowave.]

7.11

Figure 7.21 shows a series LCR circuit connected to a variable

frequency 230 V source. L = 5.0 H, C = 80μF, R = 40 Ω.

FIGURE 7.21

(a) Determine the source frequency which drives the circuit in

resonance.

(b) Obtain the impedance of the circuit and the amplitude of current

at the resonating frequency.

(c) Determine the rms potential drops across the three elements of



the circuit. Show that the potential drop across the LC
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combination is zero at the resonating frequency.
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ADDITIONAL EXERCISES

7.12

An LC circuit contains a 20 mH inductor and a 50 μF capacitor with

an initial charge of 10 mC. The resistance of the circuit is negligible.

Let the instant the circuit is closed be t = 0.

(a) What is the total energy stored initially? Is it conserved during

LC oscillations?

(b) What is the natural frequency of the circuit?

(c) At what time is the energy stored

(i) completely electrical (i.e., stored in the capacitor)? (ii) completely

magnetic (i.e., stored in the inductor)?

(d) At what times is the total energy shared equally between the

inductor and the capacitor?

(e) If a resistor is inserted in the circuit, how much energy is

eventually dissipated as heat?

7.13



A coil of inductance 0.50 H and resistance 100 Ω is connected to a

240 V, 50 Hz ac supply.

(a) What is the maximum current in the coil?

(b) What is the time lag between the voltage maximum and the

current maximum?

7.14

Obtain the answers (a) to (b) in Exercise 7.13 if the circuit is

connected to a high frequency supply (240 V, 10 kHz). Hence, explain

the statement that at very high frequency, an inductor in a circuit

nearly amounts to an open circuit. How does an inductor behave in

a dc circuit after the steady state?

7.15

A 100 μF capacitor in series with a 40 Ω resistance is connected to a

110 V, 60 Hz supply.

(a) What is the maximum current in the circuit?

(b) What is the time lag between the current maximum and the

voltage maximum?

7.16

Obtain the answers to (a) and (b) in Exercise 7.15 if the circuit is

connected to a 110 V, 12 kHz supply? Hence, explain the statement



that a capacitor is a conductor at very high frequencies. Compare this

behaviour with that of a capacitor in a dc circuit after the steady state.

7.17

Keeping the source frequency equal to the resonating frequency of

the series LCR circuit, if the three elements, L, C and R are arranged in
parallel, show that the total current in the parallel LCR circuit is minimum
at this frequency. Obtain the current rms value in each branch of the circuit
for the elements and source specified in

Exercise 7.11 for this frequency.

7.18

A circuit containing a 80 mH inductor and a 60 μF capacitor in series

is connected to a 230 V, 50 Hz supply. The resistance of the circuit is

negligible.

(a) Obtain the current amplitude and rms values.

(b) Obtain the rms values of potential drops across each element.

(c) What is the average power transferred to the inductor?

(d) What is the average power transferred to the capacitor?

(e) What is the total average power absorbed by the circuit? [‘Average’

implies ‘averaged over one cycle’.]

7.19

Suppose the circuit in Exercise 7.18 has a resistance of 15 Ω. Obtain



the average power transferred to each element of the circuit, and
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7.20

A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to
a 230 V variable frequency supply.

(a) What is the source frequency for which current amplitude is

maximum. Obtain this maximum value.

(b) What is the source frequency for which average power absorbed

by the circuit is maximum. Obtain the value of this maximum

power.

(c) For which frequencies of the source is the power transferred to

the circuit half the power at resonant frequency? What is the

current amplitude at these frequencies?

(d) What is the Q-factor of the given circuit?

7.21

Obtain the resonant frequency and Q-factor of a series LCR circuit with L =
3.0 H, C = 27 μF, and R = 7.4 Ω. It is desired to improve the sharpness of
the resonance of the circuit by reducing its ‘full width at half maximum’ by
a factor of 2. Suggest a suitable way.

7.22



Answer the following questions:

(a) In any ac circuit, is the applied instantaneous voltage equal to

the algebraic sum of the instantaneous voltages across the series

elements of the circuit? Is the same true for rms voltage?

(b) A capacitor is used in the primary circuit of an induction coil.

(c) An applied voltage signal consists of a superposition of a dc voltage

and an ac voltage of high frequency. The circuit consists of an

inductor and a capacitor in series. Show that the dc signal will

appear across C and the ac signal across L.

(d) A choke coil in series with a lamp is connected to a dc line. The

lamp is seen to shine brightly. Insertion of an iron core in the

choke causes no change in the lamp’s brightness. Predict the

corresponding observations if the connection is to an ac line.

(e) Why is choke coil needed in the use of fluorescent tubes with ac

mains? Why can we not use an ordinary resistor instead of the

choke coil?

7.23

A power transmission line feeds input power at 2300 V to a step-down
transformer with its primary windings having 4000 turns. What

should be the number of turns in the secondary in order to get output

power at 230 V?



7.24

At a hydroelectric power plant, the water pressure head is at a height

of 300 m and the water flow available is 100 m3 s–1. If the turbine

generator efficiency is 60%, estimate the electric power available

from the plant ( g = 9.8 ms–2 ).

7.25

A small town with a demand of 800 kW of electric power at 220 V is

situated 15 km away from an electric plant generating power at 440 V.

The resistance of the two wire line carrying power is 0.5 Ω per km.

The town gets power from the line through a 4000-220 V step-down

transformer at a substation in the town.

(a) Estimate the line power loss in the form of heat.

(b) How much power must the plant supply, assuming there is

negligible power loss due to leakage?

(c) Characterise the step up transformer at the plant.

7.26

Do the same exercise as above with the replacement of the earlier

transformer by a 40,000-220 V step-down transformer (Neglect, as

before, leakage losses though this may not be a good assumption

any longer because of the very high voltage transmission involved).
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Hence, explain why high voltage transmission is preferred?

Chapter Eight

ELECTROMAGNETIC

WAVES

8.1 INTRODUCTION

In Chapter 4, we learnt that an electric current produces magnetic field

and that two current-carrying wires exert a magnetic force on each other.

Further, in Chapter 6, we have seen that a magnetic field changing with

time gives rise to an electric field. Is the converse also true? Does an

electric field changing with time give rise to a magnetic field? James Clerk

Maxwell (1831-1879), argued that this was indeed the case – not only

an electric current but also a time-varying electric field generates magnetic

field. While applying the Ampere’s circuital law to find magnetic field at a

point outside a capacitor connected to a time-varying current, Maxwell

noticed an inconsistency in the Ampere’s circuital law. He suggested the

existence of an additional current, called by him, the displacement

current to remove this inconsistency.

Maxwell formulated a set of equations involving electric and magnetic

fields, and their sources, the charge and current densities. These



equations are known as Maxwell’s equations. Together with the Lorentz

force formula (Chapter 4), they mathematically express all the basic laws

of electromagnetism.

The most important prediction to emerge from Maxwell’s equations

is the existence of electromagnetic waves, which are (coupled) time-varying
electric and magnetic fields that propagate in space. The speed

of the waves, according to these equations, turned out to be very close to

Physics

the speed of light( 3 ×108 m/s), obtained from optical

measurements. This led to the remarkable conclusion

that light is an electromagnetic wave. Maxwell’s work

thus unified the domain of electricity, magnetism and

light. Hertz, in 1885, experimentally demonstrated the

existence of electromagnetic waves. Its technological use

by Marconi and others led in due course to the

revolution in communication that we are witnessing



today.

In this chapter, we first discuss the need for

displacement current and its consequences. Then we

present a descriptive account of electromagnetic waves.

The broad spectrum of electromagnetic waves,

James Clerk Maxwell

stretching from γ rays (wavelength ~10–12 m) to long

(1831 – 1879) Born in

radio waves (wavelength ~106 m) is described. How the

Edinburgh, Scotland,

electromagnetic waves are sent and received for

was among the greatest

communication is discussed in Chapter 15.

physicists of the

nineteenth century. He

8.2 DISPLACEMENT CURRENT

derived the thermal

velocity distribution of

We have seen in Chapter 4 that an electrical current

molecules in a gas and



produces a magnetic field around it. Maxwell showed

was among the first to

that for logical consistency, a changing electric field must

obtain reliable

also produce a magnetic field. This effect is of great

estimates of molecular

parameters from

importance because it explains the existence of radio

measurable quantities

waves, gamma rays and visible light, as well as all other

like viscosity, etc.

forms of electromagnetic waves.

Maxwell’s greatest

To see how a changing electric field gives rise to

acheivement was the

a magnetic field, let us consider the process of

unification of the laws of

charging of a capacitor and apply Ampere’s circuital

electricity and

magnetism (discovered



law given by (Chapter 4)

by Coulomb, Oersted,

“B. dl =

Ampere and Faraday)

μ i ( t )

(8.1)

0

into a consistent set of

to find magnetic field at a point outside the capacitor.

equations now called

Figure 8.1(a) shows a parallel plate capacitor C which

Maxwell’s equations.

is a part of circuit through which a time-dependent

From these he arrived at

the most important

current i ( t ) flows . Let us find the magnetic field at a

conclusion that light is

point such as P, in a region outside the parallel plate

an electromagnetic

capacitor. For this, we consider a plane circular loop of



wave. Interestingly,

radius r whose plane is perpendicular to the direction

Maxwell did not agree

of the current-carrying wire, and which is centred

with the idea (strongly

symmetrically with respect to the wire [Fig. 8.1(a)]. From

suggested by the

symmetry, the magnetic field is directed along the

Faraday’s laws of

electrolysis) that

circumference of the circular loop and is the same in

electricity was

magnitude at all points on the loop so that if B is the

JAMES CLERK MAXWELL (1831–1879)

particulate in nature.

magnitude of the field, the left side of Eq. (8.1) is B (2π r).

So we have
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B (2π r) = μ i ( t )

(8 .2)
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Now, consider a different surface, which has the same boundary. This

is a pot like surface [Fig. 8.1(b)] which nowhere touches the current, but

has its bottom between the capacitor plates; its mouth is the circular

loop mentioned above. Another such surface is shaped like a tiffin box

(without the lid) [Fig. 8.1(c)]. On applying Ampere’s circuital law to such

surfaces with the same perimeter, we find that the left hand side of

Eq. (8.1) has not changed but the right hand side is zero and not μ i, 0

since no current passes through the surface of Fig. 8.1(b) and (c). So we
have a contradiction; calculated one way, there is a magnetic field at a point
P; calculated another way, the magnetic field at P is zero.

Since the contradiction arises from our use of Ampere’s circuital law,

this law must be missing something. The missing term must be such

that one gets the same magnetic field at point P, no matter what surface

is used.

We can actually guess the missing term by looking carefully at

Fig. 8.1(c). Is there anything passing through the surface S between the
plates of the capacitor? Yes, of course, the electric field! If the plates of the
capacitor have an area A, and a total charge Q, the magnitude of the electric
field E between the plates is ( Q/A)/ε (see Eq. 2.41). The field is 0



perpendicular to the surface S of Fig. 8.1(c). It has the same magnitude over
the area A of the capacitor plates, and vanishes outside it. So what is the
electric flux Φ through the surface S ? Using Gauss’s law, it is E

1 Q

Q

Φ = E A =

A =

E

ε A

ε

(8.3)

0

0

Now if the charge Q on the capacitor plates changes with time, there is a
current i = (d Q/ d t), so that using Eq. (8.3), we have dΦ

d ⎛ Q ⎞

1 d Q

E =

=

⎜

⎟



FIGURE 8.1 A

d t

d t ⎝ ε ⎠

ε d t

parallel plate

0

0

capacitor C, as part of

This implies that for consistency,

a circuit through

which a time

dΦ E

ε ⎛

⎞

dependent current

0 ⎜

⎟

⎝ d t ⎠ = i

(8.4) i ( t) flows, (a) a loop of

radius r, to determine



This is the missing term in Ampere’s circuital law. If we generalise

magnetic field at a

this law by adding to the total current carried by conductors through

point P on the loop;

the surface, another term which is ε times the rate of change of electric

(b) a pot-shaped

0

flux through the same surface, the total has the same value of current i
surface passing

through the interior

for all surfaces. If this is done, there is no contradiction in the value of B
between the capacitor obtained anywhere using the generalised Ampere’s
law. B at the point P

plates with the loop

is nonzero no matter which surface is used for calculating it. B at a

shown in (a) as its

rim; (c) a tiffin—

point P outside the plates [Fig. 8.1(a)] is the same as at a point M just

shaped surface with

inside, as it should be. The current carried by conductors due to flow of

the circular loop as



charges is called conduction current. The current, given by Eq. (8.4), is a its
rim and a flat

circular bottom S

new term, and is due to changing electric field (or electric displacement,
between the capacitor an old term still used sometimes). It is, therefore,
called displacement plates. The arrows

current or Maxwell’s displacement current. Figure 8.2 shows the electric
show uniform electric field between the and magnetic fields inside the
parallel plate capacitor discussed above.

capacitor plates.

The generalisation made by Maxwell then is the following. The source
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of a magnetic field is not just the conduction electric current due to flowing
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charges, but also the time rate of change of electric field. More

precisely, the total current i is the sum of the conduction current

denoted by i , and the displacement current denoted by i (= ε (dΦ /

c

d

0

E

d t)). So we have



dΦ E

i = i + i = i + ε

e

d

c

0

(8.5)

d t

In explicit terms, this means that outside the capacitor plates,

we have only conduction current i = i, and no displacement

c

current, i.e., i = 0. On the other hand, inside the capacitor, there is d

no conduction current, i.e., i = 0, and there is only displacement

c

current, so that i = i.

d

The generalised (and correct) Ampere’s circuital law has the same

form as Eq. (8.1), with one difference: “the total current passing

through any surface of which the closed loop is the perimeter” is

the sum of the conduction current and the displacement current.



The generalised law is

dΦ

d

i

=

E

μ i + μ ε

∫ B l 0 c 0 0

(8.6)

d t

and is known as Ampere-Maxwell law.

In all respects, the displacement current has the same physical

effects as the conduction current. In some cases, for example, steady

electric fields in a conducting wire, the displacement current may

be zero since the electric field E does not change with time. In other

FIGURE 8.2 (a) The

cases, for example, the charging capacitor above, both conduction

electric and magnetic

and displacement currents may be present in different regions of

fields E and B between



space. In most of the cases, they both may be present in the same

the capacitor plates, at

region of space, as there exist no perfectly conducting or perfectly

the point M. (b) A cross

insulating medium. Most interestingly, there may be large regions

sectional view of Fig. (a).

of space where there is no conduction current, but there is only a

displacement current due to time-varying electric fields. In such a

region, we expect a magnetic field, though there is no (conduction)

current source nearby! The prediction of such a displacement current

can be verified experimentally. For example, a magnetic field (say at point
M) between the plates of the capacitor in Fig. 8.2(a) can be measured and is
seen to be the same as that just outside (at P).

The displacement current has (literally) far reaching consequences.

One thing we immediately notice is that the laws of electricity and

magnetism are now more symmetrical*. Faraday’s law of induction states

that there is an induced emf equal to the rate of change of magnetic flux.

Now, since the emf between two points 1 and 2 is the work done per unit

charge in taking it from 1 to 2, the existence of an emf implies the existence

of an electric field. So, we can rephrase Faraday’s law of electromagnetic



induction by saying that a magnetic field, changing with time, gives rise to
an electric field. Then, the fact that an electric field changing with time
gives rise to a magnetic field, is the symmetrical counterpart, and is * They
are still not perfectly symmetrical; there are no known sources of magnetic
field (magnetic monopoles) analogous to electric charges which are sources
of 272

electric field.
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a consequence of the displacement current being a source of a magnetic

field. Thus, time-dependent electric and magnetic fields give rise to each

other! Faraday’s law of electromagnetic induction and Ampere-Maxwell

law give a quantitative expression of this statement, with the current

being the total current, as in Eq. (8.5). One very important consequence

of this symmetry is the existence of electromagnetic waves, which we

discuss qualitatively in the next section.

MAXWELL’S EQUATIONS

1.

d

i

= Q / ε

∫ E A



0

(Gauss’s Law for electricity)

2.

d

i

= 0

∫ B A

(Gauss’s Law for magnetism)

–dΦ

3.

B

d

i

=

∫ E l

(Faraday’s Law)

d t

dΦ

4.

d



i

=

E

μ i + μ ε

∫ B l 0 c 0 0

(Ampere – Maxwell Law)

d t

Example 8.1 A parallel plate capacitor with circular plates of radius

1 m has a capacitance of 1 nF. At t = 0, it is connected for charging in series
with a resistor R = 1 M Ω across a 2V battery (Fig. 8.3). Calculate the
magnetic field at a point P, halfway between the centre and the periphery of
the plates, after t = 10–3 s. (The charge on the capacitor at time t is q ( t) =
CV [1 – exp (– t/τ )], where the time constant τ is equal to CR.) FIGURE
8.3

Solution The time constant of the CR circuit is τ = CR = 10–3 s. Then, we
have

q( t) = CV [1 – exp (– t/τ)]

= 2 × 10–9 [1– exp (– t/10–3)]

E

The electric field in between the plates at time t is

XAMPLE

q ( t )

q



E =

=

ε

; A = π (1)2 m2 = area of the plates.

A

πε

0

0

8.1

Consider now a circular loop of radius (1/2) m parallel to the plates

passing through P. The magnetic field B at all points on the loop is
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along the loop and of the same value.

The flux Φ through this loop is

E

Φ = E × area of the loop

E

2

⎛ 1⎞



E

π

q

= E × π × ⎜ ⎟ =

=

⎝ 2⎠

4

4ε0

The displacement current

dΦ

1 d q

E

i

= ε

–6

=

= 0.5 ×10 exp –1

d

0

 



( )

d t

4 d t

at t = 10–3s. Now, applying Ampere-Maxwell law to the loop, we get

8.1

⎛ 1⎞

B × 2π × ⎜ ⎟ = μ i + i

= μ 0 + i

0 (

)

0 (

)

⎝

exp(–1)

2

c

d

d

⎠

= 0.5×10–6 μ0



XAMPLE

or, B = 0.74 × 10–13 T

E

8.3 ELECTROMAGNETIC WAVES

8.3.1 Sources of electromagnetic waves

How are electromagnetic waves produced? Neither stationary charges

nor charges in uniform motion (steady currents) can be sources of

electromagnetic waves. The former produces only electrostatic fields, while

the latter produces magnetic fields that, however, do not vary with time.

It is an important result of Maxwell’s theory that accelerated charges

radiate electromagnetic waves. The proof of this basic result is beyond

the scope of this book, but we can accept it on the basis of rough,

qualitative reasoning. Consider a charge oscillating with some frequency.

(An oscillating charge is an example of accelerating charge.) This

produces an oscillating electric field in space, which produces an oscillating

magnetic field, which in turn, is a source of oscillating electric field, and

so on. The oscillating electric and magnetic fields thus regenerate each

other, so to speak, as the wave propagates through the space.

The frequency of the electromagnetic wave naturally equals the

frequency of oscillation of the charge. The energy associated with the



propagating wave comes at the expense of the energy of the source – the

accelerated charge.

From the preceding discussion, it might appear easy to test the

prediction that light is an electromagnetic wave. We might think that all

we needed to do was to set up an ac circuit in which the current oscillate

at the frequency of visible light, say, yellow light. But, alas, that is not

possible. The frequency of yellow light is about 6 × 1014 Hz, while the

frequency that we get even with modern electronic circuits is hardly about

1011 Hz. This is why the experimental demonstration of electromagnetic

wave had to come in the low frequency region (the radio wave region), as

in the Hertz’s experiment (1887).

Hertz’s successful experimental test of Maxwell’s theory created a

sensation and sparked off other important works in this field. Two

important achievements in this connection deserve mention. Seven years
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after Hertz, Jagdish Chandra Bose, working at Calcutta (now Kolkata),



Electromagnetic

Waves

succeeded in producing and observing electromagnetic

waves of much shorter wavelength (25 mm to 5 mm).

His experiment, like that of Hertz’s, was confined to the

laboratory.

At around the same time, Guglielmo Marconi in Italy

followed Hertz’s work and succeeded in transmitting

electromagnetic waves over distances of many kilometres.

Marconi’s experiment marks the beginning of the field of

communication using electromagnetic waves.

8.3.2 Nature of electromagnetic waves

It can be shown from Maxwell’s equations that electric

and magnetic fields in an electromagnetic wave are

HEINRICH RUDOLF HER

perpendicular to each other, and to the direction of

propagation. It appears reasonable, say from our

Heinrich Rudolf Hertz

discussion of the displacement current. Consider

(1857 – 1894) German



Fig. 8.2. The electric field inside the plates of the capacitor

physicist who was the

is directed perpendicular to the plates. The magnetic

first to broadcast and

receive radio waves. He

field this gives rise to via the displacement current is

produced electro—

along the perimeter of a circle parallel to the capacitor

magnetic waves, sent

plates. So B and E are perpendicular in this case. This

them through space, and

is a general feature.

measured their wave—

In Fig. 8.4, we show a typical example of a plane

length and speed. He

electromagnetic wave propagating along the z direction

showed that the nature

(the fields are shown as a function of the z coordinate,

of their vibration,

reflection and refraction



at a given time t). The electric field E is along the x-axis, TZ (1857–1894)

x

was the same as that of

and varies sinusoidally with z, at a given time. The

light and heat waves,

magnetic field B is along the y-axis, and again varies

y

establishing their

sinusoidally with z. The electric and magnetic fields Ex

identity for the first time.

and B are perpendicular to each other, and to the

He also pioneered

y

direction z of propagation. We can write E and B as

research on discharge of

x

y

follows:

electricity through gases,

and discovered the



E = E sin ( kz–ω t )

[8.7(a)]

x

0

photoelectric effect.

B = B sin ( kz–ω t )

[8.7(b)]

y

0

Here k is related to the wave length λ of the wave by the

usual equation

2π

k = λ

(8.8)

and ω is the angular frequency. k

is the magnitude of the wave

vector (or propagation vector) k

and its direction describes the

direction of propagation of the

FIGURE 8.4 A linearly polarised electromagnetic wave,



wave. The speed of propagation

propagating in the z-direction with the oscillating electric field E

of the wave is (ω/ k ). Using

along the x-direction and the oscillating magnetic field B along Eqs. [8.7(a)
and (b)] for E and B

the y-direction.

x

y

and Maxwell’s equations, one
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ω = ck, where, c = 1/ μ ε

[8.9(a)]

0 0

The relation ω = ck is the standard one for waves (see for example,

Section 15.4 of class XI Physics textbook). This relation is often written

in terms of frequency, ν (=ω /2π ) and wavelength, λ ( =2π /k) as

⎛ 2π ⎞

2 ν



π = c ⎜ λ ⎟

⎝

⎠ or

νλ = c

[8.9(b)]

It is also seen from Maxwell’s equations that the magnitude of the

electric and the magnetic fields in an electromagnetic wave are related as

B = ( E /c)

(8.10)

0

0

We here make remarks on some features of electromagnetic waves.

They are self-sustaining oscillations of electric and magnetic fields in free

space, or vacuum. They differ from all the other waves we have studied

so far, in respect that no material medium is involved in the vibrations of
the electric and magnetic fields. Sound waves in air are longitudinal waves
of compression and rarefaction. Transverse waves on the surface of water

consist of water moving up and down as the wave spreads horizontally

and radially onwards. Transverse elastic (sound) waves can also propagate

in a solid, which is rigid and that resists shear. Scientists in the nineteenth
century were so much used to this mechanical picture that they thought that
there must be some medium pervading all space and all matter,



which responds to electric and magnetic fields just as any elastic medium

does. They called this medium ether. They were so convinced of the reality
of this medium, that there is even a novel called The Poison Belt by Sir
Arthur Conan Doyle (the creator of the famous detective Sherlock Holmes)
where the solar system is supposed to pass through a poisonous region of
ether! We now accept that no such physical medium is needed. The

famous experiment of Michelson and Morley in 1887 demolished

conclusively the hypothesis of ether. Electric and magnetic fields,

oscillating in space and time, can sustain each other in vacuum.

But what if a material medium is actually there? We know that light,

an electromagnetic wave, does propagate through glass, for example. We

http://www.amanogawa.com/waves.html

http://www.phys.hawaii.edu/~teb/java/ntnujava/emWave/emWave.html

have seen earlier that the total electric and magnetic fields inside a

Simulate propagation of electromagnetic waves

(i)

(ii)

medium are described in terms of a permittivity ε and a magnetic

permeability μ (these describe the factors by which the total fields differ

from the external fields). These replace ε and μ in the description to

0

0



electric and magnetic fields in Maxwell’s equations with the result that in

a material medium of permittivity ε and magnetic permeability μ, the

velocity of light becomes,

1

v =

με

(8.11)

Thus, the velocity of light depends on electric and magnetic properties of

the medium. We shall see in the next chapter that the refractive index of one
medium with respect to the other is equal to the ratio of velocities of light in
the two media.

The velocity of electromagnetic waves in free space or vacuum is an

important fundamental constant. It has been shown by experiments on
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electromagnetic waves of different wavelengths that this velocity is the
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same (independent of wavelength) to within a few metres per second, out

of a value of 3×108 m/s. The constancy of the velocity of em waves in

vacuum is so strongly supported by experiments and the actual value is

so well known now that this is used to define a standard of length.



Namely, the metre is now defined as the distance travelled by light in

vacuum in a time (1/ c) seconds = (2.99792458 × 108)–1 seconds. This

has come about for the following reason. The basic unit of time can be

defined very accurately in terms of some atomic frequency, i.e., frequency

of light emitted by an atom in a particular process. The basic unit of length

is harder to define as accurately in a direct way. Earlier measurement of c
using earlier units of length (metre rods, etc.) converged to a value of about
2.9979246 × 108 m/s. Since c is such a strongly fixed number, unit of

length can be defined in terms of c and the unit of time!

Hertz not only showed the existence of electromagnetic waves, but

also demonstrated that the waves, which had wavelength ten million times

that of the light waves, could be diffracted, refracted and polarised. Thus,

he conclusively established the wave nature of the radiation. Further, he

produced stationary electromagnetic waves and determined their

wavelength by measuring the distance between two successive nodes.

Since the frequency of the wave was known (being equal to the frequency

of the oscillator), he obtained the speed of the wave using the formula

v = νλ and found that the waves travelled with the same speed as the

speed of light.

The fact that electromagnetic waves are polarised can be easily seen

in the response of a portable AM radio to a broadcasting station. If an



AM radio has a telescopic antenna, it responds to the electric part of the

signal. When the antenna is turned horizontal, the signal will be greatly

diminished. Some portable radios have horizontal antenna (usually inside

the case of radio), which are sensitive to the magnetic component of the

electromagnetic wave. Such a radio must remain horizontal in order to

receive the signal. In such cases, response also depends on the orientation

of the radio with respect to the station.

Do electromagnetic waves carry energy and momentum like other

waves? Yes, they do. We have seen in chapter 2 that in a region of free

space with electric field E, there is an energy density (ε E 2/2). Similarly, 0

as seen in Chapter 6, associated with a magnetic field B is a magnetic

energy density ( B 2/2μ ). As electromagnetic wave contains both electric 0

and magnetic fields, there is a nonzero energy density associated with

it. Now consider a plane perpendicular to the direction of propagation of

the electromagnetic wave (Fig. 8.4). If there are, on this plane, electric

charges, they will be set and sustained in motion by the electric and

magnetic fields of the electromagnetic wave. The charges thus acquire

energy and momentum from the waves. This just illustrates the fact that

an electromagnetic wave (like other waves) carries energy and momentum.

Since it carries momentum, an electromagnetic wave also exerts pressure,



called radiation pressure.

If the total energy transferred to a surface in time t is U, it can be shown that
the magnitude of the total momentum delivered to this surface ( for
complete absorption) is,

U

p =

(8.12)
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When the sun shines on your hand, you feel the energy being

absorbed from the electromagnetic waves (your hands get warm).

Electromagnetic waves also transfer momentum to your hand but

because c is very large, the amount of momentum transferred is extremely
small and you do not feel the pressure. In 1903, the American scientists
Nicols and Hull succeeded in measuring radiation pressure of

visible light and verified Eq. (8.12). It was found to be of the order of

7 × 10–6 N/m2. Thus, on a surface of area 10 cm2, the force due to
radiation

is only about 7 × 10–9 N.

The great technological importance of electromagnetic waves stems

from their capability to carry energy from one place to another. The



radio and TV signals from broadcasting stations carry energy. Light

carries energy from the sun to the earth, thus making life possible on

the earth.

Example 8.2 A plane electromagnetic wave of frequency

25 MHz travels in free space along the x-direction. At a particular

point in space and time, E = 6.3 ˆj V/m. What is B at this point?

Solution Using Eq. (8.10), the magnitude of B is

E

B = c

6.3 V/m

–8

=

= 2.1×10 T

8

3 ×10 m/s

8.2

To find the direction, we note that E is along y-direction and the wave
propagates along x-axis. Therefore, B should be in a direction perpendicular
to both x- and y- axes. Using vector algebra, E × B should XAMPLE

be along x-direction. Since, (+ ˆj ) × (+ ˆ

k ) = ˆi , B is along the z-direction.



E

Thus,

B = 2.1 × 10–8 ˆ

k T

Example 8.3 The magnetic field in a plane electromagnetic wave is given
by B = 2 × 10–7 sin (0.5×103 x+1.5×1011 t) T.

y

(a) What is the wavelength and frequency of the wave?

(b) Write an expression for the electric field.

Solution

(a) Comparing the given equation with

⎡

⎛ x

t ⎞ ⎤

B = B sin 2π

⎢

⎜ + ⎟ ⎥

y

0



⎝ λ T ⎠

⎣

⎦

2π

We get, λ =

3

0.5 ×

m = 1.26 cm,

10

1

and

 

= ν = (

11

1.5 × 10 )/2π = 23.9 GHz

3

T

(b) E = B c = 2×10–7 T × 3 × 108 m/s = 6 × 101 V/m

8.

0



0

The electric field component is perpendicular to the direction of

propagation and the direction of magnetic field. Therefore, the

electric field component along the z-axis is obtained as

XAMPLE

278

E

E = 60 sin (0.5 × 103 x + 1.5 × 1011 t) V/m

z
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Example 8.4 Light with an energy flux of 18 W/cm2 falls on a non—

reflecting surface at normal incidence. If the surface has an area of

20 cm2, find the average force exerted on the surface during a 30

minute time span.

Solution

The total energy falling on the surface is

U = (18 W/cm2) × (20 cm2) × (30 × 60)

= 6.48 × 105 J

Therefore, the total momentum delivered (for complete absorption) is



5

U

6.48 × 10 J

p =

=

8

E

c

3 ×

= 2.16 × 10–3 kg m/s

10 m/s

XAMPLE

The average force exerted on the surface is

−3

p

2.16 × 10

F =

−6

=

= 1.2 × 10 N



8.4

4

t

0.18 × 10

How will your result be modified if the surface is a perfect reflector?

Example 8.5 Calculate the electric and magnetic fields produced by

the radiation coming from a 100 W bulb at a distance of 3 m. Assume

that the efficiency of the bulb is 2.5% and it is a point source.

Solution The bulb, as a point source, radiates light in all directions

uniformly. At a distance of 3 m, the surface area of the surrounding

sphere is

2

2

2

A = 4 π r = 4π (3) = 113 m

The intensity at this distance is

Power

100 W × 2.5 %

I =

=



2

Area

113 m

= 0.022 W/m2

Half of this intensity is provided by the electric field and half by the

magnetic field.

1

1

I =

( 2

ε E c

0

rms

)

2

2

1

= (

2

0.022 W/m )



2

0.022

E

=

rms

(

V/m

−12

8.85 × 10

)(

8

3 × 10 )

= 2.9 V/m

The value of E found above is the root mean square value of the

electric field. Since the electric field in a light beam is sinusoidal, the

peak electric field, E is

0

E

E = 2 E

= 2 × 2.9 V/m



XAMPLE

0

rms

= 4.07 V/m

Thus, you see that the electric field strength of the light that you use

8.5

for reading is fairly large. Compare it with electric field strength of

TV or FM waves, which is of the order of a few microvolts per metre.
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Now, let us calculate the strength of the magnetic field. It is

−1

E

2.9 V m

rms

B

=

=

rms

8



1

c

3 ×

= 9.6 × 10–9 T

10 m s−

8.5

Again, since the field in the light beam is sinusoidal, the peak

magnetic field is B =

= 1.4 × 10–8 T. Note that although the

0

2 Brms

energy in the magnetic field is equal to the energy in the electric

XAMPLE

field, the magnetic field strength is evidently very weak.

E

8.4 ELECTROMAGNETIC SPECTRUM

At the time Maxwell predicted the existence of electromagnetic waves, the

only familiar electromagnetic waves were the visible light waves. The
existence of ultraviolet and infrared waves was barely established. By the
end of the nineteenth century, X-rays and gamma rays had also been
discovered. We



now know that, electromagnetic waves include visible light waves, X-rays,

gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The

classification of em waves according to frequency is the electromagnetic

spectrum (Fig. 8.5). There is no sharp division between one kind of wave

and the next. The classification is based roughly on how the waves are

produced and/or detected.

Electromagnetic spectrum

http://www.fnal.gov/pub/inquiring/more/light

http://imagine.gsfc.nasa.gov/docs/science/

FIGURE 8.5 The electromagnetic spectrum, with common names for
various
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part of it. The various regions do not have sharply defined boundaries.
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We briefly describe these different types of electromagnetic waves, in

order of decreasing wavelengths.



8.4.1 Radio waves

Radio waves are produced by the accelerated motion of charges in
conducting

wires. They are used in radio and television communication systems. They

are generally in the frequency range from 500 kHz to about 1000 MHz.

The AM (amplitude modulated) band is from 530 kHz to 1710 kHz. Higher

frequencies upto 54 MHz are used for short wave bands. TV waves range

from 54 MHz to 890 MHz. The FM (frequency modulated) radio band

extends from 88 MHz to 108 MHz. Cellular phones use radio waves to

transmit voice communication in the ultrahigh frequency (UHF) band. How

these waves are transmitted and received is described in Chapter 15.

8.4.2 Microwaves

Microwaves (short-wavelength radio waves), with frequencies in the

gigahertz (GHz) range, are produced by special vacuum tubes (called

klystrons, magnetrons and Gunn diodes). Due to their short wavelengths,

they are suitable for the radar systems used in aircraft navigation. Radar

also provides the basis for the speed guns used to time fast balls, tennis—

serves, and automobiles. Microwave ovens are an interesting domestic

application of these waves. In such ovens, the frequency of the microwaves

is selected to match the resonant frequency of water molecules so that

energy from the waves is transferred efficiently to the kinetic energy of



the molecules. This raises the temperature of any food containing water.

MICROWAVE OVEN

The spectrum of electromagnetic radiation contains a part known as
microwaves. These waves have frequency and energy smaller than visible
light and wavelength larger than it.

What is the principle of a microwave oven and how does it work?

Our objective is to cook food or warm it up. All food items such as fruit,
vegetables, meat, cereals, etc., contain water as a constituent. Now, what
does it mean when we say that a certain object has become warmer? When
the temperature of a body rises, the energy of the random motion of atoms
and molecules increases and the molecules travel or vibrate or rotate with
higher energies. The frequency of rotation of water molecules is about 300
crore hertz, which is 3 gigahertz (GHz). If water receives microwaves of
this frequency, its molecules absorb this radiation, which is equivalent to
heating up water. These molecules share this energy with neighbouring food
molecules, heating up the food.

One should use porcelain vessels and not metal containers in a microwave
oven because of the danger of getting a shock from accumulated electric
charges. Metals may also melt from heating. The porcelain container
remains unaffected and cool, because its large molecules vibrate and rotate
with much smaller frequencies, and thus cannot absorb microwaves. Hence,
they do not get heated up.

Thus, the basic principle of a microwave oven is to generate microwave
radiation of appropriate frequency in the working space of the oven where
we keep food. This way energy is not wasted in heating up the vessel. In the
conventional heating method, the vessel on the burner gets heated first, and
then the food inside gets heated because of transfer of energy from the
vessel. In the microwave oven, on the other hand, energy is directly
delivered to water molecules which is shared by the entire food.
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8.4.3 Infrared waves

Infrared waves are produced by hot bodies and molecules. This band

lies adjacent to the low-frequency or long-wave length end of the visible

spectrum. Infrared waves are sometimes referred to as heat waves. This

is because water molecules present in most materials readily absorb

infrared waves (many other molecules, for example, CO , NH , also absorb

2

3

infrared waves). After absorption, their thermal motion increases, that is,

they heat up and heat their surroundings. Infrared lamps are used in

physical therapy. Infrared radiation also plays an important role in

maintaining the earth’s warmth or average temperature through the

greenhouse effect. Incoming visible light (which passes relatively easily

through the atmosphere) is absorbed by the earth’s surface and re—

radiated as infrared (longer wavelength) radiations. This radiation is

trapped by greenhouse gases such as carbon dioxide and water vapour.

Infrared detectors are used in Earth satellites, both for military purposes

and to observe growth of crops. Electronic devices (for example

semiconductor light emitting diodes) also emit infrared and are widely



used in the remote switches of household electronic systems such as TV

sets, video recorders and hi-fi systems.

8.4.4 Visible rays

It is the most familiar form of electromagnetic waves. It is the part of the

spectrum that is detected by the human eye. It runs from about

4 × 1014 Hz to about 7 × 1014 Hz or a wavelength range of about 700 –

400 nm. Visible light emitted or reflected from objects around us provides

us information about the world. Our eyes are sensitive to this range of

wavelengths. Different animals are sensitive to different range of

wavelengths. For example, snakes can detect infrared waves, and the

‘visible’ range of many insects extends well into the utraviolet.

8.4.5 Ultraviolet rays

It covers wavelengths ranging from about 4 × 10–7 m (400 nm) down to

6 × 10–10m (0.6 nm). Ultraviolet (UV) radiation is produced by special

lamps and very hot bodies. The sun is an important source of ultraviolet

light. But fortunately, most of it is absorbed in the ozone layer in the

atmosphere at an altitude of about 40 – 50 km. UV light in large quantities

has harmful effects on humans. Exposure to UV radiation induces the

production of more melanin, causing tanning of the skin. UV radiation is

absorbed by ordinary glass. Hence, one cannot get tanned or sunburn



through glass windows.

Welders wear special glass goggles or face masks with glass windows

to protect their eyes from large amount of UV produced by welding arcs.

Due to its shorter wavelengths, UV radiations can be focussed into very

narrow beams for high precision applications such as LASIK ( Laser-

assisted in situ keratomileusis) eye surgery. UV lamps are used to kill germs
in water purifiers.

Ozone layer in the atmosphere plays a protective role, and hence its

depletion by chlorofluorocarbons (CFCs) gas (such as freon) is a matter
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8.4.6 X-rays

Beyond the UV region of the electromagnetic spectrum lies the X-ray

region. We are familiar with X-rays because of its medical applications. It

covers wavelengths from about 10–8 m (10 nm) down to 10–13 m

(10–4 nm). One common way to generate X-rays is to bombard a metal

target by high energy electrons. X-rays are used as a diagnostic tool in

medicine and as a treatment for certain forms of cancer. Because X-rays

damage or destroy living tissues and organisms, care must be taken to



avoid unnecessary or over exposure.

8.4.7 Gamma rays

They lie in the upper frequency range of the electromagnetic spectrum

and have wavelengths of from about 10–10m to less than 10–14m. This

high frequency radiation is produced in nuclear reactions and

also emitted by radioactive nuclei. They are used in medicine to destroy

cancer cells.

Table 8.1 summarises different types of electromagnetic waves, their

production and detections. As mentioned earlier, the demarcation

between different region is not sharp and there are over laps.

TABLE 8.1 DIFFERENT TYPES OF ELECTROMAGNETIC WAVES

Type

Wavelength range

Production

Detection

Radio

> 0.1 m

Rapid acceleration and

Receiver’s aerials

decelerations of electrons



in aerials

Microwave

0.1m to 1 mm

Klystron valve or

Point contact diodes

magnetron valve

Infrared

1mm to 700 nm

Vibration of atoms

Thermopiles

and molecules

Bolometer, Infrared

photographic film

Light

700 nm to 400 nm

Electrons in atoms emit

The eye

light when they move from

Photocells

one energy level to a



Photographic film

lower energy level

Ultraviolet

400 nm to 1nm

Inner shell electrons in

Photocells

atoms moving from one

Photographic film

energy level to a lower level

X-rays

1nm to 10–3 nm

X-ray tubes or inner shell

Photographic film

electrons

Geiger tubes

Ionisation chamber

Gamma rays

<10–3 nm

Radioactive decay of the

-do—



nucleus
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SUMMARY

1.

Maxwell found an inconsistency in the Ampere’s law and suggested the

existence of an additional current, called displacement current, to remove

this inconsistency. This displacement current is due to time-varying electric

field and is given by

dΦ

i

ε

Ε

=

d

0

d t

and acts as a source of magnetic field in exactly the same way as
conduction

current.

2.



An accelerating charge produces electromagnetic waves. An electric charge

oscillating harmonically with frequency ν, produces electromagnetic waves

of the same frequency ν. An electric dipole is a basic source of

electromagnetic waves.

3.

Electromagnetic waves with wavelength of the order of a few metres were

first produced and detected in the laboratory by Hertz in 1887. He thus

verified a basic prediction of Maxwell’s equations.

4.

Electric and magnetic fields oscillate sinusoidally in space and time in an

electromagnetic wave. The oscillating electric and magnetic fields, E and B
are perpendicular to each other, and to the direction of propagation of the
electromagnetic wave. For a wave of frequency ν, wavelength λ,
propagating along z-direction, we have

E = E

sin ( kz – ω t )

 

x ( t) = E 0

⎡



⎛ z

⎞ ⎤

⎡

⎛ z

t ⎞ ⎤

= E sin 2π

⎢

⎜ − t
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⎥
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0
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⎠
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B = B ( t) = B sin ( kz – ω t)
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ν ⎟ = B sin 2π
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⎝
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⎝
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⎣

⎦
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They are related by E /B = c.

0

0



5.

The speed c of electromagnetic wave in vacuum is related to μ and ε (the 0

0

free space permeability and permittivity constants) as follows:

c = 1/ μ ε . The value of c equals the speed of light obtained from 0

0

optical measurements.

Light is an electromagnetic wave; c is, therefore, also the speed of light.

Electromagnetic waves other than light also have the same velocity c in

free space.

The speed of light, or of electromagnetic waves in a material medium is

given by v = 1/ μ ε

where μ is the permeability of the medium and ε its permittivity.

6.

Electromagnetic waves carry energy as they travel through space and this

energy is shared equally by the electric and magnetic fields.

Electromagnetic waves transport momentum as well. When these waves

strike a surface, a pressure is exerted on the surface. If total energy

transferred to a surface in time t is U, total momentum delivered to this
surface is p = U/ c.

7.



The spectrum of electromagnetic waves stretches, in principle, over an
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infinite range of wavelengths. Different regions are known by different
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names; γ-rays, X-rays, ultraviolet rays, visible rays, infrared rays,

microwaves and radio waves in order of increasing wavelength from 10–2
Å

or 10–12 m to 106 m.

They interact with matter via their electric and magnetic fields which set

in oscillation charges present in all matter. The detailed interaction and

so the mechanism of absorption, scattering, etc., depend on the wavelength

of the electromagnetic wave, and the nature of the atoms and molecules

in the medium.

POINTS TO PONDER

1.

The basic difference between various types of electromagnetic waves

lies in their wavelengths or frequencies since all of them travel through

vacuum with the same speed. Consequently, the waves differ

considerably in their mode of interaction with matter.

2.



Accelerated charged particles radiate electromagnetic waves. The

wavelength of the electromagnetic wave is often correlated with the

characteristic size of the system that radiates. Thus, gamma radiation,

having wavelength of 10–14 m to 10–15 m, typically originate from an

atomic nucleus. X-rays are emitted from heavy atoms. Radio waves

are produced by accelerating electrons in a circuit. A transmitting

antenna can most efficiently radiate waves having a wavelength of

about the same size as the antenna. Visible radiation emitted by atoms

is, however, much longer in wavelength than atomic size.

3.

The oscillating fields of an electromagnetic wave can accelerate charges

and can produce oscillating currents. Therefore, an apparatus designed

to detect electromagnetic waves is based on this fact. Hertz original

‘receiver’ worked in exactly this way. The same basic principle is utilised

in practically all modern receiving devices. High frequency

electromagnetic waves are detected by other means based on the

physical effects they produce on interacting with matter.

4.

Infrared waves, with frequencies lower than those of visible light,

vibrate not only the electrons, but entire atoms or molecules of a



substance. This vibration increases the internal energy and

consequently, the temperature of the substance. This is why infrared

waves are often called heat waves.

5.

The centre of sensitivity of our eyes coincides with the centre of the

wavelength distribution of the sun. It is because humans have evolved

with visions most sensitive to the strongest wavelengths from

the sun.

EXERCISES

8.1

Figure 8.6 shows a capacitor made of two circular plates each of

radius 12 cm, and separated by 5.0 cm. The capacitor is being

charged by an external source (not shown in the figure). The

charging current is constant and equal to 0.15A.

(a) Calculate the capacitance and the rate of charge of potential
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difference between the plates.
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(b) Obtain the displacement current across the plates.

(c)



Is Kirchhoff’s first rule (junction rule) valid at each plate of the

capacitor? Explain.

FIGURE 8.6

8.2

A parallel plate capacitor (Fig. 8.7 ) made of circular plates each of radius

R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a
230 V ac supply with a (angular) frequency of 300 rad s–1.

(a) What is the rms value of the conduction current?

(b) Is the conduction current equal to the displacement current?

(c)

Determine the amplitude of B at a point 3.0 cm from the axis

between the plates.

FIGURE 8.7

8.3

What physical quantity is the same for X-rays of wavelength

10–10 m, red light of wavelength 6800 Å and radiowaves of wavelength

500m?

8.4

A plane electromagnetic wave travels in vacuum along z-direction.

What can you say about the directions of its electric and magnetic

field vectors? If the frequency of the wave is 30 MHz, what is its



wavelength?

8.5

A radio can tune in to any station in the 7.5 MHz to 12 MHz band.

What is the corresponding wavelength band?

8.6

A charged particle oscillates about its mean equilibrium position

with a frequency of 109 Hz. What is the frequency of the

electromagnetic waves produced by the oscillator?

8.7

The amplitude of the magnetic field part of a harmonic

electromagnetic wave in vacuum is B = 510 nT. What is the

0

amplitude of the electric field part of the wave?

8.8

Suppose that the electric field amplitude of an electromagnetic wave

is E = 120 N/C and that its frequency is ν = 50.0 MHz. (a) Determine,

0

B , ω, k, and λ. (b) Find expressions for E and B.

0

8.9



The terminology of different parts of the electromagnetic spectrum

is given in the text. Use the formula E = hν (for energy of a quantum of
radiation: photon) and obtain the photon energy in units of eV for different
parts of the electromagnetic spectrum. In what way are

the different scales of photon energies that you obtain related to the

sources of electromagnetic radiation?

8.10

In a plane electromagnetic wave, the electric field oscillates
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sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m–1.
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(a) What is the wavelength of the wave?

(b) What is the amplitude of the oscillating magnetic field?

(c)

Show that the average energy density of the E field equals the

average energy density of the B field. [ c = 3 × 108 m s–1.]

ADDITIONAL EXERCISES

8.11

Suppose that the electric field part of an electromagnetic wave in

vacuum is E = {(3.1 N/C) cos [(1.8 rad/m) y + (5.4 × 106 rad/s) t]} ˆi .



(a) What is the direction of propagation?

(b) What is the wavelength λ ?

(c)

What is the frequency ν ?

(d) What is the amplitude of the magnetic field part of the wave?

(e)

Write an expression for the magnetic field part of the wave.

8.12

About 5% of the power of a 100 W light bulb is converted to visible

radiation. What is the average intensity of visible radiation

(a) at a distance of 1m from the bulb?

(b) at a distance of 10 m?

Assume that the radiation is emitted isotropically and neglect

reflection.

8.13

Use the formula λ m T = 0.29 cm K to obtain the characteristic

temperature ranges for different parts of the electromagnetic

spectrum. What do the numbers that you obtain tell you?

8.14

Given below are some famous numbers associated with



electromagnetic radiations in different contexts in physics. State

the part of the electromagnetic spectrum to which each belongs.

(a) 21 cm (wavelength emitted by atomic hydrogen in interstellar

space).

(b) 1057 MHz (frequency of radiation arising from two close energy

levels in hydrogen; known as Lamb shift).

(c)

2.7 K [temperature associated with the isotropic radiation filling

all space-thought to be a relic of the ‘big-bang’ origin of the

universe].

(d) 5890 Å - 5896 Å [double lines of sodium]

(e)

14.4 keV [energy of a particular transition in 57Fe nucleus

associated with a famous high resolution spectroscopic method

(Mössbauer spectroscopy)].

8.15

Answer the following questions:

(a) Long distance radio broadcasts use short-wave bands. Why?

(b) It is necessary to use satellites for long distance TV transmission.

Why?



(c)

Optical and radiotelescopes are built on the ground but X-ray

astronomy is possible only from satellites orbiting the earth.

Why?

(d) The small ozone layer on top of the stratosphere is crucial for

human survival. Why?

(e)

If the earth did not have an atmosphere, would its average

surface temperature be higher or lower than what it is now?

(f )

Some scientists have predicted that a global nuclear war on the

earth would be followed by a severe ‘nuclear winter’ with a

devastating effect on life on earth. What might be the basis of
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this prediction?
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